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Abstract

For a large class of Lur’e systems with time-varying nonlinearities and feedthrough we consider several
well-posedness issues, namely: existence, continuation, blow-up in finite-time, forward completeness and
uniqueness of solutions. Lur’e systems with feedthrough are systems of forced, nonlinear ordinary differ-
ential equations coupled with a nonlinear algebraic equation determining the output of the system. The
presence of feedthrough means that the algebraic equation is implicit in the output, and, in general, the
output may not be expressible by an analytic formula in terms of the state and the input. Simple examples
illustrate that the well-posedness properties of such systems are not necessarily guaranteed by assump-
tions sufficient for the corresponding well-posedness properties of Lur’e systems without feedthrough. We
provide sufficient conditions for the well-posedness properties mentioned above, using global inversion
theorems from real analysis and tools from non-smooth analysis and differential inclusions. The theory is
illustrated with examples.
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1. Introduction

Lur’e systems are a common and important class of nonlinear control systems. Their stability
theory, often termed absolute stability, has generated significant interest, and dates back to the
work of Soviet scholars Lur’e (also written in English as Lurie or Lurye) and Postnikov in the
1940s. In fact, the Aizerman conjecture, and the research on stability conditions for Lur’e systems
it triggered, stand at the beginning of nonlinear control theory, see [45] for historical notes.'

The literature on Lur’e systems is vast and detailed treatments of Lur’e systems and abso-
lute stability theory can be found in many places, including [1,2,14,26,31,36,42,48,63]. Whilst
absolute stability theory addresses global asymptotic stability of unforced Lur’e systems, more
recently, input-to-state stability properties of forced Lur’e systems have been investigated, see
[4,32-34,40,41,58]. Furthermore, current interest in Lur’e systems is in part owing to their ap-
pearance in various neural network architectures and in mathematical biology, see, for instance,
[18,28,53] and [10,29,30,59], respectively, and the references therein.

In this paper, we consider well-posedness properties of the following general class of con-
trolled (or forced) Lur’e differential equations:

X(1) = Ax(t) + Bf (1, y(1)) + Bev(t), x(10) =x°, 1 >19>0, (1.1a)
y(@)=Cx(@)+ Df(t, y(t)) + Dev(2), (1.1b)

where v, x, y denote the control (external forcing or disturbance), state and output variables,
respectively. The model data A, B, B., C, D and D, are appropriately sized matrices, and f is
a time-dependent nonlinearity. It is assumed that f is a Caratheodory function, that is, f(z, -)
is continuous and f(-,&) is measurable for each fixed r > 0 and each fixed &, respectively.
System (1.1) arises as the feedback connection of a linear control system and nonlinear, static,
but possibly time-varying, output feedback u(t) = f (¢, y(¢)) as illustrated in Fig. 1.1. It is shown
in Section 3 that system (1.1) is sufficiently general to capture a number of scenarios common in
control theory and engineering.

The matrix D is called the feedthrough matrix, or simply, feedthrough.” Note that if D = 0,
then y may be eliminated from (1.1) leaving a system of nonlinear forced ordinary differential
equations, the well-posedness of which is standard. However, if D is non-zero, then equation
(1.1b) is implicit in y and this makes the analysis of well-posedness properties of (1.1) more
challenging.

Focussing on the case D # 0, we will discuss certain natural existence, uniqueness and con-
tinuation questions relating to system (1.1):

(a) Givenv e Lﬁfc(RJr, R™e), 15 > 0 and x° € R”, does there exist a pair (x, y) satisfying (1.1)

such that x (79) = x°?
(b) Under what conditions is uniqueness guaranteed?

I As is well known, the Aizerman conjecture is not true in general. However, the problem of identifying classes of
Lur’e systems for which the conjecture is true continues to be of considerable interest, see, for example, [27,47]. We also
mention in this context that the complex Aizerman conjecture is true, see [37, Section 5.6.3].

2 The matrix D also represents a feedthrough, an instantaneous impact of the input v on the output y. However, it is
the feedthrough D which makes (1.1b) into an implicit equation for y, thereby potentially causing well-posedness issues.
Therefore, in this paper, the word “feedthrough” usually refers to D.
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X =Ax + Bu+ Bev
y=Cx+ Du+ Dev

Fig. 1.1. Forced Lur’e system.

(c) If (v, x, y) satisfies (1.1) and is maximally defined on [fy, ) with #p < T < 00, is it true that

T

limsup [lx () || + / Iy I+ £ s, ys)ll)ds =00 ?

(24
T "

(d) Assuming that the nonlinearity f satisfies || f (¢, &)|| < a(t) + b||&|| for all + > 0 and all
&, where a is locally integrable and b is a positive constant: is it true that (1.1) is forward
complete in the sense that if (v, x, y) satisfies (1.1) and is maximally defined on [#g, T), then
T =007

Lur’e systems (and generalizations thereof) with feedthrough are considered throughout the
literature, see, for example, the research monograph [14, Sections 3.13 and 3.14], the text
books [36, Sections 5.7 and 5.8], [42, Section 7.1] and [63, Section 5.6], and the papers
[8,9,11-13,15,17,33,39,35,61,62,68]. Not all of these references address well-posedness issues.
The ones which do (mainly in the case where the nonlinearity f does not depend on time) include
[11-13,15,17,33,39,62,68]. In more detail, [11, Proposition 1], [39, Claim 2], [62, Assumption 1
and Appendix B] and [68, Claim 1 and Appendix B] all deal with certain well-posedness issues
for some special classes of time-independent nonlinearities (such as deadzone and saturation) in
the contexts of bounded stabilization and anti-windup designs, whilst paper [33] by the authors
contains a well-posedness result for the case of time-independent, continuously differentiable f,
see [33, Proposition 3.2]. The papers [12,13,15,17] provide numerous contributions to the exis-
tence and uniqueness theory of Lur’e systems with a passive system in the forward loop and a
set-valued maximally monotone nonlinearity in the feedback loop.

We remark that (1.1) is a so-called (semi-explicit) differential-algebraic equation (DAE), see,
for example, [44,50]. Whilst it may be tempting to apply the theory of DAEs to address the above
questions (a)-(d), the problem is that in the DAE literature more restrictive regularity assumptions
are imposed on f and v than in our setting. In particular, an initial condition is imposed also on
the variable y, which does not make sense in the context of (1.1) due to the possibly highly
irregular dependence of f and v on ¢t. Consequently, we will not use any DAE methods and
techniques in this paper.

In the sections below, we will provide a systematic analysis of the well-posedness issues (a)-
(d) listed above in the context of the general class of Lur’e systems (1.1) with time-dependent
nonlinearity, including the development of sufficient conditions guaranteeing well-posedness in
the sense of (a), (b), (c) and/or (d). In particular, the well-posedness results in [11,33,39,62,68]
are consequences of the general theory developed in Section 4 below, as is the well-known result
for the linear case f(¢,&) = K(¢)€. In contrast to the contributions in [12,13,15,17], neither
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passivity of the linear system nor any monotonicity properties of the nonlinearity are assumed in
our approach to well-posedness issues of (1.1).

In Subsection 4.1, we identify conditions on D and f ensuring that the map F; : & —
& — Df (¢, &) is invertible for each r > 0 and the function (¢, &) > Ft_l(é) is a Caratheodory
function and bounded on bounded sets, in which case the output y can be eliminated from the
differential equation (1.1a); the resulting system is then an explicit ordinary differential equation.
The results in Subsection 4.1 relate to existence and continuation of solutions to the initial-value
problem, forward completeness and uniqueness of solutions. One technical challenge throughout
Section 4 is the accommodation of the time dependence of the nonlinearity f: this is accom-
plished by the assumption that the radial unboundedness of F; (which is necessary for the
invertibility of F;) is locally uniform in ¢. Apart from the theory of ordinary differential equa-
tions, the main technical ingredients are global inverse function theorems (which, we note, play
also an important role in other areas of systems and circuits, see, for instance, [16,55,57,67]).
By working with Clarke’s set-valued generalized derivative [20,21], we are able to avoid contin-
uous differentiability assumptions, and only assume that f(z, £) satisfies a mild local Lipschitz
condition with respect to &, thereby providing a sufficiently general framework which allows for
common non-smooth nonlinearities such as deadzone and saturation.

In Subsection 4.2, we consider the case in which F; is not necessarily invertible for all t > 0.
We do this, by recasting (1.1a) as a differential inclusion through a set-valued “inverse” Fl_1 &),
where this symbol now denotes the fibre of £ under F;. The results in Subsection 4.2 provide
sufficient conditions for the existence of solutions and forward completeness of (1.1). The main
technical tools are results from non-smooth analysis such as existence of solutions to differential
inclusions and certain selection theorems (including Filippov’s selection theorem), see [5,21,24,
64,65].

The remainder of this work is organised as follows. Section 2 collects relevant preliminary
material on global homeomorphisms, Clarke’s set-valued generalized derivative and set-valued
functions. Section 3 contains a detailed discussion of the class of Lur’e systems under considera-
tion, introduces a number of concepts associated with this class of systems, including trajectories,
behaviours, the blow-up property and forward completeness. The main results of this paper can
be found in Section 4. Section 5 provides sufficient conditions for the locally uniform radial
unboundeness property of the family of maps F;. Examples illustrating the theory are included
throughout the presentation. Several technical results are relegated to the Appendix.

2. Preliminaries

Most of the mathematical notation and terminology we use is standard, with only a few items
mentioned explicitly.

In the following, we shall collect a number of preliminaries, including certain global inversion
results for functions R” — R” which will play a key role in the analysis of Lur’e systems with
feedthrough (as they do in other areas of systems and circuits, see, for example [16,55,57,67]).
In this context, we recall Brouwer’s invariance of domain theorem.

Theorem 2.1. Let U C R” be open and g : U — R”" be continuous. If g is injective, then V :=
g(U) is open and g is a homeomorphism between U and V.

Proofs of the above result can be found in books on algebraic topology, see, for example [25,
Theorem 6.10.7]. An alternative proof, which does not rely on singular homology theory, and
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avoids methods from algebraic topology beyond Brouwer’s fixed point theorem, can be found in
[43].°

A function g : R” — R™ is said to be locally injective if, for every z € R", there exists a
neighbourhood U of z such that g|y is injective. Similarly, we say that a continuous function
g :R" — R" is a local homeomorphism if, for every z € R", there exist an open neighbourhood
U of z such that V := g(U) is open and g|y is a homeomorphism between U and V. It follows
from Theorem 2.1 that a locally injective continuous function g : R” — R” is a local homeo-
morphism. A continuous function g : R” — R" is said to be a Lipschitz homeomorphism if it is
a homeomorphism and g and g~! are locally Lipschitz. Furthermore, g : R” — R”" is said to be
radially unbounded if ||g(z)|| = oo, whenever |z|| = co. A continuous function g is radially
unbounded if, and only if, for every compact set K C R™, the preimage g~ !(K) is compact.
The Fréchet derivative of a function g : R” — R™ at the point z is denoted by (dg)(z). Let N,
denote the set of all points at which g is not Fréchet differentiable. If g : R” — R™ is locally
Lipschitz, then, by Rademacher’s theorem (see, for example, [21, Corollary 4.19, Chapter 3]),
(dg)(z) exists for almost every z, or, equivalently, N, has zero measure. For a locally Lipschitz
function g : R” — R™, Clarke’s set-valued generalized derivative (d°g)(z) of g at z is defined
by

(d°g)(z) =co{M e R™*" : 3z e R"\Ng s.t. zx — z and (dg)(zx) > M as k — oo}, (2.1)
where co S denotes the convex hull of the set S, see [19-21]. Obviously, (dg)(z) € (d°g)(z) for
z € R"\N,. If g is continuously differentiable, then (d°¢)(z) = {(dg)(z)} for all z € R".

The following lemma will be used freely. Although the lemma is certainly known, we were

not able to find a reference, and hence, we will give a proof.

Lemma 2.2. For locally Lipschitz g : R" — R™ and L € RY*™ we have that (d°Lg)(z) =
L(d°g)(z) forall z € R".

Proof. Define anull set N C R" by N := N, U Np,. For z € R" set
Sg(z) :={M e R™" : 3z e R"\N s.t. zx — z and (dg)(zx) — M as k — oo}
and
Sre(2) :={M e R"”*" : 3z e R"\N s.t. zx — z and (dLg)(zx) — M as k — oo},
It is well known that in the set on the right-hand side of (2.1), the defining equation of Clarke’s
set-valued generalized derivative, an arbitrary null set £ C R” can be avoided, in the sense that

only sequences (zx) satisfying zx € R"\ (N, U E) are considered, without changing the set-valued
derivative, see [21, Theorem 8.1, Chapter 2 and p. 133]. Consequently

(d°g)(z) =c0Se(z) and (d°Lg)(z) =coSre(2).

3 We became aware of this reference through T. Tao’s blog post Brouwer’s fixed point and invariance of domain
theorems, and Hilbert’s fifth problem, https://terrytao.wordpress.com/2011/06/13/brouwers-fixed-point-and-invariance-
of-domain-theorems-and-hilberts-fifth-problem/.


https://terrytao.wordpress.com/2011/06/13/brouwers-fixed-point-and-invariance-of-domain-theorems-and-hilberts-fifth-problem/
https://terrytao.wordpress.com/2011/06/13/brouwers-fixed-point-and-invariance-of-domain-theorems-and-hilberts-fifth-problem/
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Thus, it is sufficient to prove that Sy, (z) = LSg(z) for all z € R". It is obvious that LS, (z) C
S1¢(z). To prove the reverse inclusion, let M € Spz(z). Then there exists a sequence (zx) in
R™\N such that lim— ~ zx = z and

kll)ngo L(dg)(zk) = kl_ifgo(dLg)(Zk) =M.

It follows from the Lipschitz property that the sequence ((dg)(zk)) k is bounded. Hence, there
exists a subsequence ((dg)(zkj))j and G € R"™" such that (dg)(zx,) — G as j — oo, and 50
G € 54(2). As L(dg)(zkj) — M as j — oo, we conclude that M = LG € LS,(z), and hence,
S1¢(z) C LSg(z), completing the proof. O

The open ball in R" of radius p > 0 and centred at z is denoted by B(z, p).
Theorem 2.3. The following statements hold.

(1) A continuous function g : R" — R" is a homeomorphism if, and only if, g is locally injective
and radially unbounded.

(2) A locally Lipschitz function g : R" — R" is a Lipschitz homeomorphism if, and only if, g is
radially unbounded, and, for every zo € R", there exist §, ¢ > 0 such that

lgz1) — 8@l = ellzt —z2ll Vzi, 22 € B(zo, ). 2.2)

3) If g :R" - R" is locally Lipschitz and radially unbounded and every matrix in
U.crn (d°8)(2) is invertible, then g is a Lipschitz homeomorphism.

Proof. (1) If g is a homeomorphism, then it is injective and, a fortiori, locally injective. As the
inverse function g~! is continuous, we have that g~! (K) is compact for every compact K C R”,
and thus g is radially unbounded.

Conversely, assume that g is locally injective and radially unbounded. By Theorem 2.1, g is a
local homeomorphism. It now follows from [3, Theorem 1.8, Chapter 3] that g is a homeomor-
phism.

(2) If g is a Lipschitz homeomorphism, then, by statement (1), g is radially unbounded. Fur-
thermore, for zg € R”, there exist > 0 and A > 0 such that ||g~! (&) — g~ (&) || < A& — & ||
for all &1, & € B(g(z0),n). Choose § > 0 sufficiently small so that g(z) € B(g(zo), n) for all
z € B(zo, 8). It follows that ||g(z1) — g(z2)|| = (1/A)||z1 — z2|| for all z1, z2 € B(zo, §), whence
(2.2) holds with e = 1/A.

Conversely, assume that g is radially unbounded, and, for every zog € R", there exist §, & > 0
such that (2.2) is satisfied. The latter condition implies that g is locally injective. Hence, by
statement (1), g is a homeomorphism. The local Lipschitz property of g~! follows from (2.2).

(3) It follows from Clarke’s inversion theorem for locally Lipschitz functions [19] (see also
[20, Theorem 7.1.1] or [21, Theorem 3.12, Chapter 3]) that g is locally injective and every local
inverse of g is locally Lipschitz. The claim now follows from statement (1). O

We continue with the statement and proof of a technical lemma which will be used in Sec-
tions 4 and 5. The line segment determined by two points z; and z in R” is denoted by [z, z2],
that is, [z1, z2] :=={z1 +s(z2 —21) : 0 <s < 1}.
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Lemma 2.4. Let g : R" — R™ be locally Lipschitz, U C R" be open, U # @, and N C R" be a
null set such that Ny C N. The following statements hold.

(1) If there exists b > 0 such that ||(dg)(z)|| < b for all z € U\N, then

lg(z1) —g@)I <bliz1 — 22l forz1,z2 € R" s.t. [z1,22] CU. (2.3)

(2) If n = m and there exists ¢ € R such that ((dg)(2)¢,¢) < cl¢||? for all ¢ € R" and all
z € U\N, then

(g(z1) — g(z2),21 —22) <cllz1 — 22)* forz1,z2 € R" s.t. [21, 22] C U. 2.4)

Proof. In the first part of the proof we shall use an argument due to Clarke [19] (see also [20,
Proof of Lemma 2, p. 254] or [21, Proof of Proposition 3.11, Chapter 3]). Let z1, zo € U be such
that [z, z2] C U and set & := zp — z1. Let H be the hyperplane in R" perpendicular to £ and
passing through z;. Obviously, the set U N N is of measure 0. It follows from Fubini’s theorem
that, for almost every y in H N U (in the sense of (n — 1)-dimensional Lebesgue measure),
the parametrization [/, (s) :=y + s&, 0 <s < 1, of the line segment [y, y + &] has the property
that £, := ly_l(N) C [0, 1] is a null set, or, equivalently, the intersection [y, y + ] N N is a
1-dimensional null set. Let ¥ C H N U be the set of all y € H N U such that Ey is a null set
and [, (s) € U for all s € [0, 1]. We note that g is differentiable at /,(s) for all y € ¥ and all
s € [0, 11\E,. For y € Y, the function Ay : [0, 1] — R™ defined by h,(s) := g(l,(s)) satisfies a
Lipschitz condition on [0, 1], and thus, is absolutely continuous. Furthermore,

1
hy(1) — hy (0) =/h’y(s)ds
0
and Ky (s) = (dg)(ly(s))E YyeY, ¥Vsel0, 11\Ey.

2.5)

(1) It follows from (2.5) that

le(y) —g(y+ENI<blsll =bllz1 — 22l VyeY.

As z1 € Y, it follows from the continuity of g that (2.3) holds.
(2) We obtain from (2.5) that

() —gy+&),z1—2) <cllEl*=cllzi —z22l* VyeY.

Inequality (2.4) now follows from the continuity of g and the fact that z; € Y. O

A function g : Ry x R™ — R" is said to be a Caratheodory function if, for every t € R, the
function z — g(¢, z) is continuous, and, for every z € R™, the function 7 — g (¢, z) is measurable.
It is well known that, if g : Ry x R”™ — R" is a Caratheodory function and w : Ry — R is
measurable, then the function ¢ — g (¢, w(¢)) is measurable, see, for example, [5, Lemma 8.2.3].

Next, we review a number of concepts related to set-valued functions. Details can be found,
for example in [5,24] and [64, Chapter 2]. For a set-valued map G from dom(G) C R to ZRn,

7
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the power set of R”, we shall use the notation G : dom(G) = R" and A(G) := {£ € dom(G) :
G (&) # ). We say that G is upper semicontinuous at &€ € A(G) if, for every open set U C R”
such that G(§) C U, there exists an open neighbourhood V C R™ of & such that G(¢) C U for all
¢ € V. The map G is called upper semicontinuous on S C A(G) if it is upper semicontinuous at
every point in S. We simply say that G is upper semicontinuous if G is upper semicontinuous on
A(G). It is well known that G is upper semicontinuous if, and only if, for every closed ¥ C R”,
there exists a closed X € R™ such that G™'(Y) = X N A(G), where

G'(¥):={ edom(G): GE)NY £} ={5 € AG): GE) NY #1),

the preimage of Y under G. A set-valued map G : dom(G) = R” is said to be measurable if,
for every open set U C R”, the set G~ (U) is Lebesgue measurable. A measurable selection
of a set-valued map G : dom(G) = R” is a measurable function g : dom(G) — R” such that
g(&) € G(§) for all £ € dom(G). Under the assumption that A(G) = dom(G), if a measurable
function g : dom(G) — R” satisfies g(§) € G (&) for almost every & € dom(G), then there exists
a measurable selection g of G such that g(&§) = g(&) for almost every & € dom G. Therefore, the
function g will also be referred to as a measurable selection of G.

Finally, the following convention applies to mixed “almost everywhere” and “all” quantifica-
tions: for g : R x R” — R”, T C R and S C R™, the statement

g(t,z) has property P forae.teT andallz€ S,
should be understood as follows: there exists a set £ C T of measure zero such that
g(t, z) has property P V(t,z) € (T\E) x S,
that is the “a.e.” part of the statement holds uniformly with respect to z € S.
3. Lur’e systems with feedthrough: definitions and concepts
For fixed m, me,n, p € N, let
(A, B, B.,C, D, D) € RV x R"™ x R Me x RPX" x RPX™ x RP*Me,

With the sextuple (A, B, Be, C, D, D), we associate the following controlled and observed lin-
ear state-space system

X=Ax+ Bu+ Bev, y=Cx+ Du+ Dev. 3.1
Frequently, we will refer to (3.1) as the linear system S := (A, B, Be, C, D, D).
Application of nonlinear output feedback of the form u(¢) = f (¢, y(¢)) yields the closed-loop

system (1.1), which will be denoted by s/ .= (A, B, B¢, C, D, D, f). For the following, it will
be convenient to define f o y by

(foy)(0):= f(t,y)).

8
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If f does not depend on ¢, then f oy is simply the usual composition of the functions f and y.
The function v is an external input to the nonlinear feedback system (1.1). It will always be
assumed that f is a Caratheodory function.

Lur’e systems of the form (1.1) capture a large number of scenarios of interest, four of which
are considered below.

Scenario 1. The system

x=Ax+B(foy)tvi, y=Cx+D(foy)+uv

is of the form (1.1) with me =n + p, Be = (1,0), De = (0, 1) and v = (v| , v, ) .
Scenario 2. Consider the following feedback scheme subject to output disturbances

X=Ax+Bu, z=Cx+Du, u=fo(z+d),

where z is the undisturbed output and d is the output disturbance signal. Setting y :=z + d, we
have that

i=Ax+B(foy), y=Cx+D(foy) +d,
which is of the form (1.1) with me = p, Be =0, D. = I and v = d. Note that any boundedness
properties of y can be used to infer boundedness properties of z, provided suitable bounds on d
are known.

Scenario 3. Here we consider the case of different nonlinearities in the state and output equa-
tions, namely

¥=Ax+B(fioy)+Bev, y=Cx+D(fr0y)+ Dev,

where B € R"*™ D e RP*™2 f : R, x R? — R™ and f>: R4 x R? — R™2. The above
system can be expressed in the form (1.1) with

m:=mi+my, B:=(B,0), D:=(0,D) and f2=<£>-

Scenario 4. In this scenario, we consider a so-called 4-block feedback scheme. The underlying
linear system is given by

xX=Ax+ Bu, y=Cx+ Du,

with A € R"*",

Cy Dyy Dyp
B=(By,B)), C= d D= ,
(B1, B2) <C2> an (Dz] Dzz)

where B; € R"*™i C; e RPP>™ and D;; e RPi>™i i, j =1, 2. Partitioning u and y accordingly,

u=<”‘), ui(r) € R™, y=<y1>, i) eRP, i=1.2,
uz »2

9
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consider the feedback system given by
X=Ax+Bu, y=Cx+Du, uj=foy, upy=v

where f: Ry x RP2 — R™! and v is an external input. The system can be written as

X=Ax+Bi(foy)+ B, yr=Cox+ Dy (foy)+Dxnv, y=Cix+ Dijuy+ Diov.

Note that the first two equations constitute a system of the form (1.1) withm =m 1, me =mo, p =
p2, Be = B2, C = Ca, D = D31 and D, = D»;. Furthermore, we note that y; is completely
determined by v, u; = f o y; and x, and hence by the first two equations (into which y; does not
enter).

The behaviour B(S) of the linear system S (or of (3.1)) is the linear subspace of all quadruples

(u,v,%,y) € L (R, R™) x L (R4, R™) x WO (R, R x LL (R4, RP),

which satisfy (3.1) for almost every ¢ > 0. The elements of 5(S) are called trajectories of S.
Let 19 > 0. The behaviour B(S¥, tg) of S (or of (1.1)) on [#g, 00) is the set of all triples

(v, x,y) € L (R4, R™) x Wb (19, 00), R") x L} (10, 00), RP)

such that foy e Llloc([to, 00), R™) and (v, x, y) satisfies (1.1) for almost every ¢ > ty. Elements
in B(S7, 1p) will also be referred to as trajectories of S on [tg, 00) or trajectories of S/ with
initial time 7o. It is convenient to set B(S/) := B(S',0), the elements of which will simply be
referred to as trajectories of S

In the following, if 7y > 0 and z is a function defined on [#y, 7y + T), where 0 < T < o0,
we define z/0 on [0, ) by z/0(t) = z(¢t + tp) for all 7 € [0, 7). Similarly, we set f(t,&) :=
flo@t +10,€) forallt > 0 and all £ € R”. As f is a Caratheodory function, so is f70. We note
that

W, x,y) € B(ST , 1p) = v, x", y) e B(S/)

and

(v,x,y) € B(Sf, fo) <= (0 0y ¢/ x0 y0) e B(S).

If the nonlinearity f does not depend on ¢, then the above equivalences remain valid when 70 is
replaced by f.

For o > 0 and fy < T < 00, a triple (v, x, y) is said to be a pre-trajectory of S (or of (1.1))
on [fg, 7), if

(v, x,y) € LY. (R, R™) x Wl ([1, 7), R") x L (10, T), RP),

loc

foye Llloc([to, 7),R™) and (v, x, y) satisfies (1.1) for almost every ¢ € [tg, 7). If (v, x,y) is
a pre-trajectory of S/ on [0, T), then we say that (v, x, y) is maximally defined if there does

not exist a pre-trajectory (v, %, y) of S/ on [fo, 7) such that ¥ > 7 and (&, N7y = (x, ).

10
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The following result shows that every pre-trajectory can be extended to a maximally defined
pre-trajectory.

Proposition 3.1. Let (v, x, y) be a pre-trajectory of (1.1) on [ty, T), where 0 <ty < T < 00. There
exists a maximally defined pre-trajectory (v, Xm, ym) of (1.1) on [ty, Tm) such that T < T < 00

and (Xm, ym)lz,7) = (x, y).

The proof is based on an application of Zorn’s lemma and is a generalization of a similar
argument familiar from the theory of ordinary differential equations. For the convenience of the
reader, we have included the proof in the Appendix.

A maximally defined pre-trajectory on [fg, T) will also be referred as a maximally defined
pre-trajectory with initial time #y. Maximally defined pre-trajectories will play an important role
in the following and therefore we define:

B (S f , o) := {maximally defined pre-trajectories of S /" with initial time to}.

It is convenient to set B(Sf) = [;(Sf, 0). Obviously, B(Sf, tg) C [;(Sf, t9), and furthermore,

W, x,y) € B(ST , 19) <= ", x", y0) € B(/™).

If, for every maximally defined pre-trajectory (v, x, y) € B(S /', 1) with bounded interval [7g, T)
of definition, where ty) < T < 00, it holds that

T

limTSllP (@)l +/(||y(S)|I+||f(s,y(S))I|)dS=oo,
T

1o

then (1.1) is said to have the blow-up property.

The following result is not surprising: it shows that the blow-up property holds, provided that
a suitable local existence assumption is satisfied.
Proposition 3.2. Assume that, for all to > 0, all x° € R" and all v € Ly (Ry,R™e), there ex-
ists (v,x,y) € B(SY, 19) such that x(ty) = x°. Then, for a maximally defined pre-trajectory
(v, x,y) € B(ST, t9) with bounded maximal interval of definition [to, T) (Where tg < T < 00),
it holds that j;; (||y(t) |+ |Bf(t, y()) ||)dt = 00. In particular, (1.1) has the blow-up property.

Proof. Let (v, x, y) be a pre-trajectory of (1.1) defined on the finite interval [y, T) and assume
that ftg (Ily@I+1IBf (z, y@)]1)dr < oo. Itis sufficient to show that (v, x, y) is not maximally de-
fined. As ft:) |Bf (¢, y(¢)||df < oo, an application of the variation-of-parameters formula to (1.1a)
shows that the limit lim;4. x(¢) =: x () exists. It follows from the hypothesis that there exists a
pre-trajectory (v, X, y) € B(S/, ) defined on [, 8) with T < § < oo and such that £(t) = x (7).
Setting

x(), th<t<rt y(t), th<t<rt
x(t):=1 . : .
x(), t<t<©0 y(), T<t<¥9,

11
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it is clear that ¥ € W, (10, 6), R"), 3 € L) .([t0,0), RP), f o 7 € L\ ([10,6), R™) and

loc loc

)?(t) = AX(t) + Bf (¢, ¥(¢)) + Bev(t), y()=Cx(t)+ Df(¢,y(t)) + Dev(2),

fora.e. r €19, 0).

Consequently, (v, X, y) is a pre-trajectory of (1.1) on [fg,8) which extends (v, x, y), showing
that (v, x, y) is not maximally defined. O

Note that the hypothesis in Proposition 3.2 holds if, and only if, for all 7y > 0, all x% e R” and
all ve Ly (R4, R™e), there exists (v, x, y) € B(Sfio) such that x(0) = x°. Furthermore, in the
case wherein f (¢, &) = f (&) (thatis, f does not depend on 7), the hypothesis in Proposition 3.2 is
satisfied if, and only if, for all x° € R” and all v € L2 (R4, R™e), there exists (v, x, y) € B(S/)
such that x (0) = x°.

For later purposes, we define the forward completeness and uniqueness properties. System
(1.1) is said to be forward complete if l’;’(Sf, 10) = B(S7, 1p) for every fo > 0, that is, every
maximally defined pre-trajectory is a trajectory. Finally, we say that (1.1) has the uniqueness
property if, for every v € L;’g’c(RJr, R™e) and every f9 > 0, any two pre-trajectories (v, x, y)
and (v, X, y) on [fy, T) and [ty, T), respectively, where o < T < T < 00, coincide on [fy, T) if
x(to) = X(t0).

The following simple examples with time-independent globally Lipschitz f show that if D #
0, then

o forgivenv € L7y (R4, R™¢) and x0 € R”, the set of pre-trajectories (v, x, y) such that x (f9) =
x0 may be empty;

e the blow-up property may fail to hold;

o forgivenv € Ly (R4, R™¢) and x0 € R”, the set of pre-trajectories (v, x, y) such that x (#g) =
x¥ may contain several elements despite f being (globally) Lipschitz;

e pre-trajectories may blow up in finite-time (implying that the system is not forward complete)

despite f being linearly bounded.

As has already been mentioned in the introduction, system (1.1) is a semi-explicit DAE. Non-
existence and non-uniqueness of solutions to (Lipschitz continuous) initial-value problems and
the absence of the blow-up property are well-known phenomena in the theory of DAEs. The
systems presented in parts (a)-(c) of Example 3.3 below provide particularly simple DAEs in
Lur’e system form displaying these phenomena. The first three of the four examples below are
from [33], but as they are important in the context of the present paper, we repeat them here in a
somewhat abbreviated form for the benefit of the reader. Unsurprisingly, the examples will show
that lack of surjectivity or injectivity of the map I — Df can cause problems regarding existence,
uniqueness and blow-up.

Example 3.3.

(a) Consider (1.1) with

1 0
A= (3 0). s

Il
o]
«
Il

(?) C=(1,0), D=D.=1,
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(b)

(0

and nonlinearity f given by

E+1, &£<-2,
f&=1%&/2, -—-2<&<2,
E—1, E>2.

Let x0 = (a, O)T, a € R, and assume that (0, x, y) is a pre-trajectory defined on some
interval [0, t) and such that x(0) = x°. Noting that C e B =0 and using the variation-
of-parameters formula, it follows from (1.1) that

y()— f(y(0) =e'a, Viel0,1). (3.2)
As
—1, £<-2,
§-DfE)=E—-f(E)=18/2, —-2=<§=2,
1, &£>2,

we see that (3.2) does not have a solution for any ¢ > 0 if |a| > 1. Hence, there does not
exist any pre-trajectory (0, x, y) such that x(0) = (a, 0) " if |a| > 1. We note that I — Df is
not surjective.

We consider the example introduced in part (1), now with a = 1/2. In this case, we see
that (3.2), has the unique solution y(z) = e’ for every ¢ € [0,In2) and does not have a
solution whenever ¢ > In2. Setting y(¢) := ¢ for all ¢ € [0, In2) and

t
x(1) = eAlx0+/eA(l_S)Bf(y(s))ds = <(e,ei/12)/2>, Vtel[0,1n2),
0

we conclude that (0, x, y) is a maximally defined pre-trajectory satisfying x(0) = (1/2,0) .
It is clear that

In2

limsup [lx (0] + /(Iy(S)I +1f(y($)Dds < o0,
0

t—In2

showing that the system does not have the blow-up property. In the DAE literature, the point
(x(In2), y(In2)) = ((1,1/2), 2) is said to be a point of impasse, see, for example, [51,52].
Consider the scalar system

X=—x+foy+v, y=x+foy+uv,

which is (1.1) with A= —1 and B = B. = C = D = D, = 1. Consider the nonlinearity f
given by

13
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—3/4, E<-—1)2,
fE)=150-%), —-1/2<§<1/2,
1/4, £>1/2.

It is clear that / — Df is not injective. Let x1(¢) = 1/4, y1(t) = 1/2 and

(e =1/2)%, 0<r<In2,

x(t) = Y2 t) =—vx2(t) =

0, t>1n2, 0, t>1In2.

1/2—e™", 0<t<In2,

It is easy to check that (0, x1, y1), (0, x2, y2) € B(Sf). Since x1(0) = 1/4 = x2(0), we see
that the system does not have the uniqueness property. Obviously, f is globally Lipschitz,
and thus, we conclude that the non-uniqueness is caused by the feedthrough and not by an
absence of the Lipschitz property. Finally, we remark that, as y;(0) = 1/2 # —1/2 = y2(0),
the example does not show non-uniqueness in the sense of DAE theory.

(d) Consider (1.1) with

A=<_11 ‘11), B=Be=(_11>, C=(1), D=Dc=1.

nonlinearity f(§) =& — arctan& and input v(¢) =t. Set y(¢) :=tant for ¢ € [0, 7/2) and
define

t
x(t):=e*B fe_zstansds—l , Viel0,7)2).
0

Routine calculations show that (v, x, y) is a pre-trajectory of (1.1) on [0, /2). Since

t
/y(s)ds = —In(cost) > oo and |x(t)|| - o0 ast?m/2,
0

we see that the pre-trajectory (v, x, y) blows up in finite time, and thus, the system is not
forward complete. As f is linearly bounded, we conclude that the lack of forward complete-
ness is caused by the feedthrough and not by superlinear growth of the nonlinearity. <

4. Lur’e systems with feedthrough: well-posedness results

The map F : Ry x R” — R? given by

F(t,§):=&§ —Df(t.§) V(& eRy xR?

and certain of its properties will play a pivotal role in the rest of the paper. Recall that f is always
assumed to be a Caratheodory function, and so F' is a Caratheodory function.

For each t > 0, we set f;(§) := f(¢,&) and F;(§) := F(¢,&) and note that f; and F; are
continuous maps from R” to R” and R”, respectively. Defining G : R4 x R” x R x R? — R”

14
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by G(t,z,w,§) := F;(§) — Cz — Dew, the algebraic equation (1.1b) can be written in the form
G(t,x(t),v(t), y()) = 0. Obviously, G(¢, z, w, §) is continuous in (z, w, &) and measurable in ¢,
that is, G is a Caratheodory function. Global implicit function theorems (see, for example, [7,54,
56] and the references therein) require more regularity of the function G than the Caratheodory
property. Therefore, in the context of analysing (1.1b), it is advantageous to apply the global
invertibility result Theorem 2.3 to the maps F; instead of applying an implicit function theorem
to G, provided that F; satisfies the assumptions of Theorem 2.3.

In the case wherein F; is invertible for every ¢ > 0, the variable y can be eliminated from (1.1)
which, at least formally, yields an explicit ordinary differential equation. If F; is not invertible
for all + > 0, then the output y cannot be analytically expressed in terms of x and v, and so, in
general, (1.1) is not an explicit differential equation. We start by considering the case wherein F;
is invertible for all # > 0.

4.1. F; invertible for every t

In the following, we will say that F; is radially unbounded, locally uniformly in ¢, if, for all
p > 0 and all compact T C R, there exists o > 0 such that | F;(§)|| > p forall t € T and all £
such that |£]| > 0.

Theorem 4.1. Assume that F; is locally injective for every t > 0 and that F; is radially un-
bounded, locally uniformly in t. Furthermore, assume that, for every compact subset K C R?,

there exists ¢ € Llloc (R4, Ry) such that

ESUII; If (.8 =@ Vi=0. 4.1

Letve L®

loc

(R, R™e), 1y > 0 and x° € R™. The following statements hold.

(1) There exists (v,x,y) € B(S7, t9) such that x(t9) = x°.

2) If (v,x,y) € B(Sf, to) with bounded maximal interval of definition [to, T), where ty) < T <
0o, then ft(l; |Bf(t, y(t))||dt = o0, y & L*°([0, ), RP) and ||x(¢t)|| — co as t 1 t. In partic-
ular, system (1.1) has the blow-up property.

Note that local injectivity of F; together with radial unboundedness of F; is equivalent to F;
being a homeomorphism, see statement (1) of Theorem 2.3.

Remark 4.2. The above result remains valid under slightly weaker assumptions on F'. Assume
that (4.1) holds, F; is locally injective for almost every ¢ > 0 and F; is radially unbounded, locally
essentially uniformly in t, in the sense that, for all p > 0 and all compact 7' C R, there exists
o > 0 such that || F;(§£)]| > p for almost every t € T and all £ with ||£]|| > o. We claim that the
conclusions of Theorem 4.1 are still valid. To see this, note that there exists a null set £ C R
such that F; is locally injective for every t € R4\ E, and, for all p > 0 and all compact T C R,
there exist o > 0 such that || F;(£)|| > p forall € T\ E and all £ with ||£|| > o. Defining

A | @), 1.8 e (T\E) xR”,

E): d I:":zlj",::—DA,,
[, 8) 0 (.5)c E x R an (&) (t,6):=§ f@,8)

15
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it is clear that f is a Caratheodory function, BN(Sf, o) = l?(Sf, 10), ﬁ, is locally injective for
every t > 0 and F; is radially unbounded, locally uniformly in ¢. Hence, the above claim follows
from an application of Theorem 4.1 to system (1.1) with f replaced by f. <

Whilst Theorem 4.1 is a special case of the more general Theorem 4.11 below, we provide a

direct proof (not based on Theorem 4.11), because we feel it is of interest to see how (1.1) can
be written in the form of an explicit differential equation and how statements (1) and (2) then
follow from the theory of ordinary differential equations.
Proof of Theorem 4.1. Let v € L;’g’c(RJr, R™e), tg > 0 and Ve R". Invoking Theorem 2.3, we
see that the hypotheses on F; guarantee that F; is homeomorphism for all # > 0. Hence, for
arbitrary, £ € R?, we have that £ € F;(R?) = F (¢, R?) for every t > 0, and it follows from Fil-
ippov’s selection theorem (see, for example, [64, Theorem 2.3.13]) that there exists a measurable
function w : R4 — R” suchthat & = F(¢, w(t)) = F;(w(¢)) for all > 0. Hence, Ffl E)=w()
for all r > 0, showing that the function g : Ry x R” — RP? defined by g(¢, &) := F[l (&)isa
Caratheodory function. Eliminating y from (1.1) leads to

X(1) = Ax(t) + Bh(t,x(1)) + Bov(t), where h(t,z):= f(t,8(t,Cz+ Dev(1))). (4.2

As f and g are Caratheodory functions, it follows that 4 is also a Caratheodory function. Further-
more, let 7 C R4 and I C R” be compact and choose p > 0 such that Cz + Dev(t) € B(0, p)
for all z € I" and for almost every ¢t € T'. As F; is radially unbounded, uniformly for # € T', the set
Ft_l (B(0, p)) is bounded, uniformly for € T, implying that there exists a compact set K C R?
such that g(¢,B(0, p)) = Fl_l(IB%(O, 0)) C K for all r € T. It follows now from (4.1) that there
exists ¢ € L' (T, R.;) such that sup,r l1A(t, 2) || < ¢(¢) for almost every ¢ € T'. Hence, h satisfies
the conditions required to apply well known existence and continuation results from the theory
of ordinary differential equations to system (4.2). Specifically, statements (1) and (2) follow from
[22, Chapter 2, Sec. 1] or [66, Chapter III, §10, Supp. II] (statement (1) follows also from [65,
Section 7.4]). O

The following corollary provides a condition ensuring forward completeness and existence of
trajectories for every initial condition.

Corollary 4.3. Assume that F; is locally injective for every t > 0, for every compact subset
K CRP?, there exists ¢ € LllOC (R4, Ry) such that (4.1) holds, and, for all compact sets T C Ry,
there exist p > 0 and ¢ > 0 such that c||D|| < 1 and

IF@ 1 _

< forae teT. 4.3)
HEr a3l

Then B(Sf, 1) = B(S/, to) for every ty > 0 (that is, (1.1) is forward complete). Moreover, for all
ve Ly (Ry,R™), to >0 and x0 e R”, there exists (v, x, y) € B(S', to) such that x(tg) = x°.

Proof. As c||D| < 1, it follows from (4.3) that F; is radially unbounded, locally essentially
uniformly in ¢ in the sense of Remark 4.2. Consequently, by Remark 4.2, the conclusions of

Theorem 4.1 hold and it is sufficient to show that l§(Sf, t0) = B(S7, to). To this end, define g

16
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and 4 as in the proof of Theorem 4.1, that is, g(¢, &) = F,_1 (£) and h is defined as in (4.2). As
Fi(g(t,&)) =&, it follows that

g, &N = IDINfE g, ENI<IEI YEeRP, Vi>0. (4.4)
Let T € (fg, 00). There exist p > 0 and ¢ > 0 such that ¢||D|| < 1 and || f(z, &)|| < c||&] for all

& e R? with ||| > p and for almost every ¢ € [ty, T]. Hence, by (4.4), the following implication
holds for almost every ¢ € [y, T]:

le@.OIz=p = g &) =cilléll, where ¢ :=1/(1 —c|| D).

Invoking (4.1) with K =B(0, p), we see that there exists ¢ € L' ([0, 7], R4) such that

If@ g ENI<e@)+celéll V&EeRP, forae.telt,].
This in turn implies that there exist ¢1 € Li([1, 1, R4) and ¢ > O such that ||A(z, 2)|| < ¢1(t) +
c2]|z|| for all z € R? and almost every ¢ € [fy, T]. It follows now from an application of [37,

Proposition 2.1.19] to (4.2) that B(S/, t0) = B(S/,19). O

The next result provides a sufficient condition guaranteeing existence for all initial conditions
and the blow-up and uniqueness properties.

Theorem 4.4. Assume that there exists & € RP such that the function t — f(t, &) is locally

integrable and F; is radially unbounded, locally uniformly in t. Furthermore, assume that, for
all compact sets T C R4 and K C RP, there exists \ € LIIOC(R+, R4) and € > 0 such that

1f(@.8) = fE. Ol <A = VE ek, V=0 4.5)

and
[F(@,8)—F@.Ollzell§ —¢ll VE¢eK, VieT. (4.6)
Then statements (1) and (2) of Theorem 4.1 hold and (1.1) has the uniqueness property.
The remark below contains commentary on the conditions imposed in Theorem 4.4.
Remark 4.5.

(a) In the case that f is linear and time-varying, that is f(¢,£&) = K(t)§ for measurable
K : Ry — R™*P_ the conditions of Theorem 4.4 are satisfied if, and only if, K is lo-
cally integrable and, for every compact subset 7 C R, there exists ¢ > 0 such that
minyg =1 |(/ — DK (¢))§]| > ¢ for all # € T. In the time-independent case K (t) = K, these
conditions reduce to the invertibility of / — D K (the latter being the familiar well-posedness
criterion for linear systems with feedthrough under linear output feedback with constant
gain matrix, see, for example, [69, Lemma 5.1, p.67]).

17
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(b) If, for all compact sets T C Ry and K C R”, there exist y; € (0, 1) or y» > 1 such that

IDf(.8) =Df . Ol =yill§ = ¢l V&, 5 €K, VieT,

or

IDf(1,€) = DF (. Ol = p2llE — ¢l VE, ¢ €K, VieT,
then (4.6) holds with e = 1 — y| or ¢ = y» — 1, respectively. Moreover, if the function A in
(4.5) is constant and A||D|| < 1, then (4.6) is implied by (4.5).

(¢) We remark that if f is bounded on compact sets, then Theorem 4.4 remains valid if the
Lipschitz condition (4.5) is replaced by the following, more localized, condition: for all
(t,¢) e Ry xRP?, there exist positive constants A, 6 and p such that || (¢, &) — f(z,&)| <
MIE — & forallte(r —0,t4+60)NR; and all £1,& € B(Z, p). <©

The following corollary of Theorem 4.4 considers the case wherein the maps D f; — y I satisfy
certain monotonicity conditions for suitable y € R.

Corollary 4.6. Assume that there exists £y € RP such that the function t — f(t, &) is locally

bounded, f is locally Lipschitz in the sense of (4.5), and, for every compact set T C R, there
exist y1 < 1 or y» > 1 such that

(Df(t.6) = Df(t.0). 6 —¢) <nllE —¢|* YteT, V&L eR? 4.7)
or
(Df(t.&) = Df(t.0). 6 = &) =yl —¢|> VteT, VE,; eRP. (4.8)
Then statements (1) and (2) of Theorem 4.1 hold and (1.1) has the uniqueness property.
Note that if Df; is dissipative for every ¢ > 0, then (4.7) holds with y; = 0.

Proof of Corollary 4.6. Let T C R4 be compact andset e :=1—y; >0o0re:=yp —1>0
depending on whether (4.7) or (4.8) holds. Then

|F(t,&)—F@ o)l >¢ellé —¢ll VteT, &¢eRP.
By hypothesis, there exists b > 0 such that || F (¢, §&o)|| < b for all t € T', and thus

IFEN=IF@&l =eléll — B +eléol) VieT, §eRP,

showing that F; is radially unbounded, uniformly in ¢ for ¢ € T. The claim now follows from
Theorem 4.4. O

Under the mild extra assumption that f is bounded on compact sets, an alternative version of
Theorem 4.4 is given in the following corollary.

18
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Corollary 4.7. Assume that f is bounded on compact sets and locally Lipschitz in the sense of
(4.5). Furthermore, assume that F; is radially unbounded, locally uniformly in t, and, for all
compact sets T C Ry and K C RP, there exists b > 0 such that [ — DM is invertible with || (I —
DM)~! | <bforall M e U(,’S)ETxK(dcf,)(é). Then statements (1) and (2) of Theorem 4.1 hold
and (1.1) has the uniqueness property.

Proof. The claim follows from Theorem 4.4, provided it can be proved that the assumptions
of the corollary imply (4.6). To this end, note that, by statement (3) of Theorem 2.3, F; is a
Lipschitz homeomorphism for every ¢ > 0. Rademacher’s theorem guarantees that F; and F,_l
are differentiable almost everywhere. By [6], we have N = F;(NF,). Hence, for every & €

RP\ F;(NF,), the maps Ffl and F; are differentiable at & and Ff] (&), respectively, and we have
that

AF; &) = (AF)(F7'()) ™' VE e RP\F.(N,). 4.9)

Let 7 C R4 and K C R” be compact. As f and hence, F are bounded on compact sets, there ex-
ists p > 0 such that F;(K) C B(0, p) for all r € T. By the locally uniform radial unboundedness
of F;, we have that there exists a compact set I such that Ffl (B, p)) c T forallt € T. By
hypothesis there exists » > 0 such that | P~'|| < b forall P € U(z,é)eTxF(dC F;)(&). Appealing
to (4.9), we obtain

IAF @I <b YE&eB©O, p)\F(NR), VieT.

An application of statement (1) of Lemma 2.4 with U = B(0, p) shows that

IF @) — F @)l <blg — &Il Vi, eB,p), VieT.

Let&1,6 € K, & #&,t €T and set ¢ := Fi(§1), {2 := Fi(&). Then ¢, & € B(O0, p) and it
follows from the above inequality that

1 F:(§1) — Fi (&)l = (1/b) 161 — &2,

establishing (4.6) withe =1/b. O
We now come to the proof of Theorem 4.4.

Proof of Theorem 4.4. Let T C R4 and K C R? be compact. Without loss of generality we
may assume that §y € K. Then there exists A € LlloC (R4, R) such that (4.5) holds, and thus

If (@) =ci) +I1f @ )l =19) VEEK, Vi=0

where ¢ > 0 is a suitable constant. The function ¢ is in LlloC (R4, R4), and thus, (4.1) holds. Fur-
thermore, (4.6) trivially implies that F; is locally injective for every ¢ > 0. Hence the assumptions
of Theorem 4.1 are satisfied, and consequently, statements (1) and (2) of Theorem 4.1 hold.

We proceed to prove uniqueness. Let v € Ly (R, R™¢) and let the sets T C R and I' C R”
be compact. The uniqueness property follows from an application of [60, Appendix C.3] or [66,
Chapter II1, §10, Supp. II] to system (4.2), provided that the function
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h(t,2) = (1, g(t, Cz+ Dev(0))) = f(t, F, (Cz + Dev(1)))

introduced in (4.2) satisfies a Lipschitz condition on I' in the sense that there exists x €
L'(T,R) such that

(e, z1) —h(t,22)|l <k (@®)llz1 —z2l VYzi,220€T, forae.teT. (4.10)

To show this, let I C R? be compact and such that Cz + Dev(t) € T” for all z € T" and almost ev-
ery t € T. Invoking uniform radial unboundedness of F; for ¢ € T, statement (1) of Lemma 4.13
below guarantees that there exists p > 0 such that F[l (") C B(O, p) for all r € T. By hypothe-
sis, there exists € > 0 such that (4.6) holds with K :=B(0, p). It follows that

& — &Il = ell F (&) — F (&) Yé,&el’, VieT,

implying that
| F71(Cz1 4 Dev(t)) — F, ' (Czo 4+ Dev()) |l < (1/6)llz1 — 22l Vz1,22€T, forae.teT.

Combining this with the Lipschitz property of f, we conclude that there exists x € L'(T, R )
such that (4.10) is satisfied. O

A slightly different proof of Theorem 4.4 is outlined in the following remark.

Remark 4.8. A general existence and uniqueness result for the feedback interconnection of two
arbitrary nonlinear control systems, each of which may contain feedthrough in the sense of di-
rect couplings between inputs and outputs, is given in [38, Theorem 8.1.27]. The conditions
imposed in Theorem 4.4 guarantee that the assumptions in [38, Theorem 8.1.27] are satisfied;
indeed, assuming that f is locally Lipschitz in the sense of (4.5), it can be shown that the radial
unboundedness of F;, locally uniformly in #, together with inequality (4.6), is sufficient for the
fixed point map W in [38, Theorem 8.1.27] to be well defined and to have the required properties.
Once this has been established, Theorem 4.4 is a consequence of [38, Theorem 8.1.27]. <

In the following corollary of Theorem 4.4, we consider a scenario in which we have existence
for all initial conditions, uniqueness and forward completeness.

Corollary 4.9. Assume that f is locally Lipschitz in the sense of (4.5) and, for every compact set
T C Ry, there exist &g € R?, b > 0 and § > 0 such that t — f(t,&p) is boundedon T, | M| <b

fOr all M € U(I,S)ETXRP (dcft)(g) and

|det(/ —DM)| =8 YMe | (@fHE. @11
(t,£)eT xRP

Then (1.1) has the uniqueness property, Z’S’(Sf, o) = B(Sf, to) for all ty > 0, and, for all v €

Ly (R, R™e), tg > 0 and x0 € R”, there exists a unique (v, x, y) € B(ST, to) such that x(t9) =
0

xY.
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Proof. Let T be an arbitrary compact subset of R. It follows from the hypotheses that
Idf) )]l < b forall § € RP\Ny, and all ¢ € T. By statement (1) of Lemma 2.4, f; is glob-
ally Lipschitz with Lipschitz constant b for every ¢ € T. Hence, there exists a > 0 such that

If@ON=IfE El+ bl + 1§D <a+b(lél + 1D VieT, VEeR.  (4.12)

Furthermore, by Cramer’s rule,

1
(I-DM)'= iU —DM) VM e U @@mne.
¢ (t,.£)eT xRP

where adj denotes the adjugate. Combining this with the hypotheses on d° f; shows that there
exists ¢ > 0 such that

=DM H<e vMe | @fH©. (4.13)

(t,£)eT xRP

It follows from Proposition 5.1 below that F; = I — Df; is a Lipschitz homeomorphism for every

t > 0 and F; is radially unbounded, locally uniformly in ¢. By [6], we have N -1 = F;(NF,), and
t

so,

@F @) = (AF)(F7'(#) ' VieRy, VE e RP\Fi(Nr).

Invoking (4.13), we conclude that
IdF Y@ <c YteT, VE e RP\F,(NF).

Another application of statement (1) of Lemma 2.4 yields that Fl_1 is globally Lipschitz with
Lipschitz constant ¢ for every ¢ € T. Consequently, there exists ¢ > 0 such that

IF(t,6) = F(t, Ol = 1F:(§) — Fr (D)l = ell§ —¢ll VeeT, VE ¢ eRP.

We have now shown that the hypotheses of Theorem 4.4 are satisfied. Therefore, an application
of Theorem 4.4 yields that (1.1) has the uniqueness property, and, for all v € LS (R4, R™¢),
fo > 0 and x° € R”, there exists a unique (v, x,y) € B(Sf, 1o) such that x (o) = x°.

It remains to show that B(Sf, to) = B(Sf, tg). Letv e L%’C(RJr, R™e) be fixed, but arbitrary.
As in the proof of Theorem 4.1, set /(t,z) := f(t, F, ' (Cz + Dev(t))). As F," is globally
Lipschitz with Lipschitz constant ¢ for every ¢ € T, it follows from (4.12) that there exist
c1, ¢z, c3 > 0 such that

b, DI = 1 £, F7(Cz+ Do) < e1 + 2l 7 Ol + eslizll VieT, Yze R

As F; is radially unbounded, uniformly in ¢ for ¢ € T, it is clear that the function # — F,‘_1 0) is
bounded on 7. Consequently, for every compact set 7 C R, there exists ¢4 > 0 such that

la(t, )| <ca(1+|zll) VeeT, VzeR"
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An application of [37, Proposition 2.1.19] to (4.2) shows that B(Sf, 1) = B(S/, 1), completing
the proof. O

We present some examples of nonlinearities f and feedthrough matrices D such that F satis-
fies the hypotheses of Theorems 4.1 or 4.4 or any of their corollaries.

Example 4.10.

(a)

(b)

Consider the case p =m =2, D = I and define f : R, x R? — R? by

Jf(2.8):=&—g(IEIDRO))E, (4.14)

where the functions g : Ry — R and 8 : R — R are continuous and measurable, respec-
tively, and R is the two-dimensional rotation matrix

weR.

R(w) ::(

cosw —sinw
sinw  cosw

We assume that the function Ry — R, s +— sg(s) is injective and radially unbounded.
It is obvious that f satisfies (4.1). As RT(O)RO (1)) = I for all r > 0, we have that

IFE)N = g*IENE, RTO@)ROM)E) = g2 (IEIDIEN?,  Vi=>0, VE e R

It follows from the hypotheses on g that F; is injective for each # > 0 and F; is radially
unbounded, uniformly in ¢. Consequently, statements (1) and (2) of Theorem 4.1 apply to
(1.1) when D = I and f is given by (4.14).

Furthermore, for ¢ € #~'(/2), the matrix R(0(t)) is skew-symmetric, and thus,
(£, R(O(1))&) =0 for all &£ € R?. A straightforward calculation shows that

1@ O = 1EI17 + g>UEDIEN®, Vieo  (n/2), VE e R

Therefore, || £(t, £)|17/1IE1*> =1+ g(J|€]]) = 1, whenever t € 0~ (/2). As | D|| =1, we
see that the condition in Corollary 4.3 is not satisfied, and hence the conclusion of this
corollary does not apply.

Let us consider a variant of the previous example, namely the situation wherein p = m and
f Ry x R? — RP? is given by

f@.8) =g @)E,

where g : Ry — R is continuously differentiable and J : Ry — O(p, R) is measurable,
with O(p, R) denoting the group of orthogonal real matrices of format p x p. Itis clear that
f satisfies (4.5) as

£, &) — fE. &1 < |gUED — gU&ID 1T @&+ gUIE2D ] T ()& — T ()& |
V&, & e RP”.

Furthermore, a routine calculation shows that
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2(0)J (1), §=0
AfE =1 g€l
IE]

(JOEET +g(IEINT (@), E#0.

Let us now focus on the specific case wherein g(s) = 1/+/1 + s2. Itis clear that F; is radially

3
unbounded, uniformly in 7. Furthermore, as g(0) = 1 and g’(s) = —s(1 + s2)~ 2, it follows
that

df)E) = J()(I — P()) VEeRP, where P(§):=(1+|&|H 'esT.

1
V1+El?

As P (&) is a symmetric positive semi-definite matrix with eigenvalues in the interval [0, 1],
it follows that ||/ — P(&)|| <1 for all £ € R”, and thus,

IDAMHEIN <D VEeRP, ¥i=0.

Consequently, if || D|| < 1, then there exists € > O such that | F(¢,&) — F(¢,¢)|| > ¢ll§ —¢||
forall t > 0 and &, ¢ € R”, in particular (4.6) holds. We conclude that if g(s) = 1/+/1 + 52
and || D|| < 1, then Theorem 4.4 and Corollaries 4.7 and 4.9 are applicable.

(c) Consider the case p =m, D = I with nonlinearity

h(t)

R R? RP —_
FiRex RE=RE = 1

&, (4.15)

where i : R4 — R is measurable, locally bounded and %(¢) € (—oo, 1] for all £ > 0. The
map F is given by

L—h@®+ 15l

F@,§)=§-Df(t.§) =& - f(1.§) = T+ ]

£ VYEERP, Vt>0.

Obviously, F; is radially unbounded, locally uniformly in z. It is also readily checked that
F; is injective for every ¢ > 0. As f also satisfies (4.1) and is bounded, locally uniformly
in ¢, it follows that Theorem 4.1 is applicable to (1.1) with D =1 and f given by (4.15).
We remark that Corollary 4.9 is also applicable, provided that 4 (¢) is bounded away from
1. As (dFy)(0) = (1 — h(z))! for all £ > 0, it follows that (4.11) does not hold if i (f) =1,
in which case Corollary 4.9 is not applicable. <

4.2. F; failing to be invertible for all t in a set of positive measure

In the following, we present an approach to well-posedness of (1.1) which is based on set-
valued analysis and does not require F; to be a local homeomorphism. Whilst the case of F;
failing to be invertible on a set of zero measure is covered by Remark 4.2, here we consider the
situation wherein invertibility of F; may fail for all > 0 belonging to a set of positive measure.
In essence, the approach involves recasting (1.1) as a differential inclusion combined with an
application of suitable selection theorems, including Filippov’s selection theorem. The symbol
Ft_1 will now denote the inverse image of F;, more precisely, F,_1 is the set-valued function
mapping each point £ € R to its fibre F,_1 é).

We introduce the following assumptions.
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(A1) Forevery t > 0, the set F,_1 &)={¢ eR?: F;(¢) =&} is nonempty for all £ € im (C, D).

(A2) F; is radially unbounded, locally uniformly in ¢.

(A3) Forevery ¢ >0 and every & € im (C, D), the set f (1, F, ' (§)) = {f(t,¢) : ¢ € F, 1 (&)} is
convex.

A discussion of these assumptions and examples of functions satisfying (A1)—-(A3) appears
after the statement of the following theorem, the main result of this section. The theorem
shows in particular that, if (A1)-(A3) hold, then (1.1) is well posed in the sense that, for ev-
ery v € LIOC(R+, R™e), every fo > 0 and every x” € R”, there exists (v, x, y) € B(S/, ty) such
that x (79) = xY. The proof of the theorem can be found at the end of the section.

Theorem 4.11. Assume that (A1)—(A3) are satisfied and, for all compact sets K C RP?, there
exists ¢ € LIOC(R+, R ) such that (4.1) holds. Let v € Ly, (R, R™e), tg > 0 and x9 e R™. The
following statements hold.

(1) There exists (v,x,y) € l’;’(Sf, t0) such that x(to) = x°.

Q) If(v,x,y) € B(S7, 19) has a bounded maximal interval of definition [ty, T), where th < T <
o0, then ftg |Bf(t, y(t))|ldt =00, y & L*®([0, T), RP) and || x(t)|| = oo as t 1 t. In partic-
ular, system (1.1) has the blow-up property.

Note that if f satisfies a suitable Lipschitz condition, then it follows from Theorem 4.4 that
the uniqueness property holds provided that F satisfies (4.6).

Remark 4.12. Consider the following assumptions which are slightly weaker than (A1)-(A3).

(B1) For almost every t > 0, the set F,_l(é) ={¢ € R? : F;(¢) = &} is nonempty for all £ €
im (C, De).

(B2) F; is radially unbounded, locally essentially uniformly in ¢, in the sense of Remark 4.2.

(B3) For almost every ¢t > 0 and every & € im (C, D), the set f(, Ft_l(é)) ={ft,¢):¢€
F,_I(E)} is convex.

We claim that Theorem 4.11 remains valid if assumptions (A1)-(A3) are replaced by (B1)-(B3).
Indeed if (B 1) (B3) hold, then there exists a null set £ C R such that the Caratheodory func-
tions f and F defined in Remark 4.2 satlsfy (A1)-(A3). Consequently, Theorem 4.11 apphes
to system (1.1) with f replaced by f and the claim follows from the identity B(Sf Jh0) =
B(S', ). ©

The following lemma identifies certain properties of F; which are related to (A1)-(A3) in the
sense that they imply or are implied by some of the assumptions (A1)-(A3).

Lemma 4.13. The following statements hold.

(1) Assumption (A2) holds if, and only if, for all compact sets T C Ry and K C RP, there exists
p > 0 such that Ft_l(K) CB(, p) forallteT.

(2) If (A1) and (A2) are satisfied, then the set Ffl (&) is non-empty and compact for all t > 0
and all & € im (C, D) and the set-valued map & +— Ft_l(s ) is upper semicontinuous on
im (C, De).
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(3) If, forevery t >0, the map F; : RP — RP? is locally injective and (A2) is satisfied, then F; is
a homeomorphism and (A1) and (A3) hold.

@) If f does not depend on t and F : RP — R? is a homeomorphism, then (A1)-(A3) are
satisfied.

Proof. (1) Assume that (A2) holds. Let T € Ry and K C R? be compact and let o >
supgcg €1l There exists p > 0 such that || F;(§)]| > o forallz € T and all § € R? with ||&]| = p.

LetreT and & € Ff](K), then F;(§) € K, and so || F;(§)|| < o, whence ||&] < p. It follows
that F,"'(K) C B(0, p) forall 1 € T.

To prove the converse, let T C R be compact and o > 0. By hypothesis, there exists p > 0
such that F[l([B%(O, o)) C B(0, p). Consequently, for r € T and & € R? with ||&] > p, we have
that & ¢ F,*I(IB%(O, 0)), implying that ||F;(£)| > o. Hence, F; is radially unbounded, locally
uniformly in ¢, showing that (A2) is satisfied.

(2) By (A1), Ffl (&) is non-empty for all £ € im (C, D.) and compactness follows from (A2),
statement (1) and the continuity of F;. The upper semicontinuity of F,_1 is a consequence of
Lemma A.l in the Appendix.

(3) This is an immediate consequence of statement (1) of Theorem 2.3.

(4) As F~! is a continuous map, F~'(K) is compact for every compact set K C R?, and it
follows from statement (1) that (A2) holds. Assumptions (A1) and (A3) are trivially satisfied. O

In the remark below we provide some further commentary on assumptions (A1)—(A3).
Remark 4.14.

(a) In the definition of trajectories or pre-trajectories (v, x, y), the output y is required to be
locally integrable on its interval of definition. However, if (A2) holds, then, as F;(y(t)) =
Cx(t) + Dev(t) and Cx + D.v is locally essentially bounded, it follows that the function y
is not only locally integrable, but locally essentially bounded on its interval of definition.

(b) By Lemma A.1 in the Appendix, assumption (A2) implies the upper semicontinuity of Fl_1
for every ¢ > 0. Furthermore, if f does not depend on ¢, all fibres of F' are bounded and
im F is closed, then upper semicontinuity of F~! implies (A2).

(c) A sufficient condition for (A2) to hold is

Df(t,
limsupm <1 Vt>0.
I = 00 &1l

The above inequality certainly holds if f is of sublinear growth, that is, if limyg |- oo Il f (£,
EN/NEN=0forallz >0.

d) If Ft_1 (&) is a singleton for all + > 0 and all £ € im (C, D), then (A3) is trivially satisfied.
Furthermore, as Df (z, Ft_1 &)= Ft_1 (&) — &, we see that (A3) holds if D is left invertible
and F,_I(E) is convex for all t >0 and all £ € im (C, D). <

Next we present examples of nonlinearities f for which (A1)-(A3) are satisfied.

Example 4.15. (a) Letm = p =1, D =1 and let d : R; — [0, 1] be measurable. Consider the
following saturation nonlinearity with a deadzone of time-dependent width 2d:
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0, €l <d(),
F6,8) =& — Gign€)d(0), d) <& <1+d@),
signé, €1 > 1+d(@).

The function F(¢t,&) =& — f(¢, &) is then given by

£, €] <d(1),
F(t,8) =1 (sign§)d(t), d@) <|§]<1+d(),
& —signé&, E] > 14+d(1).
It is clear that F} is radially unbounded, uniformly in #. Moreover, for all # > 0 and all £ € R such
that |&| £ d(r), the set F, ' (£) is a singleton, F,"'(d(1)) = [d(1), 1 + d(r)] and F,"'(—d (1)) =
[—(1 +d(1)), —d(1)]. Finally, as f(t, F,'(d(1))) = [0, 11and f(t, F,' (=d(1))) = [~1, 0], we

conclude that assumptions (A1)-(A3) are satisfied.
(b) Let m = p, D = (1/2)1 and consider the time-independent nonlinearity

£, 15 =<1,
FE):=12-1/15D& 1<l =<2,
A+ 1/151D&, 2 <|I&]l < oo.

Then, for all £ € R?,
§/2, €N <1,

F(§)=§—Df(§) = {§/ClEID. I=<|§ll=2,
I =1/1§ID&/2, 2 < ||&]l < oo,

and so,

{28}, 1§l <1/2,
FlE) = {rérel2,4)), lE1=1/2,
{@+1/1EIDsY, NI&I> 1/2.

It is obvious that (A1) and (A2) are satisfied. Since the set
{2¢}, €N <1/2,

FFETNE)=rEre2.6]),  lEl=1/2,
{2 +1/15ID&}, &1 >1/2
is convex for every & € R?, we conclude that (A3) also holds.
(c)Letm=p,D=1,leth: Ry — [0, 1] be measurable and define a time-dependent satura-

tion nonlinearity f : Ry x R? — R? by
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£, &I <1,
ft, &) :=h@) (4.16)
g/IEN, €N > L.

By routine calculations, we obtain for the pre-images F,_1 &):

F7'@) =(& if ten 10,

1 {{[(1/(1 —h@®)EL, NEN<1—h(), ) .
Fle = if e h=1((0, ),
{L+h@®/1EIDEY, 151> 1—=h(),
and
B(0, 1), =0,
Fl :{ O : ifreh=1(1).
{A+1/1&1D&}, £ #0,

It is clear that (A1) and (A2) are satisfied. As F[l (&) is convex for all + > 0 and all £ € R?
and f(r, F, ' (&) = F71(€) — &, we see that the set f(z, F,'(£)) is convex for all 7 > 0 and all
& € R?, showing that (A3) also holds. <

The following lemma will be used in the proof of Theorem 4.11.

Lemma 4.16. For every measurable function w : Ry — RP, the set-valued function Ry =
R?, t > Ft_l(w(t)) is measurable.

Proof. Let w: Ry — R? be a measurable function. Obviously,
Flw®)={E eRP: F(E) =w®)}={§ eRP: F(1,&) =w(t)}.
As F is a Caratheodory function, an application of [5, Theorem 8.2.9] yields the claim. O
We are now in the position to prove Theorem 4.11.

Proof of Theorem 4.11. Letzp>0,x° e R” and v € Lﬁfc
(1) Define the set-valued map

(R, RP).
®:[fg,00) x R" = R", (t,2)—~ Az + Bf(t, F,_I(Cz + Dev(t))) + Bev(r).
We claim that
(i) ® has nonempty, compact and convex values, and, for each t > 1g, z — (¢, z) is upper
semicontinuous;

(ii) for each z € R", the function ¢ — ®(¢, z) has a measurable selection;
(iii) for every compact set X C R”, there exists ¥ € Llloc(]RJr, R ) such that

sup{lli¢ll: ¢ € ®(t,2), z€ X} <y (t) forae.tr>0.
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To prove claim (i), note that, by statement (2) of Lemma 4.13, the map F,_l is upper semi-
continuous on im (C, D) and F[_l(é) is nonempty and compact for all £ > 0 and all £ €
im (C, D). Hence, the continuity of f(z, -) implies that, for each ¢ > 0, the set-valued map & —
[, Ft_1 (&)) is upper semicontinuous on im (C, D) with nonempty compact values. By (A3),
the set f(z, Ft_l(é )) is also convex for every t > 0 and all £ € im (C, D). Combined, these
properties yield claim (i).

As for claim (ii), we invoke Lemma 4.16, to obtain that the map ¢ +— Ft_l(Cz + Dev(t))
is measurable. Since it has nonempty and closed values, it follows that it has a measurable
selection w (see, for example, [24, Proposition 3.2]). The Caratheodory property of f guar-
antees that the function ¢ — f(#, w(¢)) is measurable, and hence is a measurable selection of
t— f(t, F,ﬁl(Cz + Dcv(t))). Consequently, for each z € R”, the map ¢t — ®(¢, z) has a mea-
surable selection, showing that (ii) holds.

To establish claim (iii), let T > 0 and X C R” be compact. It is clear that there exists a compact
set K C R” and a null set E C [0, 7] such that

Cz+Deov(t)e K VzeX, Viel0, t]\E.
By assumption (A2) and statement (1) of Lemma 4.13 there exists ¢ > 0 such that
FY(K)cB(@,¢c) VYrel0,1].

Invoking (4.1), we have that

sup{l| f (7, &) : £ € B(O,0)} <) V>0
for suitable ¢ € LllOC (R4, Ry). Therefore,
sup{[| £ (¢, )| : & € F, 1 (Cz+ Dev(r)), z € X} <sup{l| (1,6l : & € F, N (K)} < o(0)
Vte [0, T\E.
Since T > 0 was arbitrary, we may conclude that there exists ¥ € LIIOC(IRJ“ R ) such that (iii)
holds.

It follows from claims (i)-(iii) and the theory of differential inclusions that the initial-value
problem

£(t) € Ax(1) + Bf ((t, F,'(Cx(1) + Dev(1)) + Bev(1) = @1, x(1)),  x(to) =x°  (4.17)

has an absolutely continuous solution x defined on a maximal interval of existence [fy, T), where
to <1 <o00,and

T<oo = limsuplx(?)| = oo, (4.18)
"t

see, for example, [24, Corollary 5.2]. Setting f :=Bf and Y(t) = F,_I(Cx(t) + Dev(t)) for
t €10, ), we have that
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%) — Ax(t) — Bov(t) € (1, Y1) = {f(t,6): £ € Y (1)}, forae.te[0,7).  (4.19)

As observed before, in the proof of claim (ii), the set-valued function Y is measurable. Further-
more, the values of Y are compact. It follows from (4.19) that x — Ax — B.v is a measurable
selection of ¢ f (t, Y (¢)). By Filippov’s selection theorem (see [64, Theorem 2.3.13]), there
exists a measurable selection y of Y defined on [fg, T) such that

%(t) — Ax(t) — Bov(t) = f(t, y(t)) = Bf (¢, y(t)) forae.t € [to, 7).

Invoking (A2) together with statement (1) of Lemma 4.13, we see that there exists y €
Ly ([t0, T), R4) such that sup{||&| : & € Y ()} < y(¢) for almost every ¢ € [fo, T), implying that
y € Ly ([to, T), R?). Combining this with (4.1) shows that foy e Llloc([to, 7), R?). Further-
more,

y(@t) —Df(,y(@t)=F(,yt)) = F(y(t)=Cx(t)+ Dev(t) forae.te[0,7). (4.20)

Consequently, we have that the triple (v, x, y) is a pre-trajectory of (1.1) satisfying x(fp) = x°.
Finally, it follows from (4.18) that (v, x, y) is maximally defined and so (v, x,y) € [;’(Sf, t0),
completing the proof of statement (1).

(2) Let (v, x,y) € B (S I, to), with bounded maximal interval of definition [#y, T), where 7y <
T < oo. It is an immediate consequence of statement (1) and Proposition 3.2, that (1.1) has the
blow-up property and

T

/(Ily(t)ll +IBf (@, y@)|)dt = co.

fo

Furthermore, if y was in L ([0, 7), R?), then, by (4.1), f oy € L'([0, 1), R™), leading to a
contradiction with the divergence of the above integral.

As y & L*°([0, T], RP), there exists, for every k € N, a set Ty C [0, t) of positive measure
such that || y(¢)|| > k for all ¢ € T. It follows from (A2) that, for every [/ € N, there exists k; € N
such that

IF @,y =1F (@)=l forae.teT.

Using that Cx(¢) = F(t, y(t)) — Dev(t) for almost every ¢ € [fg, T), we conclude that x is un-
bounded on [#y, T), hence lim sup; 4, lx (@) = oo. Seeking a contradiction, suppose that ||x(¢)|]
does not converge to oo as ¢ 1 7. Then there exist numbers p > 0 and ¢; € [t9, T), j € N, such
that t; — 7 as j — oo and x(#;) € B(0, p) for all j € N. Let € > 0 and note that, by the un-
boundedness of x,

Si={seltj,1):x()¢BO,p+e)}#0 VjeN.
Setting s; :=inf S}, it is obvious that t; <s; < T, s; — 7 as j — oo, ||x(s;)|| = p + ¢ and
x(t) e B0, p+¢) for all t € [tj,s;] and all j € N. It is clear that there exists a compact set
I' C R? such that
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Cx(t)+ Dev(r) €T forae.r€[t),s;], j €N.

Invoking assumption (A2) and Lemma 4.13, we see that there exists a compact set K C R” such
that

F'()cK Vreln, 1l
As y(t) e F,_I(Cx(t) + D.v(t)) for almost every ¢ € [tg, T), we conclude that

y(t)e K forae.teltj,s;], jeN.

It now follows from (4.1) that there exists k € L ([to, 7], R ) such that

I f(t, ye)Il <x() forae.telt;,s;], jeN.

Consequently, routine estimates of x yield

&< |lx(s;) —x@)I < / X (s) Il ds
I

S
< (IAll(o + &) + 1Bellllvl ooy, o)) (57 — 1) + IIBIIfK(t)dt vjeN.
s

J

As the right-hand side converges to 0 as j — 0o, we obtain a contradiction to the positivity
of e. Consequently, ||x(¢)|| — oo as ¢ 1 7. This in turn implies, via the variation-of-parameters
formula for x, that ft; |Bf(t, y(@))||dt =0c0. O

Next we provide a condition guaranteeing forward completeness and existence of trajectories
for every initial condition.

Corollary 4.17. Assume that (Al) and (A3) hold, for all compact sets K C RP, there exists
@ e Ll (R, Ry) such that (4.1) holds, and, for all compact sets T C Ry, there exist p > 0 and

loc
¢ > 0 such that ¢|D|| < 1 and (4.3) is satisfied. Then B(S', t9) = B(S7, 19) for all to > 0 (that
is, (1.1) is forward complete). Furthermore, for all v € Lﬁi(RJr, R™e), 19 > 0 and x° € R", there

exists (v, x, y) € B(S', tg) such that x(tg) = x°.

Proof. As c||D| < 1, it follows from (4.3) that F; is radially unbounded, locally essentially
uniformly, in the sense of Remark 4.2, that is, (B2) in Remark 4.12 is satisfied. Hence, by Re-
mark 4.12, the conclusions of Theorem 4.11 hold. Therefore, we only need to establish that
B(ST, 19) = B(S, ty) for all to > 0. To this end, let (v, x, y) be a pre-trajectory defined on
[70, T), where fy < T < oo. It is sufficient to prove that y € L°°([fy, T), R?). Indeed, in this case,
statement (2) of Theorem 4.11 implies that every maximally defined trajectory starting at 7 is
defined on [#y, 0o) and is therefore in B(S !, t0).

To show that y € L*([tg, t), RP), note that, by (4.3), there exist p > 0, ¢ > 0 and a null set
E C [ty, T] such that ¢||D|| < 1 and
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If @Ol <clgll Yreln, TI\E, Y& € RP\B(O, p). 4.21)

For t € [ty, TI\E, if ||y(®)|| > p, we have

1
ly®I < m||cx(t) + Dev (@),

and thus,

1
Iyl = p+ 77 1Cx(0) + Dev (@) forae. €1, 7).
1 —c||Dl

An application of the variation-of-parameters formula for x yields that there exist constants
c1, c2 > 0 and a continuous non-negative function 4 defined on [#y, t] such that

t

lyOIl < e +62fh(8)||f(s,y(S))|ldS fora.e. 1 € [to, 7). (4.22)

4]

By (4.1), there exists ¢ € LIIOC(R+, R) such that

sup || f(t, &) <o) forae.t>0.
£eB(0.p)

Combining this with (4.21) shows that

If @yl <e@) +clly@®|l forae.te€l[t, 1),
which in conjunction with (4.22) leads to

t

Iyl <3+ ca / )y llds  forae. 1 € [1o, 1),

fo

where ¢3 and c4 are suitable positive constants. An application of the Gronwall lemma
(see Lemma A.2 in the Appendix for a suitably general version) yields that || y(#)| < c¢3 +
exp (C4 ft; h(s)ds) for almost every ¢ € [1y, T), whence y € L*°([tg, 7), RP). O

5. Sufficient conditions for the radial unboundedness property

Radial unboundedness of F;, locally uniformly in ¢, plays an important role in Theorems 4.1
and 4.11. In this section, we provide a number of sufficient conditions for this property.

Proposition 5.1. Assume that f is locally Lipschitz in the sense of (4.5) and, for every M €
U(t’ £)eR, xR? (d€ f1)(&), the matrix I — DM is invertible. Assume further that, for every compact
set T C Ry, there exist &y € R?P and b > 0 such that
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sup | Df (t.€0)| <b and |1 —DM)~'|<b VMe U df) ). (.1
teT (t,6)eT xRP

Under these conditions, F; is a Lipschitz homeomorphism for every t > 0 and F; is radially
unbounded, locally uniformly in t.

Proof. By the Hadamard theorem for locally Lipschitz functions [49],* it follows from the hy-
potheses that F; = I — Df; is a Lipschitz homeomorphism for every ¢ > 0. In particular, for
each t € R4, the map F; is radially unbounded. Let T C R be compact. We show that the ra-

dial unboundedness is uniform in ¢ for ¢ € T. To this end, we note that Rademacher’s theorem
guarantees that F; and Ft_1 are differentiable almost everywhere, and, by [6], N g1 = Fr(NF).
t

Hence, for every £ € RP\ F;(NF,), the maps Ffl and F; are differentiable at & and Ffl(é),
respectively, and (dF, ') (§) = ((dF,)(F,_l(E)))_l for all £ € T and all £ € RP\F;(Ng,). As
dF)(F () € @F)(F'(§) =1 — DA f;)(F,' () for all & € RP\F;(Np,), it follows
that
IAF7Y@EI <b VYteT, V& e RP\F,(NF).

Invoking statement (1) of Lemma 2.4, we conclude that

IF7 &) — FH @l <bllE — ¢l VE LeRP, VieT,
that is, Ffl is globally Lipschitz, uniformly in ¢ for # € 7. This in turn implies that

IF: () — ROl =1/b)l§ —¢ll VETeRP VieT,

and thus, using the first inequality in (5.1),

IEEN = (1/b)1§ — &oll — b — llgoll = (1/D)IIE] — (1 +1/b) &l +b) VEERP, VieT.
The last inequality shows that F; is radially unbounded, uniformly int fort € 7. O
Proposition 5.2. Assume that f is locally Lipschitz in the sense of (4.5), and, for all compact

sets T C Ry and K C RP, there exist a constant b > 0, such that |Df (¢t,&)|| <b forallt € T
and all & € K. If, for all compact T C Ry, there exist p > 0 and by < 1 or by > 1 such that

(DAf)E)E, L) <billcl> V¢ eRP, VieT, VE e (RP\B(0, p))\Ny,, (5.2)
or
(DWAf)E), Q) =ballclI> YeeRP, VieT, VEe (RP\B(O, p))\Ny, (5.3)

then Fy is radially unbounded, locally uniformly in t.

4 The “classical” version of the Hadmard theorem for continuously differentiable functions can be found in many
places, see, for example, [23, Theorem 15.4], [46] or [55,57].
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Proof. Let T C R be compact and let § € RP\B(0, p). Define &, := (p/|§11)§ € 0B(0, p) and
note that [§,, ] C RP\B(0, p). By statement (2) of Lemma 2.4,

(Df;(§) — Dfi(€,),& —&p) <bilE = &> VEERP\B(O,p), VieT,
or

(Dfi(5p) — Dfi(€),6 — &) < —ballE —&,1> VEERP\B(, p), VieT,

depending on whether (5.2) or (5.3) is satisfied. Setting ¢ := 1 — by if (5.2) holds and ¢ := by — 1
if (5.3) holds, we have that € > 0 and it follows that

(Fi(§) = Fi(§,),6 — &) = ellE —&,|> VEERP\B(O,p), VieT.

By hypothesis, there exists b > 0 such that | Df(¢,¢)|| < b for all ¢ € 0B(0,p) and t € T,
whence || F;(¢)|| < b+ p for all ¢ € aB(0, p) and t € T. Therefore, for all £ € R”\B(0, p) and
allreT,

IF: ) = ellE — &,

| = 1F:Ep) Il = ells =&l — (b + p) = ell&]l — (b + (e + Dp),

proving the claim. O
Appendix A

The Appendix contains a proof of Proposition 3.1 and the statement and proofs of two auxil-
iary results which have been used in the main text.

A.l. Proof of Proposition 3.1

For a given pre-trajectory (v, x,y) on [fy, T), where 0 < #y < T < o0, let £ be the set of
all (X,Y) e Wl (10, T),R") x L ([t0, T), R?) such that t < T < 00, (X, V)l 0) = (x, )
and (v, X, Y) is a pre-trajectory of (1.1) on [#g, T), where T depends on (X, Y). As (x,y) €&,
the set £ is non-empty. Let (x;, y;) € £ be defined on [fp, 7;), where T < 7; <00, j =1,2. We

define a partial order on £ as follows:

x1,y1) X (x2,y2) <= 1w =<1 and (x2, Y2l = (x1, ¥1).

To prove the claim, we have to show that £ has a maximal element, that is, an element (xp,, ym) €
& such that, if (X,Y) € £ and (xpm, ym) < (X, Y), then (X,Y) = (xm, ym)- This we do by an
application of Zorn’s lemma, by which it is sufficient to show that every totally ordered sub-
set 7 C & has an upper bound in &, that is, an element (xy, yy) € € such that (X, Y) < (xy, yu)
for all (X,Y) € 7. To this end, let 7 be a totally ordered subset of £, and, for (X,Y) € T, let
[t0, Tx, y) be the interval on which (X, Y) is defined, where T < Ty y < co. We set

i=sup{Txy: (X, Y)eT}>1>1
and define (xy, yu) on [fo, 7,) by
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(X, yo) (1) := (X, Y)(t) Vr1elto, Txy).

As T is totally ordered, the pair (xy, yu) is well-defined, is an element of £ and an upper bound
for T, completing the proof. 0O

A.2. Set-valued maps
Recall that a map g : R” — R is said to be closed if the image of every closed set is closed.
Lemma A.1. Let g : R" — R"™ be a function. The following statements hold.

(1) If g is closed, then the set-valued map g~' : R™ = R", z — g~ (2) (that is, each z is
mapped to its fibre under g) is upper semicontinuous.
(2) If g is continuous and radially unbounded, then g is closed.

Proof. (1)Set G := g~ andlet Y C R” be closed. As g is closed, it is a routine exercise to show
that A(G) = {£§ e R™ : g~ (&) # @} is closed. Consequently, to establish upper semicontinuity
of G, it is sufficient to show that

Gl :={EeR":GENY P ={E € AG): GENY £}

is closed. Let (§x)rcN be a convergent sequence in G~(v) with limit & € R™. We have to show
that £ € G™1(Y). To this end, let zx € G(&§) NY # @ for all k € N. As g(zx) = & forall k € N,
it follows that & € g(Y). By hypothesis, g(Y) is closed, and thus, £ € g(Y). Consequently,
£ = g(y) for some y € Y, implying that y € g7'(§) = G(£) and hence, y € G(§) N Y. We
conclude that G(§) NY # @, showing that £ € G~ L().

(2) Let X C R” be closed and let (§;)reN be a convergent sequence in g(X) with limit &.
Let x; € X be such that g(x;) = & for all k € N. As (&) is bounded, so is (xx), by the radial
unboundedness of g. Therefore there exists a convergent subsequence (x;)jeN of (xx) with
limit x, where x € X, by the closedness of X. The function g is continuous, and thus,

§= lim & = lim g(u,)=g(x).
Hence, £ € g(X), showing that g(X) is closed. O

A.3. General version of Gronwall’s lemma

As the version of Gronwall’s lemma which has been used in Section 4 is somewhat more
general than what we were able to find in the literature, we include the proof.

LemmaA.2. LetO<ty<1<00,c>0,he L]I:)C(RJ,_, R) be non-negative and y € L?OC(R+, R),

where 1 < p,q <ocare suchthat1/p+1/q=1.1If

t

y(t)<c +/h(s)y(s)ds, fora.e.t €t 1),

1o

34



C. Guiver and H. Logemann Journal of Differential Equations 456 (2026) 114050

f[ h(s)ds
then y(t) < ce’ for almost every t € [19, T).

Proof. Setting Y (1) := ¢ + [, h(s)y(s)ds for all 7 € [19, T), we have that ¥ (1) = h(t)y(t) <
h(t)Y (¢t) for almost every ¢ € [fy, T), and so,

Y(t)—h@®)Y () <0, forae.t € to, 7).

The function w : [fg, T) = R given by

1
w(t) = Y(t)e_f’oh(s)ds Yt elto, T)

is absolutely continuous and

(1) = (Y (1) — h(t)Y(t))e‘f%h(”ds <0, forae.t € [r, 1),

showing that w is non-increasing. Consequently,

Y(0e 0 "% — ) <w(te) =Y(t) = ¢, V1€t 1),
and thus,

1
Y6 < Y(@) <celo" O forae. 1t 1),

completing the proof. O
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