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Abstract

For a large class of Lur’e systems with time-varying nonlinearities and feedthrough we consider several 
well-posedness issues, namely: existence, continuation, blow-up in finite-time, forward completeness and 
uniqueness of solutions. Lur’e systems with feedthrough are systems of forced, nonlinear ordinary differ
ential equations coupled with a nonlinear algebraic equation determining the output of the system. The 
presence of feedthrough means that the algebraic equation is implicit in the output, and, in general, the 
output may not be expressible by an analytic formula in terms of the state and the input. Simple examples 
illustrate that the well-posedness properties of such systems are not necessarily guaranteed by assump
tions sufficient for the corresponding well-posedness properties of Lur’e systems without feedthrough. We 
provide sufficient conditions for the well-posedness properties mentioned above, using global inversion 
theorems from real analysis and tools from non-smooth analysis and differential inclusions. The theory is 
illustrated with examples.
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1. Introduction

Lur’e systems are a common and important class of nonlinear control systems. Their stability 
theory, often termed absolute stability, has generated significant interest, and dates back to the 
work of Soviet scholars Lur’e (also written in English as Lurie or Lurye) and Postnikov in the 
1940s. In fact, the Aizerman conjecture, and the research on stability conditions for Lur’e systems 
it triggered, stand at the beginning of nonlinear control theory, see [45] for historical notes.1

The literature on Lur’e systems is vast and detailed treatments of Lur’e systems and abso
lute stability theory can be found in many places, including [1,2,14,26,31,36,42,48,63]. Whilst 
absolute stability theory addresses global asymptotic stability of unforced Lur’e systems, more 
recently, input-to-state stability properties of forced Lur’e systems have been investigated, see 
[4,32--34,40,41,58]. Furthermore, current interest in Lur’e systems is in part owing to their ap
pearance in various neural network architectures and in mathematical biology, see, for instance, 
[18,28,53] and [10,29,30,59], respectively, and the references therein.

In this paper, we consider well-posedness properties of the following general class of con
trolled (or forced) Lur’e differential equations:

ẋ(t) = Ax(t) + Bf (t, y(t)) + Bev(t), x(t0) = x0, t ≥ t0 ≥ 0, (1.1a)

y(t) = Cx(t) + Df (t, y(t)) + Dev(t), (1.1b)

where v, x, y denote the control (external forcing or disturbance), state and output variables, 
respectively. The model data A,B,Be,C,D and De are appropriately sized matrices, and f is 
a time-dependent nonlinearity. It is assumed that f is a Caratheodory function, that is, f (t, · )
is continuous and f ( · , ξ) is measurable for each fixed t ≥ 0 and each fixed ξ , respectively. 
System (1.1) arises as the feedback connection of a linear control system and nonlinear, static, 
but possibly time-varying, output feedback u(t) = f (t, y(t)) as illustrated in Fig. 1.1. It is shown 
in Section 3 that system (1.1) is sufficiently general to capture a number of scenarios common in 
control theory and engineering.

The matrix D is called the feedthrough matrix, or simply, feedthrough.2 Note that if D = 0, 
then y may be eliminated from (1.1) leaving a system of nonlinear forced ordinary differential 
equations, the well-posedness of which is standard. However, if D is non-zero, then equation 
(1.1b) is implicit in y and this makes the analysis of well-posedness properties of (1.1) more 
challenging.

Focussing on the case D ≠ 0, we will discuss certain natural existence, uniqueness and con
tinuation questions relating to system (1.1):

(a) Given v ∈ L∞
loc(R+,Rme), t0 ≥ 0 and x0 ∈Rn, does there exist a pair (x, y) satisfying (1.1)

such that x(t0) = x0?
(b) Under what conditions is uniqueness guaranteed?

1 As is well known, the Aizerman conjecture is not true in general. However, the problem of identifying classes of 
Lur’e systems for which the conjecture is true continues to be of considerable interest, see, for example, [27,47]. We also 
mention in this context that the complex Aizerman conjecture is true, see [37, Section 5.6.3].

2 The matrix De also represents a feedthrough, an instantaneous impact of the input v on the output y. However, it is 
the feedthrough D which makes (1.1b) into an implicit equation for y, thereby potentially causing well-posedness issues. 
Therefore, in this paper, the word ``feedthrough'' usually refers to D.
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ẋ = Ax + Bu + Bev

y = Cx + Du + Dev

f

v

yu

Fig. 1.1. Forced Lur’e system. 

(c) If (v, x, y) satisfies (1.1) and is maximally defined on [t0, τ ) with t0 < τ < ∞, is it true that

lim sup
t↑τ 

∥x(t)∥ +
τ∫︂

t0

(︁∥y(s)∥ + ∥f (s, y(s))∥)︁ds = ∞ ?

(d) Assuming that the nonlinearity f satisfies ∥f (t, ξ)∥ ≤ a(t) + b∥ξ∥ for all t ≥ 0 and all 
ξ , where a is locally integrable and b is a positive constant: is it true that (1.1) is forward 
complete in the sense that if (v, x, y) satisfies (1.1) and is maximally defined on [t0, τ ), then 
τ = ∞?

Lur’e systems (and generalizations thereof) with feedthrough are considered throughout the 
literature, see, for example, the research monograph [14, Sections 3.13 and 3.14], the text 
books [36, Sections 5.7 and 5.8], [42, Section 7.1] and [63, Section 5.6], and the papers 
[8,9,11--13,15,17,33,39,35,61,62,68]. Not all of these references address well-posedness issues. 
The ones which do (mainly in the case where the nonlinearity f does not depend on time) include 
[11--13,15,17,33,39,62,68]. In more detail, [11, Proposition 1], [39, Claim 2], [62, Assumption 1 
and Appendix B] and [68, Claim 1 and Appendix B] all deal with certain well-posedness issues 
for some special classes of time-independent nonlinearities (such as deadzone and saturation) in 
the contexts of bounded stabilization and anti-windup designs, whilst paper [33] by the authors 
contains a well-posedness result for the case of time-independent, continuously differentiable f , 
see [33, Proposition 3.2]. The papers [12,13,15,17] provide numerous contributions to the exis
tence and uniqueness theory of Lur’e systems with a passive system in the forward loop and a 
set-valued maximally monotone nonlinearity in the feedback loop.

We remark that (1.1) is a so-called (semi-explicit) differential-algebraic equation (DAE), see, 
for example, [44,50]. Whilst it may be tempting to apply the theory of DAEs to address the above 
questions (a)-(d), the problem is that in the DAE literature more restrictive regularity assumptions 
are imposed on f and v than in our setting. In particular, an initial condition is imposed also on 
the variable y, which does not make sense in the context of (1.1) due to the possibly highly 
irregular dependence of f and v on t . Consequently, we will not use any DAE methods and 
techniques in this paper.

In the sections below, we will provide a systematic analysis of the well-posedness issues (a)
(d) listed above in the context of the general class of Lur’e systems (1.1) with time-dependent 
nonlinearity, including the development of sufficient conditions guaranteeing well-posedness in 
the sense of (a), (b), (c) and/or (d). In particular, the well-posedness results in [11,33,39,62,68] 
are consequences of the general theory developed in Section 4 below, as is the well-known result 
for the linear case f (t, ξ) = K(t)ξ . In contrast to the contributions in [12,13,15,17], neither 

3 



C. Guiver and H. Logemann Journal of Differential Equations 456 (2026) 114050 

passivity of the linear system nor any monotonicity properties of the nonlinearity are assumed in 
our approach to well-posedness issues of (1.1).

In Subsection 4.1, we identify conditions on D and f ensuring that the map Ft : ξ ↦→
ξ − Df (t, ξ) is invertible for each t ≥ 0 and the function (t, ξ) ↦→ F−1

t (ξ ) is a Caratheodory 
function and bounded on bounded sets, in which case the output y can be eliminated from the 
differential equation (1.1a); the resulting system is then an explicit ordinary differential equation. 
The results in Subsection 4.1 relate to existence and continuation of solutions to the initial-value 
problem, forward completeness and uniqueness of solutions. One technical challenge throughout 
Section 4 is the accommodation of the time dependence of the nonlinearity f : this is accom
plished by the assumption that the radial unboundedness of Ft (which is necessary for the 
invertibility of Ft ) is locally uniform in t . Apart from the theory of ordinary differential equa
tions, the main technical ingredients are global inverse function theorems (which, we note, play 
also an important role in other areas of systems and circuits, see, for instance, [16,55,57,67]). 
By working with Clarke’s set-valued generalized derivative [20,21], we are able to avoid contin
uous differentiability assumptions, and only assume that f (t, ξ) satisfies a mild local Lipschitz 
condition with respect to ξ , thereby providing a sufficiently general framework which allows for 
common non-smooth nonlinearities such as deadzone and saturation.

In Subsection 4.2, we consider the case in which Ft is not necessarily invertible for all t ≥ 0. 
We do this, by recasting (1.1a) as a differential inclusion through a set-valued ``inverse'' F−1

t (ξ ), 
where this symbol now denotes the fibre of ξ under Ft . The results in Subsection 4.2 provide 
sufficient conditions for the existence of solutions and forward completeness of (1.1). The main 
technical tools are results from non-smooth analysis such as existence of solutions to differential 
inclusions and certain selection theorems (including Filippov’s selection theorem), see [5,21,24, 
64,65].

The remainder of this work is organised as follows. Section 2 collects relevant preliminary 
material on global homeomorphisms, Clarke’s set-valued generalized derivative and set-valued 
functions. Section 3 contains a detailed discussion of the class of Lur’e systems under considera
tion, introduces a number of concepts associated with this class of systems, including trajectories, 
behaviours, the blow-up property and forward completeness. The main results of this paper can 
be found in Section 4. Section 5 provides sufficient conditions for the locally uniform radial 
unboundeness property of the family of maps Ft . Examples illustrating the theory are included 
throughout the presentation. Several technical results are relegated to the Appendix.

2. Preliminaries

Most of the mathematical notation and terminology we use is standard, with only a few items 
mentioned explicitly.

In the following, we shall collect a number of preliminaries, including certain global inversion 
results for functions Rn → Rn which will play a key role in the analysis of Lur’e systems with 
feedthrough (as they do in other areas of systems and circuits, see, for example [16,55,57,67]). 
In this context, we recall Brouwer’s invariance of domain theorem.

Theorem 2.1. Let U ⊂ Rn be open and g : U → Rn be continuous. If g is injective, then V :=
g(U) is open and g is a homeomorphism between U and V .

Proofs of the above result can be found in books on algebraic topology, see, for example [25, 
Theorem 6.10.7]. An alternative proof, which does not rely on singular homology theory, and 
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avoids methods from algebraic topology beyond Brouwer’s fixed point theorem, can be found in 
[43].3

A function g : Rn → Rm is said to be locally injective if, for every z ∈ Rn, there exists a 
neighbourhood U of z such that g|U is injective. Similarly, we say that a continuous function 
g : Rn → Rn is a local homeomorphism if, for every z ∈ Rn, there exist an open neighbourhood 
U of z such that V := g(U) is open and g|U is a homeomorphism between U and V . It follows 
from Theorem 2.1 that a locally injective continuous function g : Rn → Rn is a local homeo
morphism. A continuous function g : Rn → Rn is said to be a Lipschitz homeomorphism if it is 
a homeomorphism and g and g−1 are locally Lipschitz. Furthermore, g : Rn → Rm is said to be 
radially unbounded if ∥g(z)∥ → ∞, whenever ∥z∥ → ∞. A continuous function g is radially 
unbounded if, and only if, for every compact set K ⊂ Rm, the preimage g−1(K) is compact. 
The Fréchet derivative of a function g : Rn → Rm at the point z is denoted by (dg)(z). Let Ng

denote the set of all points at which g is not Fréchet differentiable. If g : Rn → Rm is locally 
Lipschitz, then, by Rademacher’s theorem (see, for example, [21, Corollary 4.19, Chapter 3]), 
(dg)(z) exists for almost every z, or, equivalently, Ng has zero measure. For a locally Lipschitz 
function g : Rn → Rm, Clarke’s set-valued generalized derivative (dcg)(z) of g at z is defined 
by

(dcg)(z) = co{M ∈Rm×n : ∃ zk ∈Rn\Ng s.t. zk → z and (dg)(zk) → M as k → ∞}, (2.1)

where coS denotes the convex hull of the set S, see [19--21]. Obviously, (dg)(z) ∈ (dcg)(z) for 
z ∈ Rn\Ng . If g is continuously differentiable, then (dcg)(z) = {(dg)(z)} for all z ∈Rn.

The following lemma will be used freely. Although the lemma is certainly known, we were 
not able to find a reference, and hence, we will give a proof.

Lemma 2.2. For locally Lipschitz g : Rn → Rm and L ∈ Rq×m, we have that (dcLg)(z) =
L(dcg)(z) for all z ∈ Rn.

Proof. Define a null set N ⊂ Rn by N := Ng ∪ NLg . For z ∈Rn set

Sg(z) := {M ∈ Rm×n : ∃ zk ∈ Rn\N s.t. zk → z and (dg)(zk) → M as k → ∞}

and

SLg(z) := {M ∈Rq×n : ∃ zk ∈ Rn\N s.t. zk → z and (dLg)(zk) → M as k → ∞}.

It is well known that in the set on the right-hand side of (2.1), the defining equation of Clarke’s 
set-valued generalized derivative, an arbitrary null set E ⊂ Rn can be avoided, in the sense that 
only sequences (zk) satisfying zk ∈ Rn\(Ng ∪E) are considered, without changing the set-valued 
derivative, see [21, Theorem 8.1, Chapter 2 and p. 133]. Consequently

(dcg)(z) = coSg(z) and (dcLg)(z) = coSLg(z).

3 We became aware of this reference through T. Tao’s blog post Brouwer’s fixed point and invariance of domain 
theorems, and Hilbert’s fifth problem, https://terrytao.wordpress.com/2011/06/13/brouwers-fixed-point-and-invariance-
of-domain-theorems-and-hilberts-fifth-problem/.
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Thus, it is sufficient to prove that SLg(z) = LSg(z) for all z ∈ Rn. It is obvious that LSg(z) ⊂
SLg(z). To prove the reverse inclusion, let M ∈ SLg(z). Then there exists a sequence (zk) in 
Rn\N such that limk→∞ zk = z and

lim 
k→∞L(dg)(zk) = lim 

k→∞(dLg)(zk) = M.

It follows from the Lipschitz property that the sequence 
(︁
(dg)(zk)

)︁
k

is bounded. Hence, there 
exists a subsequence 

(︁
(dg)(zkj

)
)︁
j

and G ∈ Rm×n such that (dg)(zkj
) → G as j → ∞, and so 

G ∈ Sg(z). As L(dg)(zkj
) → M as j → ∞, we conclude that M = LG ∈ LSg(z), and hence, 

SLg(z) ⊂ LSg(z), completing the proof. □
The open ball in Rn of radius ρ > 0 and centred at z is denoted by B(z, ρ).

Theorem 2.3. The following statements hold.

(1) A continuous function g :Rn → Rn is a homeomorphism if, and only if, g is locally injective 
and radially unbounded.

(2) A locally Lipschitz function g : Rn → Rn is a Lipschitz homeomorphism if, and only if, g is 
radially unbounded, and, for every z0 ∈Rn, there exist δ, ε > 0 such that

∥g(z1) − g(z2)∥ ≥ ε∥z1 − z2∥ ∀ z1, z2 ∈ B(z0, δ). (2.2)

(3) If g : Rn → Rn is locally Lipschitz and radially unbounded and every matrix in ⋃︁
z∈Rn(dcg)(z) is invertible, then g is a Lipschitz homeomorphism.

Proof. (1) If g is a homeomorphism, then it is injective and, a fortiori, locally injective. As the 
inverse function g−1 is continuous, we have that g−1(K) is compact for every compact K ⊂ Rn, 
and thus g is radially unbounded.

Conversely, assume that g is locally injective and radially unbounded. By Theorem 2.1, g is a 
local homeomorphism. It now follows from [3, Theorem 1.8, Chapter 3] that g is a homeomor
phism.

(2) If g is a Lipschitz homeomorphism, then, by statement (1), g is radially unbounded. Fur
thermore, for z0 ∈ Rn, there exist η > 0 and λ > 0 such that ∥g−1(ξ1) − g−1(ξ2)∥ ≤ λ∥ξ1 − ξ2∥
for all ξ1, ξ2 ∈ B(g(z0), η). Choose δ > 0 sufficiently small so that g(z) ∈ B(g(z0), η) for all 
z ∈ B(z0, δ). It follows that ∥g(z1) − g(z2)∥ ≥ (1/λ)∥z1 − z2∥ for all z1, z2 ∈ B(z0, δ), whence 
(2.2) holds with ε = 1/λ.

Conversely, assume that g is radially unbounded, and, for every z0 ∈ Rn, there exist δ, ε > 0
such that (2.2) is satisfied. The latter condition implies that g is locally injective. Hence, by 
statement (1), g is a homeomorphism. The local Lipschitz property of g−1 follows from (2.2).

(3) It follows from Clarke’s inversion theorem for locally Lipschitz functions [19] (see also 
[20, Theorem 7.1.1] or [21, Theorem 3.12, Chapter 3]) that g is locally injective and every local 
inverse of g is locally Lipschitz. The claim now follows from statement (1). □

We continue with the statement and proof of a technical lemma which will be used in Sec
tions 4 and 5. The line segment determined by two points z1 and z2 in Rn is denoted by [z1, z2], 
that is, [z1, z2] := {z1 + s(z2 − z1) : 0 ≤ s ≤ 1}.
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Lemma 2.4. Let g : Rn → Rm be locally Lipschitz, U ⊂ Rn be open, U ≠ ∅, and N ⊂ Rn be a 
null set such that Ng ⊂ N . The following statements hold.

(1) If there exists b > 0 such that ∥(dg)(z)∥ ≤ b for all z ∈ U\N , then

∥g(z1) − g(z2)∥ ≤ b∥z1 − z2∥ for z1, z2 ∈Rn s.t. [z1, z2] ⊂ U. (2.3)

(2) If n = m and there exists c ∈ R such that ⟨(dg)(z)ζ, ζ ⟩ ≤ c∥ζ∥2 for all ζ ∈ Rn and all 
z ∈ U\N , then

⟨g(z1) − g(z2), z1 − z2⟩ ≤ c∥z1 − z2∥2 for z1, z2 ∈ Rn s.t. [z1, z2] ⊂ U. (2.4)

Proof. In the first part of the proof we shall use an argument due to Clarke [19] (see also [20, 
Proof of Lemma 2, p. 254] or [21, Proof of Proposition 3.11, Chapter 3]). Let z1, z2 ∈ U be such 
that [z1, z2] ⊂ U and set ξ := z2 − z1. Let H be the hyperplane in Rn perpendicular to ξ and 
passing through z1. Obviously, the set U ∩ N is of measure 0. It follows from Fubini’s theorem 
that, for almost every y in H ∩ U (in the sense of (n − 1)-dimensional Lebesgue measure), 
the parametrization ly(s) := y + sξ , 0 ≤ s ≤ 1, of the line segment [y, y + ξ ] has the property 
that Ey := l−1

y (N) ⊂ [0,1] is a null set, or, equivalently, the intersection [y, y + ξ ] ∩ N is a 
1-dimensional null set. Let Y ⊂ H ∩ U be the set of all y ∈ H ∩ U such that Ey is a null set 
and ly(s) ∈ U for all s ∈ [0,1]. We note that g is differentiable at ly(s) for all y ∈ Y and all 
s ∈ [0,1]\Ey . For y ∈ Y , the function hy : [0,1] → Rm defined by hy(s) := g(ly(s)) satisfies a 
Lipschitz condition on [0,1], and thus, is absolutely continuous. Furthermore,

hy(1) − hy(0) =
1 ∫︂

0 

h′
y(s)ds 

and h′
y(s) = (dg)(ly(s))ξ ∀ y ∈ Y, ∀ s ∈ [0,1]\Ey.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

(1) It follows from (2.5) that

∥g(y) − g(y + ξ))∥ ≤ b∥ξ∥ = b∥z1 − z2∥ ∀ y ∈ Y.

As z1 ∈ Y , it follows from the continuity of g that (2.3) holds.
(2) We obtain from (2.5) that

⟨g(y) − g(y + ξ), z1 − z2⟩ ≤ c∥ξ∥2 = c∥z1 − z2∥2 ∀ y ∈ Y.

Inequality (2.4) now follows from the continuity of g and the fact that z1 ∈ Y . □
A function g :R+ ×Rm → Rn is said to be a Caratheodory function if, for every t ∈R+, the 

function z ↦→ g(t, z) is continuous, and, for every z ∈Rm, the function t ↦→ g(t, z) is measurable. 
It is well known that, if g : R+ × Rm → Rn is a Caratheodory function and w : R+ → Rm is 
measurable, then the function t ↦→ g(t,w(t)) is measurable, see, for example, [5, Lemma 8.2.3].

Next, we review a number of concepts related to set-valued functions. Details can be found, 
for example in [5,24] and [64, Chapter 2]. For a set-valued map G from dom(G) ⊂ Rm to 2R

n
, 
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the power set of Rn, we shall use the notation G : dom(G) ⇉ Rn and Δ(G) := {ξ ∈ dom(G) :
G(ξ) ̸= ∅}. We say that G is upper semicontinuous at ξ ∈ Δ(G) if, for every open set U ⊂ Rn

such that G(ξ) ⊂ U , there exists an open neighbourhood V ⊂ Rm of ξ such that G(ζ) ⊂ U for all 
ζ ∈ V . The map G is called upper semicontinuous on S ⊂ Δ(G) if it is upper semicontinuous at 
every point in S. We simply say that G is upper semicontinuous if G is upper semicontinuous on 
Δ(G). It is well known that G is upper semicontinuous if, and only if, for every closed Y ⊂ Rn, 
there exists a closed X ⊂ Rm such that G−1(Y ) = X ∩ Δ(G), where

G−1(Y ) := {ξ ∈ dom(G) : G(ξ) ∩ Y ̸= ∅} = {ξ ∈ Δ(G) : G(ξ) ∩ Y ̸= ∅},

the preimage of Y under G. A set-valued map G : dom(G) ⇉ Rn is said to be measurable if, 
for every open set U ⊂ Rn, the set G−1(U) is Lebesgue measurable. A measurable selection 
of a set-valued map G : dom(G) ⇉ Rn is a measurable function g : dom(G) → Rn such that 
g(ξ) ∈ G(ξ) for all ξ ∈ dom(G). Under the assumption that Δ(G) = dom(G), if a measurable 
function g̃ : dom(G) →Rn satisfies g̃(ξ) ∈ G(ξ) for almost every ξ ∈ dom(G), then there exists 
a measurable selection g of G such that g(ξ) = g̃(ξ) for almost every ξ ∈ domG. Therefore, the 
function g̃ will also be referred to as a measurable selection of G.

Finally, the following convention applies to mixed ``almost everywhere'' and ``all'' quantifica
tions: for g : R×Rm → Rn, T ⊂ R and S ⊂ Rm, the statement

g(t, z) has property P for a.e. t ∈ T and all z ∈ S,

should be understood as follows: there exists a set E ⊂ T of measure zero such that

g(t, z) has property P ∀ (t, z) ∈ (T \E) × S,

that is the ``a.e.'' part of the statement holds uniformly with respect to z ∈ S.

3. Lur’e systems with feedthrough: definitions and concepts

For fixed m,me, n,p ∈N , let

(A,B,Be,C,D,De) ∈ Rn×n ×Rn×m ×Rn×me ×Rp×n ×Rp×m ×Rp×me .

With the sextuple (A,B,Be,C,D,De), we associate the following controlled and observed lin
ear state-space system

ẋ = Ax + Bu + Bev, y = Cx + Du + Dev. (3.1)

Frequently, we will refer to (3.1) as the linear system S := (A,B,Be,C,D,De).
Application of nonlinear output feedback of the form u(t) = f (t, y(t)) yields the closed-loop 

system (1.1), which will be denoted by Sf := (A,B,Be,C,D,De, f ). For the following, it will 
be convenient to define f ◦ y by

(f ◦ y)(t) := f (t, y(t)).

8 
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If f does not depend on t , then f ◦ y is simply the usual composition of the functions f and y. 
The function v is an external input to the nonlinear feedback system (1.1). It will always be 
assumed that f is a Caratheodory function.

Lur’e systems of the form (1.1) capture a large number of scenarios of interest, four of which 
are considered below.

Scenario 1. The system

ẋ = Ax + B(f ◦ y) + v1, y = Cx + D(f ◦ y) + v2

is of the form (1.1) with me = n + p, Be = (I,0), De = (0, I ) and v = (v⊤
1 , v⊤

2 )⊤.
Scenario 2. Consider the following feedback scheme subject to output disturbances

ẋ = Ax + Bu, z = Cx + Du, u = f ◦ (z + d),

where z is the undisturbed output and d is the output disturbance signal. Setting y := z + d , we 
have that

ẋ = Ax + B(f ◦ y), y = Cx + D(f ◦ y) + d,

which is of the form (1.1) with me = p, Be = 0, De = I and v = d . Note that any boundedness 
properties of y can be used to infer boundedness properties of z, provided suitable bounds on d
are known.

Scenario 3. Here we consider the case of different nonlinearities in the state and output equa
tions, namely

ẋ = Ax + B̃(f1 ◦ y) + Bev, y = Cx + D̃(f2 ◦ y) + Dev,

where B̃ ∈ Rn×m1 , D̃ ∈ Rp×m2 , f1 : R+ × Rp → Rm1 and f2 : R+ × Rp → Rm2 . The above 
system can be expressed in the form (1.1) with

m := m1 + m2, B := (B̃,0), D := (0, D̃) and f :=
(︃

f1
f2

)︃
.

Scenario 4. In this scenario, we consider a so-called 4-block feedback scheme. The underlying 
linear system is given by

ẋ = Ax + Bu, y = Cx + Du,

with A ∈ Rn×n,

B = (B1,B2), C =
(︃

C1
C2

)︃
and D =

(︃
D11 D12
D21 D22

)︃
,

where Bi ∈ Rn×mi , Ci ∈ Rpi×n and Dij ∈ Rpi×mj , i, j = 1,2. Partitioning u and y accordingly,

u =
(︃

u1
u2

)︃
, ui(t) ∈ Rmi , y =

(︃
y1
y2

)︃
, yi(t) ∈Rpi , i = 1,2,

9 
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consider the feedback system given by

ẋ = Ax + Bu, y = Cx + Du, u1 = f ◦ y2, u2 = v

where f :R+ ×Rp2 →Rm1 and v is an external input. The system can be written as

ẋ = Ax + B1(f ◦ y2) + B2v, y2 = C2x + D21(f ◦ y2) + D22v, y1 = C1x + D11u1 + D12v.

Note that the first two equations constitute a system of the form (1.1) with m = m1, me = m2, p =
p2, Be = B2, C = C2, D = D21 and De = D22. Furthermore, we note that y1 is completely 
determined by v, u1 = f ◦ y1 and x, and hence by the first two equations (into which y1 does not 
enter).

The behaviour ℬ(S) of the linear system S (or of (3.1)) is the linear subspace of all quadruples

(u, v, x, y) ∈ L1
loc(R+,Rm) × L∞

loc(R+,Rme) × W
1,1
loc (R+,Rn) × L1

loc(R+,Rp) ,

which satisfy (3.1) for almost every t ≥ 0. The elements of ℬ(S) are called trajectories of S.
Let t0 ≥ 0. The behaviour ℬ(Sf , t0) of Sf (or of (1.1)) on [t0,∞) is the set of all triples

(v, x, y) ∈ L∞
loc(R+,Rme) × W

1,1
loc ([t0,∞),Rn) × L1

loc([t0,∞),Rp) ,

such that f ◦ y ∈ L1
loc([t0,∞),Rm) and (v, x, y) satisfies (1.1) for almost every t ≥ t0. Elements 

in ℬ(Sf , t0) will also be referred to as trajectories of Sf on [t0,∞) or trajectories of Sf with 
initial time t0. It is convenient to set ℬ(Sf ) := ℬ(Sf ,0), the elements of which will simply be 
referred to as trajectories of Sf .

In the following, if t0 ≥ 0 and z is a function defined on [t0, t0 + τ), where 0 < τ ≤ ∞, 
we define zt0 on [0, τ ) by zt0(t) = z(t + t0) for all t ∈ [0, τ ). Similarly, we set f t0(t, ξ) :=
f t0(t + t0, ξ) for all t ≥ 0 and all ξ ∈ Rp . As f is a Caratheodory function, so is f t0 . We note 
that

(v, x, y) ∈ ℬ(Sf , t0) ⇐⇒ (vt0, xt0, yt0) ∈ ℬ(Sf t0
)

and

(v, x, y) ∈ ℬ(Sf , t0) ⇐⇒ (f t0 ◦ yt0, vt0, xt0, yt0) ∈ ℬ(S).

If the nonlinearity f does not depend on t , then the above equivalences remain valid when f t0 is 
replaced by f .

For t0 ≥ 0 and t0 < τ ≤ ∞, a triple (v, x, y) is said to be a pre-trajectory of Sf (or of (1.1)) 
on [t0, τ ), if

(v, x, y) ∈ L∞
loc(R+,Rme) × W

1,1
loc ([t0, τ ),Rn) × L1

loc([t0, τ ),Rp),

f ◦ y ∈ L1
loc([t0, τ ),Rm) and (v, x, y) satisfies (1.1) for almost every t ∈ [t0, τ ). If (v, x, y) is 

a pre-trajectory of Sf on [t0, τ ), then we say that (v, x, y) is maximally defined if there does 
not exist a pre-trajectory (v, x̃, ỹ) of Sf on [t0, τ̃ ) such that τ̃ > τ and (x̃, ỹ)|[t0,τ ) = (x, y). 

10 
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The following result shows that every pre-trajectory can be extended to a maximally defined 
pre-trajectory.

Proposition 3.1. Let (v, x, y) be a pre-trajectory of (1.1) on [t0, τ ), where 0 ≤ t0 < τ < ∞. There 
exists a maximally defined pre-trajectory (v, xm, ym) of (1.1) on [t0, τm) such that τ ≤ τm ≤ ∞
and (xm, ym)|[t0,τ ) = (x, y).

The proof is based on an application of Zorn’s lemma and is a generalization of a similar 
argument familiar from the theory of ordinary differential equations. For the convenience of the 
reader, we have included the proof in the Appendix.

A maximally defined pre-trajectory on [t0, τ ) will also be referred as a maximally defined 
pre-trajectory with initial time t0. Maximally defined pre-trajectories will play an important role 
in the following and therefore we define:

ℬ̃(Sf , t0) := {maximally defined pre-trajectories of Sf with initial time t0}.

It is convenient to set ℬ̃(Sf ) := ℬ̃(Sf ,0). Obviously, ℬ(Sf , t0) ⊂ ℬ̃(Sf , t0), and furthermore,

(v, x, y) ∈ ℬ̃(Sf , t0) ⇐⇒ (vt0, xt0, yt0) ∈ ℬ̃(Sf t0
).

If, for every maximally defined pre-trajectory (v, x, y) ∈ ℬ̃(Sf , t0) with bounded interval [t0, τ )

of definition, where t0 < τ < ∞, it holds that

lim sup
t↑τ 

∥x(t)∥ +
τ∫︂

t0

(︁∥y(s)∥ + ∥f (s, y(s))∥)︁ds = ∞,

then (1.1) is said to have the blow-up property.
The following result is not surprising: it shows that the blow-up property holds, provided that 

a suitable local existence assumption is satisfied.

Proposition 3.2. Assume that, for all t0 ≥ 0, all x0 ∈ Rn and all v ∈ L∞
loc(R+,Rme), there ex

ists (v, x, y) ∈ ℬ̃(Sf , t0) such that x(t0) = x0. Then, for a maximally defined pre-trajectory 
(v, x, y) ∈ ℬ̃(Sf , t0) with bounded maximal interval of definition [t0, τ ) (where t0 < τ < ∞), 
it holds that 

∫︁ τ

t0

(︁∥y(t)∥ + ∥Bf (t, y(t))∥)︁dt = ∞. In particular, (1.1) has the blow-up property.

Proof. Let (v, x, y) be a pre-trajectory of (1.1) defined on the finite interval [t0, τ ) and assume 
that 

∫︁ τ

t0

(︁∥y(t)∥+∥Bf (t, y(t)∥)︁dt < ∞. It is sufficient to show that (v, x, y) is not maximally de

fined. As 
∫︁ τ

t0
∥Bf (t, y(t)∥dt < ∞, an application of the variation-of-parameters formula to (1.1a)

shows that the limit limt↑τ x(t) =: x(τ) exists. It follows from the hypothesis that there exists a 
pre-trajectory (v, x̂, ŷ) ∈ ℬ̃(Sf , τ ) defined on [τ, θ) with τ < θ ≤ ∞ and such that x̂(τ ) = x(τ). 
Setting

x̃(t) :=
{︄

x(t), t0 ≤ t < τ

x̂(t), τ ≤ t < θ
and ỹ(t) :=

{︄
y(t), t0 ≤ t < τ

ŷ(t), τ ≤ t < θ,

11 
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it is clear that x̃ ∈ W
1,1
loc ([t0, θ),Rn), ỹ ∈ L1

loc([t0, θ),Rp), f ◦ ỹ ∈ L1
loc([t0, θ),Rm) and

˙̃x(t) = Ax̃(t) + Bf (t, ỹ(t)) + Bev(t), ỹ(t) = Cx̃(t) + Df (t, ỹ(t)) + Dev(t),

for a.e. t ∈ [t0, θ).

Consequently, (v, x̃, ỹ) is a pre-trajectory of (1.1) on [t0, θ) which extends (v, x, y), showing 
that (v, x, y) is not maximally defined. □

Note that the hypothesis in Proposition 3.2 holds if, and only if, for all t0 ≥ 0, all x0 ∈ Rn and 
all v ∈ L∞

loc(R+,Rme), there exists (v, x, y) ∈ ℬ̃(Sf t0
) such that x(0) = x0. Furthermore, in the 

case wherein f (t, ξ) = f (ξ) (that is, f does not depend on t), the hypothesis in Proposition 3.2 is 
satisfied if, and only if, for all x0 ∈Rn and all v ∈ L∞

loc(R+,Rme), there exists (v, x, y) ∈ ℬ̃(Sf )

such that x(0) = x0.
For later purposes, we define the forward completeness and uniqueness properties. System 

(1.1) is said to be forward complete if ℬ̃(Sf , t0) = ℬ(Sf , t0) for every t0 ≥ 0, that is, every 
maximally defined pre-trajectory is a trajectory. Finally, we say that (1.1) has the uniqueness 
property if, for every v ∈ L∞

loc(R+,Rme) and every t0 ≥ 0, any two pre-trajectories (v, x, y)

and (v, x̃, ỹ) on [t0, τ ) and [t0, τ̃ ), respectively, where t0 < τ ≤ τ̃ ≤ ∞, coincide on [t0, τ ) if 
x(t0) = x̃(t0).

The following simple examples with time-independent globally Lipschitz f show that if D ≠
0, then

• for given v ∈ L∞
loc(R+,Rme) and x0 ∈Rn, the set of pre-trajectories (v, x, y) such that x(t0) =

x0 may be empty;
• the blow-up property may fail to hold;
• for given v ∈ L∞

loc(R+,Rme) and x0 ∈Rn, the set of pre-trajectories (v, x, y) such that x(t0) =
x0 may contain several elements despite f being (globally) Lipschitz;

• pre-trajectories may blow up in finite-time (implying that the system is not forward complete) 
despite f being linearly bounded.

As has already been mentioned in the introduction, system (1.1) is a semi-explicit DAE. Non
existence and non-uniqueness of solutions to (Lipschitz continuous) initial-value problems and 
the absence of the blow-up property are well-known phenomena in the theory of DAEs. The 
systems presented in parts (a)-(c) of Example 3.3 below provide particularly simple DAEs in 
Lur’e system form displaying these phenomena. The first three of the four examples below are 
from [33], but as they are important in the context of the present paper, we repeat them here in a 
somewhat abbreviated form for the benefit of the reader. Unsurprisingly, the examples will show 
that lack of surjectivity or injectivity of the map I −Df can cause problems regarding existence, 
uniqueness and blow-up.

Example 3.3. 

(a) Consider (1.1) with

A =
(︃

1 0
0 0

)︃
, B = Be =

(︃
0
1

)︃
, C = (1,0), D = De = 1,
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and nonlinearity f given by

f (ξ) =

⎧⎪⎪⎨
⎪⎪⎩

ξ + 1, ξ < −2,

ξ/2, − 2 ≤ ξ ≤ 2,

ξ − 1, ξ > 2.

Let x0 = (a,0)⊤, a ∈ R, and assume that (0, x, y) is a pre-trajectory defined on some 
interval [0, τ ) and such that x(0) = x0. Noting that CeAtB ≡ 0 and using the variation
of-parameters formula, it follows from (1.1) that

y(t) − f (y(t)) = eta, ∀ t ∈ [0, τ ). (3.2)

As

ξ − Df (ξ) = ξ − f (ξ) =

⎧⎪⎪⎨
⎪⎪⎩

− 1, ξ < −2,

ξ/2, − 2 ≤ ξ ≤ 2,

1, ξ > 2,

we see that (3.2) does not have a solution for any t ≥ 0 if |a| > 1. Hence, there does not 
exist any pre-trajectory (0, x, y) such that x(0) = (a,0)⊤ if |a| > 1. We note that I − Df is 
not surjective.

(b) We consider the example introduced in part (1), now with a = 1/2. In this case, we see 
that (3.2), has the unique solution y(t) = et for every t ∈ [0, ln 2) and does not have a 
solution whenever t > ln 2. Setting y(t) := et for all t ∈ [0, ln 2) and

x(t) := eAtx0 +
t∫︂

0 

eA(t−s)Bf (y(s))ds =
(︃

et/2
(et − 1)/2

)︃
, ∀ t ∈ [0, ln 2),

we conclude that (0, x, y) is a maximally defined pre-trajectory satisfying x(0) = (1/2,0)⊤. 
It is clear that

lim sup
t→ln 2 

∥x(t)∥ +
ln 2∫︂
0 

(|y(s)| + |f (y(s))|) ds < ∞,

showing that the system does not have the blow-up property. In the DAE literature, the point 
(x(ln 2), y(ln 2)) = (︁

(1,1/2),2
)︁

is said to be a point of impasse, see, for example, [51,52].
(c) Consider the scalar system

ẋ = −x + f ◦ y + v, y = x + f ◦ y + v,

which is (1.1) with A = −1 and B = Be = C = D = De = 1. Consider the nonlinearity f
given by

13 
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f (ξ) =

⎧⎪⎪⎨
⎪⎪⎩

− 3/4, ξ < −1/2,

ξ(1 − ξ), − 1/2 ≤ ξ ≤ 1/2,

1/4, ξ > 1/2.

It is clear that I − Df is not injective. Let x1(t) ≡ 1/4, y1(t) ≡ 1/2 and

x2(t) =
{︄

(e−t − 1/2)2, 0 ≤ t ≤ ln 2,

0, t > ln 2,
y2(t) = −√︁

x2(t) =
{︄

1/2 − e−t , 0 ≤ t ≤ ln 2,

0, t > ln 2 .

It is easy to check that (0, x1, y1), (0, x2, y2) ∈ ℬ(Sf ). Since x1(0) = 1/4 = x2(0), we see 
that the system does not have the uniqueness property. Obviously, f is globally Lipschitz, 
and thus, we conclude that the non-uniqueness is caused by the feedthrough and not by an 
absence of the Lipschitz property. Finally, we remark that, as y1(0) = 1/2 ≠ −1/2 = y2(0), 
the example does not show non-uniqueness in the sense of DAE theory.

(d) Consider (1.1) with

A =
(︃

1 −1
−1 1

)︃
, B = Be =

(︃
1

−1

)︃
, C = (1,1), D = De = 1,

nonlinearity f (ξ) = ξ − arctan ξ and input v(t) = t . Set y(t) := tan t for t ∈ [0,π/2) and 
define

x(t) := e2tB

⎛
⎝ t∫︂

0 

e−2s tan s ds − 1

⎞
⎠ , ∀ t ∈ [0,π/2).

Routine calculations show that (v, x, y) is a pre-trajectory of (1.1) on [0,π/2). Since

t∫︂
0 

y(s)ds = − ln(cos t) → ∞ and ∥x(t)∥ → ∞ as t ↑ π/2,

we see that the pre-trajectory (v, x, y) blows up in finite time, and thus, the system is not 
forward complete. As f is linearly bounded, we conclude that the lack of forward complete
ness is caused by the feedthrough and not by superlinear growth of the nonlinearity. ◇

4. Lur’e systems with feedthrough: well-posedness results

The map F :R+ ×Rp → Rp given by

F(t, ξ) := ξ − Df (t, ξ) ∀ (t, ξ) ∈R+ ×Rp

and certain of its properties will play a pivotal role in the rest of the paper. Recall that f is always 
assumed to be a Caratheodory function, and so F is a Caratheodory function.

For each t ≥ 0, we set ft (ξ) := f (t, ξ) and Ft(ξ) := F(t, ξ) and note that ft and Ft are 
continuous maps from Rp to Rm and Rp , respectively. Defining G : R+ ×Rn ×Rme ×Rp →Rp

14 
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by G(t, z,w, ξ) := Ft (ξ) − Cz − Dew, the algebraic equation (1.1b) can be written in the form 
G(t, x(t), v(t), y(t)) = 0. Obviously, G(t, z,w, ξ) is continuous in (z,w, ξ) and measurable in t , 
that is, G is a Caratheodory function. Global implicit function theorems (see, for example, [7,54, 
56] and the references therein) require more regularity of the function G than the Caratheodory 
property. Therefore, in the context of analysing (1.1b), it is advantageous to apply the global 
invertibility result Theorem 2.3 to the maps Ft instead of applying an implicit function theorem 
to G, provided that Ft satisfies the assumptions of Theorem 2.3.

In the case wherein Ft is invertible for every t ≥ 0, the variable y can be eliminated from (1.1)
which, at least formally, yields an explicit ordinary differential equation. If Ft is not invertible 
for all t ≥ 0, then the output y cannot be analytically expressed in terms of x and v, and so, in 
general, (1.1) is not an explicit differential equation. We start by considering the case wherein Ft

is invertible for all t ≥ 0.

4.1. Ft invertible for every t

In the following, we will say that Ft is radially unbounded, locally uniformly in t , if, for all 
ρ > 0 and all compact T ⊂ R+, there exists σ ≥ 0 such that ∥Ft(ξ)∥ ≥ ρ for all t ∈ T and all ξ
such that ∥ξ∥ ≥ σ .

Theorem 4.1. Assume that Ft is locally injective for every t ≥ 0 and that Ft is radially un
bounded, locally uniformly in t . Furthermore, assume that, for every compact subset K ⊂ Rp , 
there exists φ ∈ L1

loc(R+,R+) such that

sup 
ξ∈K

∥f (t, ξ)∥ ≤ φ(t) ∀ t ≥ 0. (4.1)

Let v ∈ L∞
loc(R+,Rme), t0 ≥ 0 and x0 ∈ Rn. The following statements hold.

(1) There exists (v, x, y) ∈ ℬ̃(Sf , t0) such that x(t0) = x0.
(2) If (v, x, y) ∈ ℬ̃(Sf , t0) with bounded maximal interval of definition [t0, τ ), where t0 < τ <

∞, then 
∫︁ τ

t0
∥Bf (t, y(t))∥dt = ∞, y ∉ L∞([0, τ ),Rp) and ∥x(t)∥ → ∞ as t ↑ τ . In partic

ular, system (1.1) has the blow-up property.

Note that local injectivity of Ft together with radial unboundedness of Ft is equivalent to Ft

being a homeomorphism, see statement (1) of Theorem 2.3.

Remark 4.2. The above result remains valid under slightly weaker assumptions on F . Assume 
that (4.1) holds, Ft is locally injective for almost every t ≥ 0 and Ft is radially unbounded, locally 
essentially uniformly in t , in the sense that, for all ρ > 0 and all compact T ⊂ R+, there exists 
σ ≥ 0 such that ∥Ft(ξ)∥ ≥ ρ for almost every t ∈ T and all ξ with ∥ξ∥ ≥ σ . We claim that the 
conclusions of Theorem 4.1 are still valid. To see this, note that there exists a null set E ⊂ R+
such that Ft is locally injective for every t ∈R+\E, and, for all ρ > 0 and all compact T ⊂ R+, 
there exist σ ≥ 0 such that ∥Ft(ξ)∥ ≥ ρ for all t ∈ T \E and all ξ with ∥ξ∥ ≥ σ . Defining

f̂ (t, ξ) :=
{︄

f (t, ξ), (t, ξ) ∈ (T \E) ×Rp,

0, (t, ξ) ∈ E ×Rp
and F̂t (ξ) := F̂ (t, ξ) := ξ − Df̂ (t, ξ),
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it is clear that f̂ is a Caratheodory function, ℬ̃(Sf̂ , t0) = ℬ̃(Sf , t0), F̂t is locally injective for 
every t ≥ 0 and F̂t is radially unbounded, locally uniformly in t . Hence, the above claim follows 
from an application of Theorem 4.1 to system (1.1) with f replaced by f̂ . ◇

Whilst Theorem 4.1 is a special case of the more general Theorem 4.11 below, we provide a 
direct proof (not based on Theorem 4.11), because we feel it is of interest to see how (1.1) can 
be written in the form of an explicit differential equation and how statements (1) and (2) then 
follow from the theory of ordinary differential equations.

Proof of Theorem 4.1. Let v ∈ L∞
loc(R+,Rme), t0 ≥ 0 and x0 ∈ Rn. Invoking Theorem 2.3, we 

see that the hypotheses on Ft guarantee that Ft is homeomorphism for all t ≥ 0. Hence, for 
arbitrary, ξ ∈ Rp , we have that ξ ∈ Ft(Rp) = F(t,Rp) for every t ≥ 0, and it follows from Fil
ippov’s selection theorem (see, for example, [64, Theorem 2.3.13]) that there exists a measurable 
function w : R+ →Rp such that ξ = F(t,w(t)) = Ft(w(t)) for all t ≥ 0. Hence, F−1

t (ξ ) = w(t)

for all t ≥ 0, showing that the function g : R+ × Rp → Rp defined by g(t, ξ) := F−1
t (ξ ) is a 

Caratheodory function. Eliminating y from (1.1) leads to

ẋ(t) = Ax(t) + Bh(t, x(t)) + Bev(t), where h(t, z) := f
(︁
t, g(t,Cz + Dev(t))

)︁
. (4.2)

As f and g are Caratheodory functions, it follows that h is also a Caratheodory function. Further
more, let T ⊂ R+ and Γ ⊂ Rn be compact and choose ρ > 0 such that Cz + Dev(t) ∈ B(0, ρ)

for all z ∈ Γ and for almost every t ∈ T . As Ft is radially unbounded, uniformly for t ∈ T , the set 
F−1

t (B(0, ρ)) is bounded, uniformly for t ∈ T , implying that there exists a compact set K ⊂ Rp

such that g(t,B(0, ρ)) = F−1
t (B(0, ρ)) ⊂ K for all t ∈ T . It follows now from (4.1) that there 

exists φ ∈ L1(T ,R+) such that supz∈Γ ∥h(t, z)∥ ≤ φ(t) for almost every t ∈ T . Hence, h satisfies 
the conditions required to apply well known existence and continuation results from the theory 
of ordinary differential equations to system (4.2). Specifically, statements (1) and (2) follow from 
[22, Chapter 2, Sec. 1] or [66, Chapter III, §10, Supp. II] (statement (1) follows also from [65, 
Section 7.4]). □

The following corollary provides a condition ensuring forward completeness and existence of 
trajectories for every initial condition.

Corollary 4.3. Assume that Ft is locally injective for every t ≥ 0, for every compact subset 
K ⊂ Rp , there exists φ ∈ L1

loc(R+,R+) such that (4.1) holds, and, for all compact sets T ⊂ R+, 
there exist ρ > 0 and c > 0 such that c∥D∥ < 1 and

sup 
∥ξ∥≥ρ

∥f (t, ξ)∥
∥ξ∥ 

≤ c for a.e. t ∈ T . (4.3)

Then ℬ̃(Sf , t0) = ℬ(Sf , t0) for every t0 ≥ 0 (that is, (1.1) is forward complete). Moreover, for all 
v ∈ L∞

loc(R+,Rme), t0 ≥ 0 and x0 ∈Rn, there exists (v, x, y) ∈ ℬ(Sf , t0) such that x(t0) = x0.

Proof. As c∥D∥ < 1, it follows from (4.3) that Ft is radially unbounded, locally essentially 
uniformly in t in the sense of Remark 4.2. Consequently, by Remark 4.2, the conclusions of 
Theorem 4.1 hold and it is sufficient to show that ℬ̃(Sf , t0) = ℬ(Sf , t0). To this end, define g
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and h as in the proof of Theorem 4.1, that is, g(t, ξ) = F−1
t (ξ ) and h is defined as in (4.2). As 

Ft(g(t, ξ)) = ξ , it follows that

∥g(t, ξ)∥ − ∥D∥∥f (t, g(t, ξ))∥ ≤ ∥ξ∥ ∀ ξ ∈Rp, ∀ t ≥ 0. (4.4)

Let τ ∈ (t0,∞). There exist ρ > 0 and c > 0 such that c∥D∥ < 1 and ∥f (t, ξ)∥ ≤ c∥ξ∥ for all 
ξ ∈ Rp with ∥ξ∥ ≥ ρ and for almost every t ∈ [t0, τ ]. Hence, by (4.4), the following implication 
holds for almost every t ∈ [t0, τ ]:

∥g(t, ξ)∥ ≥ ρ =⇒ ∥g(t, ξ)∥ ≤ c1∥ξ∥, where c1 := 1/(1 − c∥D∥).

Invoking (4.1) with K = B(0, ρ), we see that there exists φ ∈ L1([t0, τ ],R+) such that

∥f (t, g(t, ξ))∥ ≤ φ(t) + cc1∥ξ∥ ∀ ξ ∈Rp, for a.e. t ∈ [t0, τ ].

This in turn implies that there exist φ1 ∈ L1([t0, τ ],R+) and c2 > 0 such that ∥h(t, z)∥ ≤ φ1(t)+
c2∥z∥ for all z ∈ Rp and almost every t ∈ [t0, τ ]. It follows now from an application of [37, 
Proposition 2.1.19] to (4.2) that ℬ̃(Sf , t0) = ℬ(Sf , t0). □

The next result provides a sufficient condition guaranteeing existence for all initial conditions 
and the blow-up and uniqueness properties.

Theorem 4.4. Assume that there exists ξ0 ∈ Rp such that the function t ↦→ f (t, ξ0) is locally 
integrable and Ft is radially unbounded, locally uniformly in t . Furthermore, assume that, for 
all compact sets T ⊂ R+ and K ⊂ Rp , there exists λ ∈ L1

loc(R+,R+) and ε > 0 such that

∥f (t, ξ) − f (t, ζ )∥ ≤ λ(t)∥ξ − ζ∥ ∀ ξ, ζ ∈ K, ∀ t ≥ 0 (4.5)

and

∥F(t, ξ) − F(t, ζ )∥ ≥ ε∥ξ − ζ∥ ∀ ξ, ζ ∈ K, ∀ t ∈ T . (4.6)

Then statements (1) and (2) of Theorem 4.1 hold and (1.1) has the uniqueness property.

The remark below contains commentary on the conditions imposed in Theorem 4.4.

Remark 4.5. 

(a) In the case that f is linear and time-varying, that is f (t, ξ) = K(t)ξ for measurable 
K : R+ → Rm×p , the conditions of Theorem 4.4 are satisfied if, and only if, K is lo
cally integrable and, for every compact subset T ⊂ R+, there exists ε > 0 such that 
min∥ξ∥=1 ∥(I − DK(t))ξ∥ ≥ ε for all t ∈ T . In the time-independent case K(t) ≡ K , these 
conditions reduce to the invertibility of I −DK (the latter being the familiar well-posedness 
criterion for linear systems with feedthrough under linear output feedback with constant 
gain matrix, see, for example, [69, Lemma 5.1, p.67]).
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(b) If, for all compact sets T ⊂ R+ and K ⊂ Rp , there exist γ1 ∈ (0,1) or γ2 > 1 such that

∥Df (t, ξ) − Df (t, ζ )∥ ≤ γ1∥ξ − ζ∥ ∀ ξ, ζ ∈ K, ∀ t ∈ T ,

or

∥Df (t, ξ) − Df (t, ζ )∥ ≥ γ2∥ξ − ζ∥ ∀ ξ, ζ ∈ K, ∀ t ∈ T ,

then (4.6) holds with ε = 1 − γ1 or ε = γ2 − 1, respectively. Moreover, if the function λ in 
(4.5) is constant and λ∥D∥ < 1, then (4.6) is implied by (4.5).

(c) We remark that if f is bounded on compact sets, then Theorem 4.4 remains valid if the 
Lipschitz condition (4.5) is replaced by the following, more localized, condition: for all 
(τ, ζ ) ∈R+ ×Rp , there exist positive constants λ, θ and ρ such that ∥f (t, ξ1)−f (t, ξ2)∥ ≤
λ∥ξ1 − ξ2∥ for all t ∈ (τ − θ, τ + θ) ∩R+ and all ξ1, ξ2 ∈ B(ζ, ρ). ◇

The following corollary of Theorem 4.4 considers the case wherein the maps Dft −γ I satisfy 
certain monotonicity conditions for suitable γ ∈R.

Corollary 4.6. Assume that there exists ξ0 ∈ Rp such that the function t ↦→ f (t, ξ0) is locally 
bounded, f is locally Lipschitz in the sense of (4.5), and, for every compact set T ⊂ R+, there 
exist γ1 < 1 or γ2 > 1 such that

⟨Df (t, ξ) − Df (t, ζ ), ξ − ζ ⟩ ≤ γ1∥ξ − ζ∥2 ∀ t ∈ T , ∀ ξ, ζ ∈Rp (4.7)

or

⟨Df (t, ξ) − Df (t, ζ ), ξ − ζ ⟩ ≥ γ2∥ξ − ζ∥2 ∀ t ∈ T , ∀ ξ, ζ ∈Rp. (4.8)

Then statements (1) and (2) of Theorem 4.1 hold and (1.1) has the uniqueness property.

Note that if Dft is dissipative for every t ≥ 0, then (4.7) holds with γ1 = 0.

Proof of Corollary 4.6. Let T ⊂ R+ be compact and set ε := 1 − γ1 > 0 or ε := γ2 − 1 > 0
depending on whether (4.7) or (4.8) holds. Then

∥F(t, ξ) − F(t, ζ )∥ ≥ ε∥ξ − ζ∥ ∀ t ∈ T , ξ, ζ ∈Rp.

By hypothesis, there exists b > 0 such that ∥F(t, ξ0)∥ ≤ b for all t ∈ T , and thus

∥Ft(ξ)∥ = ∥F(t, ξ)∥ ≥ ε∥ξ∥ − (b + ε∥ξ0∥) ∀ t ∈ T , ξ ∈ Rp,

showing that Ft is radially unbounded, uniformly in t for t ∈ T . The claim now follows from 
Theorem 4.4. □

Under the mild extra assumption that f is bounded on compact sets, an alternative version of 
Theorem 4.4 is given in the following corollary.
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Corollary 4.7. Assume that f is bounded on compact sets and locally Lipschitz in the sense of 
(4.5). Furthermore, assume that Ft is radially unbounded, locally uniformly in t , and, for all 
compact sets T ⊂ R+ and K ⊂ Rp , there exists b > 0 such that I −DM is invertible with ∥(I −
DM)−1∥ ≤ b for all M ∈ ⋃︁

(t,ξ)∈T ×K(dcft )(ξ). Then statements (1) and (2) of Theorem 4.1 hold 
and (1.1) has the uniqueness property.

Proof. The claim follows from Theorem 4.4, provided it can be proved that the assumptions 
of the corollary imply (4.6). To this end, note that, by statement (3) of Theorem 2.3, Ft is a 
Lipschitz homeomorphism for every t ≥ 0. Rademacher’s theorem guarantees that Ft and F−1

t

are differentiable almost everywhere. By [6], we have N
F−1

t
= Ft(NFt ). Hence, for every ξ ∈

Rp\Ft (NFt ), the maps F−1
t and Ft are differentiable at ξ and F−1

t (ξ ), respectively, and we have 
that

(dF−1
t )(ξ) = (︁

(dFt)(F
−1
t (ξ ))

)︁−1 ∀ ξ ∈Rp\Ft (NFt ). (4.9)

Let T ⊂ R+ and K ⊂ Rp be compact. As f and hence, F are bounded on compact sets, there ex
ists ρ > 0 such that Ft(K) ⊂ B(0, ρ) for all t ∈ T . By the locally uniform radial unboundedness 
of Ft , we have that there exists a compact set Γ such that F−1

t (B(0, ρ)) ⊂ Γ for all t ∈ T . By 
hypothesis there exists b > 0 such that ∥P −1∥ ≤ b for all P ∈ ⋃︁

(t,ξ)∈T ×Γ(dcFt )(ξ). Appealing 
to (4.9), we obtain

∥(dF−1
t )(ξ)∥ ≤ b ∀ ξ ∈ B(0, ρ)\Ft (NFt ), ∀ t ∈ T .

An application of statement (1) of Lemma 2.4 with U = B(0, ρ) shows that

∥F−1
t (ζ1) − F−1

t (ζ2)∥ ≤ b∥ζ1 − ζ2∥ ∀ ζ1, ζ2 ∈ B(0, ρ), ∀ t ∈ T .

Let ξ1, ξ2 ∈ K , ξ1 ≠ ξ2, t ∈ T and set ζ1 := Ft(ξ1), ζ2 := Ft(ξ2). Then ζ1, ζ2 ∈ B(0, ρ) and it 
follows from the above inequality that

∥Ft(ξ1) − Ft(ξ2)∥ ≥ (1/b)∥ξ1 − ξ2∥,
establishing (4.6) with ε = 1/b. □

We now come to the proof of Theorem 4.4.

Proof of Theorem 4.4. Let T ⊂ R+ and K ⊂ Rp be compact. Without loss of generality we 
may assume that ξ0 ∈ K . Then there exists λ ∈ L1

loc(R+,R+) such that (4.5) holds, and thus

∥f (t, ξ)∥ ≤ cλ(t) + ∥f (t, ξ0)∥ =: φ(t) ∀ ξ ∈ K, ∀ t ≥ 0

where c > 0 is a suitable constant. The function φ is in L1
loc(R+,R+), and thus, (4.1) holds. Fur

thermore, (4.6) trivially implies that Ft is locally injective for every t ≥ 0. Hence the assumptions 
of Theorem 4.1 are satisfied, and consequently, statements (1) and (2) of Theorem 4.1 hold.

We proceed to prove uniqueness. Let v ∈ L∞
loc(R+,Rme) and let the sets T ⊂ R+ and Γ ⊂ Rn

be compact. The uniqueness property follows from an application of [60, Appendix C.3] or [66, 
Chapter III, §10, Supp. II] to system (4.2), provided that the function
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h(t, z) = f
(︁
t, g(t,Cz + Dev(t))

)︁ = f
(︁
t,F−1

t (Cz + Dev(t))
)︁

introduced in (4.2) satisfies a Lipschitz condition on Γ in the sense that there exists κ ∈
L1(T ,R+) such that

∥h(t, z1) − h(t, z2)∥ ≤ κ(t)∥z1 − z2∥ ∀ z1, z2 ∈ Γ, for a.e. t ∈ T . (4.10)

To show this, let Γ′ ⊂ Rp be compact and such that Cz+Dev(t) ∈ Γ′ for all z ∈ Γ and almost ev
ery t ∈ T . Invoking uniform radial unboundedness of Ft for t ∈ T , statement (1) of Lemma 4.13
below guarantees that there exists ρ > 0 such that F−1

t (Γ′) ⊂ B(0, ρ) for all t ∈ T . By hypothe
sis, there exists ε > 0 such that (4.6) holds with K := B(0, ρ). It follows that

∥ξ1 − ξ2∥ ≥ ε∥F−1
t (ξ1) − F−1

t (ξ2)∥ ∀ ξ1, ξ2 ∈ Γ′, ∀ t ∈ T ,

implying that

∥F−1
t (Cz1 + Dev(t)) − F−1

t (Cz2 + Dev(t))∥ ≤ (1/ε)∥z1 − z2∥ ∀ z1, z2 ∈ Γ, for a.e. t ∈ T .

Combining this with the Lipschitz property of f , we conclude that there exists κ ∈ L1(T ,R+)

such that (4.10) is satisfied. □
A slightly different proof of Theorem 4.4 is outlined in the following remark.

Remark 4.8. A general existence and uniqueness result for the feedback interconnection of two 
arbitrary nonlinear control systems, each of which may contain feedthrough in the sense of di
rect couplings between inputs and outputs, is given in [38, Theorem 8.1.27]. The conditions 
imposed in Theorem 4.4 guarantee that the assumptions in [38, Theorem 8.1.27] are satisfied; 
indeed, assuming that f is locally Lipschitz in the sense of (4.5), it can be shown that the radial 
unboundedness of Ft , locally uniformly in t , together with inequality (4.6), is sufficient for the 
fixed point map Ψ in [38, Theorem 8.1.27] to be well defined and to have the required properties. 
Once this has been established, Theorem 4.4 is a consequence of [38, Theorem 8.1.27]. ◇

In the following corollary of Theorem 4.4, we consider a scenario in which we have existence 
for all initial conditions, uniqueness and forward completeness.

Corollary 4.9. Assume that f is locally Lipschitz in the sense of (4.5) and, for every compact set 
T ⊂ R+, there exist ξ0 ∈Rp , b > 0 and δ > 0 such that t ↦→ f (t, ξ0) is bounded on T , ∥M∥ ≤ b

for all M ∈ ⋃︁
(t,ξ)∈T ×Rp (dcft )(ξ) and

|det(I − DM)| ≥ δ ∀ M ∈
⋃︂

(t,ξ)∈T ×Rp

(dcft )(ξ). (4.11)

Then (1.1) has the uniqueness property, ℬ̃(Sf , t0) = ℬ(Sf , t0) for all t0 ≥ 0, and, for all v ∈
L∞

loc(R+,Rme), t0 ≥ 0 and x0 ∈Rn, there exists a unique (v, x, y) ∈ ℬ(Sf , t0) such that x(t0) =
x0.
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Proof. Let T be an arbitrary compact subset of R+. It follows from the hypotheses that 
∥(dft )(ξ)∥ ≤ b for all ξ ∈ Rp\Nft and all t ∈ T . By statement (1) of Lemma 2.4, ft is glob
ally Lipschitz with Lipschitz constant b for every t ∈ T . Hence, there exists a > 0 such that

∥f (t, ξ)∥ ≤ ∥f (t, ξ0)∥ + b(∥ξ0∥ + ∥ξ∥) ≤ a + b(∥ξ0∥ + ∥ξ∥) ∀ t ∈ T , ∀ ξ ∈Rp. (4.12)

Furthermore, by Cramer’s rule,

(I − DM)−1 = 1 
det(I − DM)

adj(I − DM) ∀ M ∈
⋃︂

(t,ξ)∈T ×Rp

(dcft )(ξ),

where adj denotes the adjugate. Combining this with the hypotheses on dcft shows that there 
exists c > 0 such that

∥(I − DM)−1∥ ≤ c ∀ M ∈
⋃︂

(t,ξ)∈T ×Rp

(dcft )(ξ). (4.13)

It follows from Proposition 5.1 below that Ft = I −Dft is a Lipschitz homeomorphism for every 
t ≥ 0 and Ft is radially unbounded, locally uniformly in t . By [6], we have N

F−1
t

= Ft(NFt ), and 
so,

(dF−1
t )(ξ) = (︁

(dFt)(F
−1
t (ξ ))

)︁−1 ∀ t ∈R+, ∀ ξ ∈ Rp\Ft (NFt ).

Invoking (4.13), we conclude that

∥(dF−1
t )(ξ)∥ ≤ c ∀ t ∈ T , ∀ ξ ∈Rp\Ft(NFt ).

Another application of statement (1) of Lemma 2.4 yields that F−1
t is globally Lipschitz with 

Lipschitz constant c for every t ∈ T . Consequently, there exists ε > 0 such that

∥F(t, ξ) − F(t, ζ )∥ = ∥Ft(ξ) − Ft(ζ )∥ ≥ ε∥ξ − ζ∥ ∀ t ∈ T , ∀ ξ, ζ ∈Rp.

We have now shown that the hypotheses of Theorem 4.4 are satisfied. Therefore, an application 
of Theorem 4.4 yields that (1.1) has the uniqueness property, and, for all v ∈ L∞

loc(R+,Rme), 
t0 ≥ 0 and x0 ∈ Rn, there exists a unique (v, x, y) ∈ ℬ̃(Sf , t0) such that x(t0) = x0.

It remains to show that ℬ̃(Sf , t0) = ℬ(Sf , t0). Let v ∈ L∞
loc(R+,Rme) be fixed, but arbitrary. 

As in the proof of Theorem 4.1, set h(t, z) := f
(︁
t,F−1

t (Cz + Dev(t))
)︁
. As F−1

t is globally 
Lipschitz with Lipschitz constant c for every t ∈ T , it follows from (4.12) that there exist 
c1, c2, c3 > 0 such that

∥h(t, z)∥ = ∥f (t,F−1
t (Cz + Dv(t))∥ ≤ c1 + c2∥F−1

t (0)∥ + c3∥z∥ ∀ t ∈ T , ∀ z ∈ Rn.

As Ft is radially unbounded, uniformly in t for t ∈ T , it is clear that the function t ↦→ F−1
t (0) is 

bounded on T . Consequently, for every compact set T ⊂ R+, there exists c4 > 0 such that

∥h(t, z)∥ ≤ c4(1 + ∥z∥) ∀ t ∈ T , ∀ z ∈Rn.
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An application of [37, Proposition 2.1.19] to (4.2) shows that ℬ̃(Sf , t0) = ℬ(Sf , t0), completing 
the proof. □

We present some examples of nonlinearities f and feedthrough matrices D such that F satis
fies the hypotheses of Theorems 4.1 or 4.4 or any of their corollaries.

Example 4.10. 

(a) Consider the case p = m = 2, D = I and define f :R+ ×R2 → R2 by

f (t, ξ) := ξ − g(∥ξ∥)R(θ(t))ξ, (4.14)

where the functions g : R+ →R+ and θ : R+ →R are continuous and measurable, respec
tively, and R is the two-dimensional rotation matrix

R(ω) :=
(︃

cosω − sinω

sinω cosω

)︃
, ω ∈R.

We assume that the function R+ → R+, s ↦→ sg(s) is injective and radially unbounded.
It is obvious that f satisfies (4.1). As R⊤(θ(t))R(θ(t)) = I for all t ≥ 0, we have that

∥Ft(ξ)∥2 = g2(∥ξ∥)⟨ξ,R⊤(θ(t))R(θ(t))ξ ⟩ = g2(∥ξ∥)∥ξ∥2, ∀ t ≥ 0, ∀ ξ ∈ R2.

It follows from the hypotheses on g that Ft is injective for each t ≥ 0 and Ft is radially 
unbounded, uniformly in t . Consequently, statements (1) and (2) of Theorem 4.1 apply to 
(1.1) when D = I and f is given by (4.14).

Furthermore, for t ∈ θ−1(π/2), the matrix R(θ(t)) is skew-symmetric, and thus, 
⟨ξ,R(θ(t))ξ ⟩ = 0 for all ξ ∈R2. A straightforward calculation shows that

∥f (t, ξ)∥2 = ∥ξ∥2 + g2(∥ξ∥)∥ξ∥2, ∀ t ∈ θ−1(π/2), ∀ ξ ∈ R2.

Therefore, ∥f (t, ξ)∥2/∥ξ∥2 = 1 + g2(∥ξ∥) ≥ 1, whenever t ∈ θ−1(π/2). As ∥D∥ = 1, we 
see that the condition in Corollary 4.3 is not satisfied, and hence the conclusion of this 
corollary does not apply.

(b) Let us consider a variant of the previous example, namely the situation wherein p = m and 
f :R+ ×Rp →Rp is given by

f (t, ξ) := g(∥ξ∥)J (t)ξ,

where g : R+ → R is continuously differentiable and J : R+ → O(p,R) is measurable, 
with O(p,R) denoting the group of orthogonal real matrices of format p×p. It is clear that 
f satisfies (4.5) as

∥f (t, ξ1) − f (t, ξ2)∥ ≤ ⃦⃦
g(∥ξ1∥) − g(∥ξ2∥)

⃦⃦∥J (t)ξ1∥ + g(∥ξ2∥)
⃦⃦
J (t)ξ1 − J (t)ξ2

⃦⃦
∀ ξ1, ξ2 ∈ Rp.

Furthermore, a routine calculation shows that
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(dft )(ξ) =

⎧⎪⎨
⎪⎩

g(0)J (t), ξ = 0

g′(∥ξ∥)
∥ξ∥ 

(J (t)ξ)ξ⊤ + g(∥ξ∥)J (t), ξ ≠ 0 .

Let us now focus on the specific case wherein g(s) = 1/
√

1 + s2. It is clear that Ft is radially 

unbounded, uniformly in t . Furthermore, as g(0) = 1 and g′(s) = −s(1 + s2)
− 3

2 , it follows 
that

(dft )(ξ) = 1 √︁
1 + ∥ξ∥2

J (t)(I − P(ξ)) ∀ ξ ∈ Rp, where P(ξ) := (1 + ∥ξ∥2)−1ξξ⊤.

As P(ξ) is a symmetric positive semi-definite matrix with eigenvalues in the interval [0,1], 
it follows that ∥I − P(ξ)∥ ≤ 1 for all ξ ∈ Rp , and thus,

∥D(dft )(ξ)∥ ≤ ∥D∥ ∀ ξ ∈Rp, ∀ t ≥ 0.

Consequently, if ∥D∥ < 1, then there exists ε > 0 such that ∥F(t, ξ)−F(t, ζ )∥ ≥ ε∥ξ − ζ∥
for all t ≥ 0 and ξ, ζ ∈Rp , in particular (4.6) holds. We conclude that if g(s) = 1/

√
1 + s2

and ∥D∥ < 1, then Theorem 4.4 and Corollaries 4.7 and 4.9 are applicable.
(c) Consider the case p = m, D = I with nonlinearity

f :R+ ×Rp → Rp, (t, ξ) ↦→ h(t) 
1 + ∥ξ∥ξ, (4.15)

where h : R+ → R is measurable, locally bounded and h(t) ∈ (−∞,1] for all t ≥ 0. The 
map F is given by

F(t, ξ) = ξ − Df (t, ξ) = ξ − f (t, ξ) = 1 − h(t) + ∥ξ∥
1 + ∥ξ∥ 

ξ ∀ ξ ∈ Rp, ∀ t ≥ 0.

Obviously, Ft is radially unbounded, locally uniformly in t . It is also readily checked that 
Ft is injective for every t ≥ 0. As f also satisfies (4.1) and is bounded, locally uniformly 
in t , it follows that Theorem 4.1 is applicable to (1.1) with D = I and f given by (4.15). 
We remark that Corollary 4.9 is also applicable, provided that h(t) is bounded away from 
1. As (dFt)(0) = (1 − h(t))I for all t ≥ 0, it follows that (4.11) does not hold if h(t) = 1, 
in which case Corollary 4.9 is not applicable. ◇

4.2. Ft failing to be invertible for all t in a set of positive measure

In the following, we present an approach to well-posedness of (1.1) which is based on set
valued analysis and does not require Ft to be a local homeomorphism. Whilst the case of Ft

failing to be invertible on a set of zero measure is covered by Remark 4.2, here we consider the 
situation wherein invertibility of Ft may fail for all t ≥ 0 belonging to a set of positive measure. 
In essence, the approach involves recasting (1.1) as a differential inclusion combined with an 
application of suitable selection theorems, including Filippov’s selection theorem. The symbol 
F−1

t will now denote the inverse image of Ft , more precisely, F−1
t is the set-valued function 

mapping each point ξ ∈ Rp to its fibre F−1
t (ξ ).

We introduce the following assumptions.
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(A1) For every t ≥ 0, the set F−1
t (ξ ) = {ζ ∈ Rp : Ft(ζ ) = ξ} is nonempty for all ξ ∈ im (C,De).

(A2) Ft is radially unbounded, locally uniformly in t .
(A3) For every t ≥ 0 and every ξ ∈ im (C,De), the set f (t,F−1

t (ξ )) = {f (t, ζ ) : ζ ∈ F−1
t (ξ )} is 

convex.

A discussion of these assumptions and examples of functions satisfying (A1)--(A3) appears 
after the statement of the following theorem, the main result of this section. The theorem 
shows in particular that, if (A1)--(A3) hold, then (1.1) is well posed in the sense that, for ev
ery v ∈ L∞

loc(R+,Rme), every t0 ≥ 0 and every x0 ∈ Rn, there exists (v, x, y) ∈ ℬ̃(Sf , t0) such 
that x(t0) = x0. The proof of the theorem can be found at the end of the section.

Theorem 4.11. Assume that (A1)--(A3) are satisfied and, for all compact sets K ⊂ Rp , there 
exists φ ∈ L1

loc(R+,R+) such that (4.1) holds. Let v ∈ L∞
loc(R+,Rme), t0 ≥ 0 and x0 ∈ Rn. The 

following statements hold.

(1) There exists (v, x, y) ∈ ℬ̃(Sf , t0) such that x(t0) = x0.
(2) If (v, x, y) ∈ ℬ̃(Sf , t0) has a bounded maximal interval of definition [t0, τ ), where t0 < τ <

∞, then 
∫︁ τ

t0
∥Bf (t, y(t))∥dt = ∞, y ∉ L∞([0, τ ),Rp) and ∥x(t)∥ → ∞ as t ↑ τ . In partic

ular, system (1.1) has the blow-up property.

Note that if f satisfies a suitable Lipschitz condition, then it follows from Theorem 4.4 that 
the uniqueness property holds provided that F satisfies (4.6).

Remark 4.12. Consider the following assumptions which are slightly weaker than (A1)-(A3).

(B1) For almost every t ≥ 0, the set F−1
t (ξ ) = {ζ ∈ Rp : Ft (ζ ) = ξ} is nonempty for all ξ ∈

im (C,De).
(B2) Ft is radially unbounded, locally essentially uniformly in t , in the sense of Remark 4.2.
(B3) For almost every t ≥ 0 and every ξ ∈ im (C,De), the set f (t,F−1

t (ξ )) = {f (t, ζ ) : ζ ∈
F−1

t (ξ )} is convex.

We claim that Theorem 4.11 remains valid if assumptions (A1)-(A3) are replaced by (B1)-(B3). 
Indeed, if (B1)-(B3) hold, then there exists a null set E ⊂ R+ such that the Caratheodory func
tions f̂ and F̂ defined in Remark 4.2 satisfy (A1)-(A3). Consequently, Theorem 4.11 applies 
to system (1.1) with f replaced by f̂ and the claim follows from the identity ℬ̃(Sf̂ , t0) =
ℬ̃(Sf , t0). ◇

The following lemma identifies certain properties of Ft which are related to (A1)-(A3) in the 
sense that they imply or are implied by some of the assumptions (A1)-(A3).

Lemma 4.13. The following statements hold.

(1) Assumption (A2) holds if, and only if, for all compact sets T ⊂ R+ and K ⊂ Rp , there exists 
ρ ≥ 0 such that F−1

t (K) ⊂ B(0, ρ) for all t ∈ T .
(2) If (A1) and (A2) are satisfied, then the set F−1

t (ξ ) is non-empty and compact for all t ≥ 0
and all ξ ∈ im (C,De) and the set-valued map ξ ↦→ F−1

t (ξ ) is upper semicontinuous on 
im (C,De).
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(3) If, for every t ≥ 0, the map Ft : Rp →Rp is locally injective and (A2) is satisfied, then Ft is 
a homeomorphism and (A1) and (A3) hold.

(4) If f does not depend on t and F : Rp → Rp is a homeomorphism, then (A1)-(A3) are 
satisfied.

Proof. (1) Assume that (A2) holds. Let T ⊂ R+ and K ⊂ Rp be compact and let σ >

supξ∈K ∥ξ∥. There exists ρ > 0 such that ∥Ft(ξ)∥ ≥ σ for all t ∈ T and all ξ ∈ Rp with ∥ξ∥ ≥ ρ. 
Let t ∈ T and ξ ∈ F−1

t (K), then Ft (ξ) ∈ K , and so ∥Ft (ξ)∥ < σ , whence ∥ξ∥ < ρ. It follows 
that F−1

t (K) ⊂ B(0, ρ) for all t ∈ T .
To prove the converse, let T ⊂ R+ be compact and σ > 0. By hypothesis, there exists ρ > 0

such that F−1
t (B(0, σ )) ⊂ B(0, ρ). Consequently, for t ∈ T and ξ ∈ Rp with ∥ξ∥ ≥ ρ, we have 

that ξ ∉ F−1
t (B(0, σ )), implying that ∥Ft(ξ)∥ > σ . Hence, Ft is radially unbounded, locally 

uniformly in t , showing that (A2) is satisfied.
(2) By (A1), F−1

t (ξ ) is non-empty for all ξ ∈ im (C,De) and compactness follows from (A2), 
statement (1) and the continuity of Ft . The upper semicontinuity of F−1

t is a consequence of 
Lemma A.1 in the Appendix.

(3) This is an immediate consequence of statement (1) of Theorem 2.3.
(4) As F−1 is a continuous map, F−1(K) is compact for every compact set K ⊂ Rp , and it 

follows from statement (1) that (A2) holds. Assumptions (A1) and (A3) are trivially satisfied. □
In the remark below we provide some further commentary on assumptions (A1)--(A3).

Remark 4.14. 

(a) In the definition of trajectories or pre-trajectories (v, x, y), the output y is required to be 
locally integrable on its interval of definition. However, if (A2) holds, then, as Ft(y(t)) =
Cx(t) + Dev(t) and Cx + Dev is locally essentially bounded, it follows that the function y
is not only locally integrable, but locally essentially bounded on its interval of definition.

(b) By Lemma A.1 in the Appendix, assumption (A2) implies the upper semicontinuity of F−1
t

for every t ≥ 0. Furthermore, if f does not depend on t , all fibres of F are bounded and 
imF is closed, then upper semicontinuity of F−1 implies (A2).

(c) A sufficient condition for (A2) to hold is

lim sup
∥ξ∥→∞ 

∥Df (t, ξ)∥
∥ξ∥ 

< 1 ∀ t ≥ 0.

The above inequality certainly holds if f is of sublinear growth, that is, if lim∥ξ∥→∞ ∥f (t, 
ξ)∥/∥ξ∥ = 0 for all t ≥ 0.

(d) If F−1
t (ξ ) is a singleton for all t ≥ 0 and all ξ ∈ im (C,De), then (A3) is trivially satisfied. 

Furthermore, as Df (t,F−1
t (ξ )) = F−1

t (ξ )− ξ , we see that (A3) holds if D is left invertible 
and F−1

t (ξ ) is convex for all t ≥ 0 and all ξ ∈ im (C,De). ◇
Next we present examples of nonlinearities f for which (A1)-(A3) are satisfied.

Example 4.15. (a) Let m = p = 1, D = 1 and let d : R+ → [0,1] be measurable. Consider the 
following saturation nonlinearity with a deadzone of time-dependent width 2d :
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f (t, ξ) :=

⎧⎪⎪⎨
⎪⎪⎩

0, |ξ | ≤ d(t),

ξ − (sign ξ)d(t), d(t) < |ξ | ≤ 1 + d(t),

sign ξ, |ξ | > 1 + d(t).

The function F(t, ξ) = ξ − f (t, ξ) is then given by

F(t, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

ξ, |ξ | ≤ d(t),

(sign ξ)d(t), d(t) < |ξ | ≤ 1 + d(t),

ξ − sign ξ, |ξ | > 1 + d(t).

It is clear that Ft is radially unbounded, uniformly in t . Moreover, for all t ≥ 0 and all ξ ∈R such 
that |ξ | ≠ d(t), the set F−1

t (ξ ) is a singleton, F−1
t (d(t)) = [d(t),1 + d(t)] and F−1

t (−d(t)) =
[−(1 + d(t)),−d(t)]. Finally, as f

(︁
t,F−1

t (d(t))
)︁ = [0,1] and f

(︁
t,F−1

t (−d(t))
)︁ = [−1,0], we 

conclude that assumptions (A1)-(A3) are satisfied.
(b) Let m = p, D = (1/2)I and consider the time-independent nonlinearity

f (ξ) :=

⎧⎪⎪⎨
⎪⎪⎩

ξ, ∥ξ∥ ≤ 1,

(2 − 1/∥ξ∥)ξ, 1 < ∥ξ∥ ≤ 2,

(1 + 1/∥ξ∥)ξ, 2 < ∥ξ∥ < ∞.

Then, for all ξ ∈Rp ,

F(ξ) = ξ − Df (ξ) :=

⎧⎪⎪⎨
⎪⎪⎩

ξ/2, ∥ξ∥ < 1,

ξ/(2∥ξ∥), 1 ≤ ∥ξ∥ ≤ 2,

(1 − 1/∥ξ∥)ξ/2, 2 < ∥ξ∥ < ∞,

and so,

F−1(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

{2ξ}, ∥ξ∥ < 1/2,

{rξ : r ∈ [2,4]}, ∥ξ∥ = 1/2,

{(2 + 1/∥ξ∥)ξ}, ∥ξ∥ > 1/2.

It is obvious that (A1) and (A2) are satisfied. Since the set

f (F−1(ξ)) =

⎧⎪⎪⎨
⎪⎪⎩

{2ξ}, ∥ξ∥ < 1/2,

{rξ : r ∈ [2,6]}, ∥ξ∥ = 1/2,

{2(1 + 1/∥ξ∥)ξ}, ∥ξ∥ > 1/2

is convex for every ξ ∈ Rp , we conclude that (A3) also holds.
(c) Let m = p, D = I , let h : R+ → [0,1] be measurable and define a time-dependent satura

tion nonlinearity f : R+ ×Rp → Rp by
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f (t, ξ) := h(t)

{︄
ξ, ∥ξ∥ ≤ 1,

ξ/∥ξ∥, ∥ξ∥ > 1.
(4.16)

By routine calculations, we obtain for the pre-images F−1
t (ξ ):

F−1
t (ξ ) = {ξ} if t ∈ h−1(0) ,

F−1
t (ξ ) =

{︄{[(1/(1 − h(t))]ξ}, ∥ξ∥ ≤ 1 − h(t),

{(1 + h(t)/∥ξ∥)ξ}, ∥ξ∥ > 1 − h(t),
if t ∈ h−1(︁(0,1)

)︁
,

and

F−1
t (ξ ) =

{︄
B(0,1), ξ = 0,

{(1 + 1/∥ξ∥)ξ}, ξ ≠ 0,
if t ∈ h−1(1).

It is clear that (A1) and (A2) are satisfied. As F−1
t (ξ ) is convex for all t ≥ 0 and all ξ ∈ Rp

and f (t,F−1
t (ξ )) = F−1

t (ξ ) − ξ , we see that the set f (t,F−1
t (ξ )) is convex for all t ≥ 0 and all 

ξ ∈ Rp , showing that (A3) also holds. ◇
The following lemma will be used in the proof of Theorem 4.11.

Lemma 4.16. For every measurable function w : R+ → Rp , the set-valued function R+ ⇉
Rp, t ↦→ F−1

t (w(t)) is measurable.

Proof. Let w :R+ → Rp be a measurable function. Obviously,

F−1
t (w(t)) = {ξ ∈Rp : Ft(ξ) = w(t)} = {ξ ∈ Rp : F(t, ξ) = w(t)}.

As F is a Caratheodory function, an application of [5, Theorem 8.2.9] yields the claim. □
We are now in the position to prove Theorem 4.11.

Proof of Theorem 4.11. Let t0 ≥ 0, x0 ∈Rn and v ∈ L∞
loc(R+,Rp).

(1) Define the set-valued map

Φ : [t0,∞) ×Rn ⇉Rn, (t, z) ↦→ Az + Bf
(︁
t,F−1

t (Cz + Dev(t))
)︁ + Bev(t) .

We claim that

(i) Φ has nonempty, compact and convex values, and, for each t ≥ t0, z ↦→ Φ(t, z) is upper 
semicontinuous;

(ii) for each z ∈ Rn, the function t ↦→ Φ(t, z) has a measurable selection;
(iii) for every compact set X ⊂ Rn, there exists ψ ∈ L1

loc(R+,R+) such that

sup{∥ζ∥ : ζ ∈ Φ(t, z), z ∈ X} ≤ ψ(t) for a.e. t ≥ 0.
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To prove claim (i), note that, by statement (2) of Lemma 4.13, the map F−1
t is upper semi

continuous on im (C,De) and F−1
t (ξ ) is nonempty and compact for all t ≥ 0 and all ξ ∈

im (C,De). Hence, the continuity of f (t, · ) implies that, for each t ≥ 0, the set-valued map ξ ↦→
f (t,F−1

t (ξ )) is upper semicontinuous on im (C,De) with nonempty compact values. By (A3), 
the set f (t,F−1

t (ξ )) is also convex for every t ≥ 0 and all ξ ∈ im (C,De). Combined, these 
properties yield claim (i).

As for claim (ii), we invoke Lemma 4.16, to obtain that the map t ↦→ F−1
t (Cz + Dev(t))

is measurable. Since it has nonempty and closed values, it follows that it has a measurable 
selection w (see, for example, [24, Proposition 3.2]). The Caratheodory property of f guar
antees that the function t ↦→ f (t,w(t)) is measurable, and hence is a measurable selection of 
t ↦→ f (t,F−1

t (Cz + Dev(t))). Consequently, for each z ∈ Rn, the map t ↦→ Φ(t, z) has a mea
surable selection, showing that (ii) holds.

To establish claim (iii), let τ > 0 and X ⊂ Rn be compact. It is clear that there exists a compact 
set K ⊂ Rp and a null set E ⊂ [0, τ ] such that

Cz + Dev(t) ∈ K ∀ z ∈ X, ∀ t ∈ [0, τ ]\E.

By assumption (A2) and statement (1) of Lemma 4.13 there exists c > 0 such that

F−1
t (K) ⊂ B(0, c) ∀ t ∈ [0, τ ].

Invoking (4.1), we have that

sup{∥f (t, ξ)∥ : ξ ∈ B(0, c)} ≤ φ(t) ∀ t ≥ 0

for suitable φ ∈ L1
loc(R+,R+). Therefore,

sup{∥f (t, ξ)∥ : ξ ∈ F−1
t (Cz + Dev(t)), z ∈ X} ≤ sup{∥f (t, ξ)∥ : ξ ∈ F−1

t (K)} ≤ φ(t)

∀ t ∈ [0, τ ]\E.

Since τ > 0 was arbitrary, we may conclude that there exists ψ ∈ L1
loc(R+,R+) such that (iii) 

holds.
It follows from claims (i)-(iii) and the theory of differential inclusions that the initial-value 

problem

ẋ(t) ∈ Ax(t) + Bf
(︁
(t,F−1

t (Cx(t) + Dev(t))
)︁ + Bev(t) = Φ(t, x(t)), x(t0) = x0 (4.17)

has an absolutely continuous solution x defined on a maximal interval of existence [t0, τ ), where 
t0 < τ ≤ ∞, and

τ < ∞ =⇒ lim sup
t↑τ 

∥x(t)∥ = ∞, (4.18)

see, for example, [24, Corollary 5.2]. Setting f̃ := Bf and Y(t) = F−1
t (Cx(t) + Dev(t)) for 

t ∈ [0, τ ), we have that

28 



C. Guiver and H. Logemann Journal of Differential Equations 456 (2026) 114050 

ẋ(t) − Ax(t) − Bev(t) ∈ f̃ (t, Y (t)) = {f̃ (t, ξ) : ξ ∈ Y(t)}, for a.e. t ∈ [0, τ ). (4.19)

As observed before, in the proof of claim (ii), the set-valued function Y is measurable. Further
more, the values of Y are compact. It follows from (4.19) that ẋ − Ax − Bev is a measurable 
selection of t ↦→ f̃ (t, Y (t)). By Filippov’s selection theorem (see [64, Theorem 2.3.13]), there 
exists a measurable selection y of Y defined on [t0, τ ) such that

ẋ(t) − Ax(t) − Bev(t) = f̃ (t, y(t)) = Bf (t, y(t)) for a.e. t ∈ [t0, τ ).

Invoking (A2) together with statement (1) of Lemma 4.13, we see that there exists γ ∈
L∞

loc([t0, τ ),R+) such that sup{∥ξ∥ : ξ ∈ Y(t)} ≤ γ (t) for almost every t ∈ [t0, τ ), implying that 
y ∈ L∞

loc([t0, τ ),Rp). Combining this with (4.1) shows that f ◦ y ∈ L1
loc([t0, τ ),Rp). Further

more,

y(t) − Df (t, y(t)) = F(t, y(t)) = Ft (y(t)) = Cx(t) + Dev(t) for a.e. t ∈ [0, τ ). (4.20)

Consequently, we have that the triple (v, x, y) is a pre-trajectory of (1.1) satisfying x(t0) = x0. 
Finally, it follows from (4.18) that (v, x, y) is maximally defined and so (v, x, y) ∈ ℬ̃(Sf , t0), 
completing the proof of statement (1).

(2) Let (v, x, y) ∈ ℬ̃(Sf , t0), with bounded maximal interval of definition [t0, τ ), where t0 <

τ < ∞. It is an immediate consequence of statement (1) and Proposition 3.2, that (1.1) has the 
blow-up property and

τ∫︂
t0

(︁∥y(t)∥ + ∥Bf (t, y(t))∥)︁dt = ∞.

Furthermore, if y was in L∞([0, τ ),Rp), then, by (4.1), f ◦ y ∈ L1([0, τ ),Rm), leading to a 
contradiction with the divergence of the above integral.

As y ∉ L∞([0, τ ],Rp), there exists, for every k ∈ N , a set Tk ⊂ [0, τ ) of positive measure 
such that ∥y(t)∥ ≥ k for all t ∈ Tk . It follows from (A2) that, for every l ∈N , there exists kl ∈ N
such that

∥F(t, y(t))∥ = ∥Ft(y(t))∥ ≥ l for a.e. t ∈ Tkl
.

Using that Cx(t) = F(t, y(t)) − Dev(t) for almost every t ∈ [t0, τ ), we conclude that x is un
bounded on [t0, τ ), hence lim supt↑τ ∥x(t)∥ = ∞. Seeking a contradiction, suppose that ∥x(t)∥
does not converge to ∞ as t ↑ τ . Then there exist numbers ρ > 0 and tj ∈ [t0, τ ), j ∈ N , such 
that tj → τ as j → ∞ and x(tj ) ∈ B(0, ρ) for all j ∈ N . Let ε > 0 and note that, by the un
boundedness of x,

Sj := {s ∈ [tj , τ ) : x(s) ∉ B(0, ρ + ε)} ≠ ∅ ∀ j ∈ N.

Setting sj := infSj , it is obvious that tj < sj < τ , sj → τ as j → ∞, ∥x(sj )∥ = ρ + ε and 
x(t) ∈ B(0, ρ + ε) for all t ∈ [tj , sj ] and all j ∈ N . It is clear that there exists a compact set 
Γ ⊂ Rp such that
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Cx(t) + Dev(t) ∈ Γ for a.e. t ∈ [tj , sj ], j ∈ N.

Invoking assumption (A2) and Lemma 4.13, we see that there exists a compact set K ⊂ Rp such 
that

F−1
t (Γ) ⊂ K ∀ t ∈ [t0, τ ].

As y(t) ∈ F−1
t (Cx(t) + Dev(t)) for almost every t ∈ [t0, τ ), we conclude that

y(t) ∈ K for a.e. t ∈ [tj , sj ], j ∈ N.

It now follows from (4.1) that there exists κ ∈ L1([t0, τ ],R+) such that

∥f (t, y(t))∥ ≤ κ(t) for a.e. t ∈ [tj , sj ], j ∈N.

Consequently, routine estimates of x yield

ε ≤ ∥x(sj ) − x(tj )∥ ≤
sj∫︂

tj

∥ẋ(s)∥ ds

≤ (︁∥A∥(ρ + ε) + ∥Be∥∥v∥L∞(t0,τ )

)︁
(sj − tj ) + ∥B∥

sj∫︂
tj

κ(t)dt ∀ j ∈N.

As the right-hand side converges to 0 as j → ∞, we obtain a contradiction to the positivity 
of ε. Consequently, ∥x(t)∥ → ∞ as t ↑ τ . This in turn implies, via the variation-of-parameters 
formula for x, that 

∫︁ τ

t0
∥Bf (t, y(t))∥dt = ∞. □

Next we provide a condition guaranteeing forward completeness and existence of trajectories 
for every initial condition.

Corollary 4.17. Assume that (A1) and (A3) hold, for all compact sets K ⊂ Rp , there exists 
φ ∈ L1

loc(R+,R+) such that (4.1) holds, and, for all compact sets T ⊂ R+, there exist ρ > 0 and 
c > 0 such that c∥D∥ < 1 and (4.3) is satisfied. Then ℬ̃(Sf , t0) = ℬ(Sf , t0) for all t0 ≥ 0 (that 
is, (1.1) is forward complete). Furthermore, for all v ∈ L∞

loc(R+,Rme), t0 ≥ 0 and x0 ∈ Rn, there 
exists (v, x, y) ∈ ℬ(Sf , t0) such that x(t0) = x0.

Proof. As c∥D∥ < 1, it follows from (4.3) that Ft is radially unbounded, locally essentially 
uniformly, in the sense of Remark 4.2, that is, (B2) in Remark 4.12 is satisfied. Hence, by Re
mark 4.12, the conclusions of Theorem 4.11 hold. Therefore, we only need to establish that 
ℬ̃(Sf , t0) = ℬ(Sf , t0) for all t0 ≥ 0. To this end, let (v, x, y) be a pre-trajectory defined on 
[t0, τ ), where t0 < τ < ∞. It is sufficient to prove that y ∈ L∞([t0, τ ),Rp). Indeed, in this case, 
statement (2) of Theorem 4.11 implies that every maximally defined trajectory starting at t0 is 
defined on [t0,∞) and is therefore in ℬ(Sf , t0).

To show that y ∈ L∞([t0, τ ),Rp), note that, by (4.3), there exist ρ > 0, c > 0 and a null set 
E ⊂ [t0, τ ] such that c∥D∥ < 1 and
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∥f (t, ξ)∥ ≤ c∥ξ∥ ∀ t ∈ [t0, τ ]\E, ∀ ξ ∈ Rp\B(0, ρ). (4.21)

For t ∈ [t0, τ ]\E, if ∥y(t)∥ ≥ ρ, we have

∥y(t)∥ ≤ 1 
1 − c∥D∥∥Cx(t) + Dev(t)∥,

and thus,

∥y(t)∥ ≤ ρ + 1 
1 − c∥D∥∥Cx(t) + Dev(t)∥ for a.e. t ∈ [t0, τ ).

An application of the variation-of-parameters formula for x yields that there exist constants 
c1, c2 > 0 and a continuous non-negative function h defined on [t0, τ ] such that

∥y(t)∥ ≤ c1 + c2

t∫︂
t0

h(s)∥f (s, y(s))∥ds for a.e. t ∈ [t0, τ ). (4.22)

By (4.1), there exists φ ∈ L1
loc(R+,R+) such that

sup 
ξ∈B(0,ρ)

∥f (t, ξ)∥ ≤ φ(t) for a.e. t ≥ 0.

Combining this with (4.21) shows that

∥f (t, y(t))∥ ≤ φ(t) + c∥y(t)∥ for a.e. t ∈ [t0, τ ),

which in conjunction with (4.22) leads to

∥y(t)∥ ≤ c3 + c4

t∫︂
t0

h(s)∥y(s)∥ds for a.e. t ∈ [t0, τ ),

where c3 and c4 are suitable positive constants. An application of the Gronwall lemma 
(see Lemma A.2 in the Appendix for a suitably general version) yields that ∥y(t)∥ ≤ c3 +
exp

(︁
c4

∫︁ t

t0
h(s)ds

)︁
for almost every t ∈ [t0, τ ), whence y ∈ L∞([t0, τ ),Rp). □

5. Sufficient conditions for the radial unboundedness property

Radial unboundedness of Ft , locally uniformly in t , plays an important role in Theorems 4.1
and 4.11. In this section, we provide a number of sufficient conditions for this property.

Proposition 5.1. Assume that f is locally Lipschitz in the sense of (4.5) and, for every M ∈⋃︁
(t,ξ)∈R+×Rp (dcft )(ξ), the matrix I −DM is invertible. Assume further that, for every compact 

set T ⊂ R+, there exist ξ0 ∈Rp and b > 0 such that
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sup
t∈T 

∥Df (t, ξ0)∥ ≤ b and ∥(I − DM)−1∥ ≤ b ∀ M ∈
⋃︂

(t,ξ)∈T ×Rp

(dcft )(ξ). (5.1)

Under these conditions, Ft is a Lipschitz homeomorphism for every t ≥ 0 and Ft is radially 
unbounded, locally uniformly in t .

Proof. By the Hadamard theorem for locally Lipschitz functions [49],4 it follows from the hy
potheses that Ft = I − Dft is a Lipschitz homeomorphism for every t ≥ 0. In particular, for 
each t ∈ R+, the map Ft is radially unbounded. Let T ⊂ R+ be compact. We show that the ra
dial unboundedness is uniform in t for t ∈ T . To this end, we note that Rademacher’s theorem 
guarantees that Ft and F−1

t are differentiable almost everywhere, and, by [6], N
F−1

t
= Ft (NFt ). 

Hence, for every ξ ∈ Rp\Ft (NFt ), the maps F−1
t and Ft are differentiable at ξ and F−1

t (ξ ), 
respectively, and (dF−1

t )(ξ) = (︁
(dFt )(F

−1
t (ξ ))

)︁−1 for all t ∈ T and all ξ ∈ Rp\Ft (NFt ). As 
(dFt)(F

−1
t (ξ )) ∈ (dcFt)(F

−1
t (ξ )) = I − D(dcft )(F

−1
t (ξ )) for all ξ ∈ Rp\Ft (NFt ), it follows 

that

∥(dF−1
t )(ξ)∥ ≤ b ∀ t ∈ T , ∀ ξ ∈ Rp\Ft (NFt ).

Invoking statement (1) of Lemma 2.4, we conclude that

∥F−1
t (ξ ) − F−1

t (ζ )∥ ≤ b∥ξ − ζ∥ ∀ ξ, ζ ∈Rp, ∀ t ∈ T ,

that is, F−1
t is globally Lipschitz, uniformly in t for t ∈ T . This in turn implies that

∥Ft(ξ) − Ft (ζ )∥ ≥ (1/b)∥ξ − ζ∥ ∀ ξ, ζ ∈Rp, ∀ t ∈ T ,

and thus, using the first inequality in (5.1),

∥Ft(ξ)∥ ≥ (1/b)∥ξ − ξ0∥ − b − ∥ξ0∥ ≥ (1/b)∥ξ∥ − (︁
(1 + 1/b)∥ξ0∥ + b

)︁ ∀ ξ ∈Rp, ∀ t ∈ T .

The last inequality shows that Ft is radially unbounded, uniformly in t for t ∈ T . □
Proposition 5.2. Assume that f is locally Lipschitz in the sense of (4.5), and, for all compact 
sets T ⊂ R+ and K ⊂ Rp , there exist a constant b > 0, such that ∥Df (t, ξ)∥ ≤ b for all t ∈ T

and all ξ ∈ K . If, for all compact T ⊂ R+, there exist ρ > 0 and b1 < 1 or b2 > 1 such that

⟨D(dft )(ξ)ζ, ζ ⟩ ≤ b1∥ζ∥2 ∀ ζ ∈Rp, ∀ t ∈ T , ∀ ξ ∈ (︁
Rp\B(0, ρ)

)︁\Nft , (5.2)

or

⟨D(dft )(ξ)ζ, ζ ⟩ ≥ b2∥ζ∥2 ∀ ζ ∈Rp, ∀ t ∈ T , ∀ ξ ∈ (︁
Rp\B(0, ρ)

)︁\Nft , (5.3)

then Ft is radially unbounded, locally uniformly in t .

4 The ``classical'' version of the Hadmard theorem for continuously differentiable functions can be found in many 
places, see, for example, [23, Theorem 15.4], [46] or [55,57].
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Proof. Let T ⊂ R+ be compact and let ξ ∈Rp\B(0, ρ). Define ξρ := (ρ/∥ξ∥)ξ ∈ ∂B(0, ρ) and 
note that [ξρ, ξ ] ⊂ Rp\B(0, ρ). By statement (2) of Lemma 2.4,

⟨Dft(ξ) − Dft(ξρ), ξ − ξρ⟩ ≤ b1∥ξ − ξρ∥2 ∀ ξ ∈ Rp\B(0, ρ), ∀ t ∈ T ,

or

⟨Dft(ξρ) − Dft(ξ), ξ − ξρ⟩ ≤ −b2∥ξ − ξρ∥2 ∀ ξ ∈ Rp\B(0, ρ), ∀ t ∈ T ,

depending on whether (5.2) or (5.3) is satisfied. Setting ε := 1 − b1 if (5.2) holds and ε := b2 − 1
if (5.3) holds, we have that ε > 0 and it follows that

⟨Ft (ξ) − Ft(ξρ), ξ − ξρ⟩ ≥ ε∥ξ − ξρ∥2 ∀ ξ ∈Rp\B(0, ρ), ∀ t ∈ T .

By hypothesis, there exists b > 0 such that ∥Df (t, ζ )∥ ≤ b for all ζ ∈ ∂B(0, ρ) and t ∈ T , 
whence ∥Ft(ζ )∥ ≤ b + ρ for all ζ ∈ ∂B(0, ρ) and t ∈ T . Therefore, for all ξ ∈ Rp\B(0, ρ) and 
all t ∈ T ,

∥Ft(ξ)∥ ≥ ε∥ξ − ξρ∥ − ∥Ft(ξρ)∥ ≥ ε∥ξ − ξρ∥ − (b + ρ) ≥ ε∥ξ∥ − (︁
b + (ε + 1)ρ

)︁
,

proving the claim. □
Appendix A

The Appendix contains a proof of Proposition 3.1 and the statement and proofs of two auxil
iary results which have been used in the main text.

A.1. Proof of Proposition 3.1

For a given pre-trajectory (v, x, y) on [t0, τ ), where 0 ≤ t0 < τ < ∞, let ℰ be the set of 
all (X,Y ) ∈ W

1,1
loc ([t0, T ),Rn) × L1

loc([t0, T ),Rp) such that τ ≤ T ≤ ∞, (X,Y )|[t0,τ ) = (x, y)

and (v,X,Y ) is a pre-trajectory of (1.1) on [t0, T ), where T depends on (X,Y ). As (x, y) ∈ ℰ , 
the set ℰ is non-empty. Let (xj , yj ) ∈ ℰ be defined on [t0, τj ), where τ ≤ τj ≤ ∞, j = 1,2. We 
define a partial order on ℰ as follows:

(x1, y1) ⪯ (x2, y2) ⇐⇒ τ1 ≤ τ2 and (x2, y2)|[t0,τ1) = (x1, y1).

To prove the claim, we have to show that ℰ has a maximal element, that is, an element (xm, ym) ∈
ℰ such that, if (X,Y ) ∈ ℰ and (xm, ym) ⪯ (X,Y ), then (X,Y ) = (xm, ym). This we do by an 
application of Zorn’s lemma, by which it is sufficient to show that every totally ordered sub
set 𝒯 ⊂ ℰ has an upper bound in ℰ , that is, an element (xu, yu) ∈ ℰ such that (X,Y ) ⪯ (xu, yu)

for all (X,Y ) ∈ 𝒯 . To this end, let 𝒯 be a totally ordered subset of ℰ , and, for (X,Y ) ∈ 𝒯 , let 
[t0, TX,Y ) be the interval on which (X,Y ) is defined, where τ ≤ TX,Y ≤ ∞. We set

τu := sup{TX,Y : (X,Y ) ∈ 𝒯 } ≥ τ > t0

and define (xu, yu) on [t0, τu) by
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(xu, yu)(t) := (X,Y )(t) ∀ t ∈ [t0, TX,Y ).

As 𝒯 is totally ordered, the pair (xu, yu) is well-defined, is an element of ℰ and an upper bound 
for 𝒯 , completing the proof. □
A.2. Set-valued maps

Recall that a map g : Rn → Rm is said to be closed if the image of every closed set is closed.

Lemma A.1. Let g :Rn → Rm be a function. The following statements hold.

(1) If g is closed, then the set-valued map g−1 : Rm ⇉ Rn, z ↦→ g−1(z) (that is, each z is 
mapped to its fibre under g) is upper semicontinuous.

(2) If g is continuous and radially unbounded, then g is closed.

Proof. (1) Set G := g−1 and let Y ⊂ Rn be closed. As g is closed, it is a routine exercise to show 
that Δ(G) = {ξ ∈ Rm : g−1(ξ) ̸= ∅} is closed. Consequently, to establish upper semicontinuity 
of G, it is sufficient to show that

G−1(Y ) := {ξ ∈ Rm : G(ξ) ∩ Y ̸= ∅} = {ξ ∈ Δ(G) : G(ξ) ∩ Y ̸= ∅}

is closed. Let (ξk)k∈N be a convergent sequence in G−1(Y ) with limit ξ ∈ Rm. We have to show 
that ξ ∈ G−1(Y ). To this end, let zk ∈ G(ξk) ∩ Y ≠ ∅ for all k ∈ N . As g(zk) = ξk for all k ∈ N , 
it follows that ξk ∈ g(Y ). By hypothesis, g(Y ) is closed, and thus, ξ ∈ g(Y ). Consequently, 
ξ = g(y) for some y ∈ Y , implying that y ∈ g−1(ξ) = G(ξ) and hence, y ∈ G(ξ) ∩ Y . We 
conclude that G(ξ) ∩ Y ≠ ∅, showing that ξ ∈ G−1(Y ).

(2) Let X ⊂ Rn be closed and let (ξk)k∈N be a convergent sequence in g(X) with limit ξ . 
Let xk ∈ X be such that g(xk) = ξk for all k ∈ N . As (ξk) is bounded, so is (xk), by the radial 
unboundedness of g. Therefore there exists a convergent subsequence (xkj

)j∈N of (xk) with 
limit x, where x ∈ X, by the closedness of X. The function g is continuous, and thus,

ξ = lim 
j→∞ ξkj

= lim 
j→∞g(xkj

) = g(x).

Hence, ξ ∈ g(X), showing that g(X) is closed. □
A.3. General version of Gronwall’s lemma

As the version of Gronwall’s lemma which has been used in Section 4 is somewhat more 
general than what we were able to find in the literature, we include the proof.

Lemma A.2. Let 0 ≤ t0 < τ ≤ ∞, c ≥ 0, h ∈ L
p

loc(R+,R) be non-negative and y ∈ L
q

loc(R+,R), 
where 1 ≤ p,q ≤ ∞ are such that 1/p + 1/q = 1. If

y(t) ≤ c +
t∫︂

t0

h(s)y(s)ds, for a.e. t ∈ [t0, τ ),
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then y(t) ≤ ce

∫︁ t
t0

h(s)ds
for almost every t ∈ [t0, τ ).

Proof. Setting Y(t) := c + ∫︁ t

t0
h(s)y(s)ds for all t ∈ [t0, τ ), we have that Ẏ (t) = h(t)y(t) ≤

h(t)Y (t) for almost every t ∈ [t0, τ ), and so,

Ẏ (t) − h(t)Y (t) ≤ 0, for a.e. t ∈ [t0, τ ).

The function w : [t0, τ ) →R+ given by

w(t) = Y(t)e
− ∫︁ t

t0
h(s)ds ∀ t ∈ [t0, τ )

is absolutely continuous and

ẇ(t) = (︁
Ẏ (t) − h(t)Y (t)

)︁
e
− ∫︁ t

t0
h(s)ds ≤ 0, for a.e. t ∈ [t0, τ ),

showing that w is non-increasing. Consequently,

Y(t)e
− ∫︁ t

t0
h(s)ds = w(t) ≤ w(t0) = Y(t0) = c, ∀ t ∈ [t0, τ ),

and thus,

y(t) ≤ Y(t) ≤ ce

∫︁ t
t0

h(s)ds
, for a.e. t ∈ [t0, τ ),

completing the proof. □
Data availability

No data was used for the research described in the article.
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