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Abstract
We present a circle criterion which is necessary and sufficient for absolute stability
with respect to a natural class of sector-bounded nonlinear causal operators. This
generalized circle criterion contains the classical result as a special case. Furthermore,
we develop a version of the generalized criterion which guarantees input-to-state
stability.
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1 Introduction

The stability and convergence properties of Lur’e systems, a common and important
class of nonlinear feedback systems, are a much researched area. Absolute stability
theory seeks to conclude stability of the feedback system shown in Fig. 1 via the
interplay of frequency-domain properties of the linear component, given in state-space
by the matrix triple (A, B, C), and sector properties of the static nonlinearity �. The
so-called circle criterion (a natural generalization of the sufficiency part of the Nyquist
criterion in the single-input single-output setting) is one of the best-known and most
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Fig. 1 Forced Lur’e system

used sufficient conditions for absolute stability. It is well known that the circle criterion
is not necessary for absolute stability with respect to real static nonlinearities.

Lyapunov approaches have been employed to deduce global asymptotic stability of
unforced (that is, u = 0) Lur’e systems (see, for example, [2, 11, 13, 14, 16, 17, 19, 28,
29]), whilst input–output methods, pioneered by Sandberg and Zames in the 1960s,
have been used to infer L2 and L∞ stability (see, for example, [5, 28]). More recently,
forced Lur’e systems have been analysed in the context of input-to-state stability (ISS)
theory, with attention focussed on the extent to which results from classical absolute
stability theory can be generalized to ensure certain ISS properties [1, 6–8, 10, 15,
16, 22–24]. Originating in the paper [25], ISS and its variants, such as integral input-
to-state stability, are properties of general controlled nonlinear systems and, roughly,
ensure a natural boundedness property of the state, in terms of initial conditions and
inputs, see also the survey papers [4, 26].

In the current paper, we consider the situation wherein the nonlinearity � of the
system shown in Fig. 1 belongs to a natural class of nonlinear causal operators which
are sector bounded in an L2-sense and satisfy a weak local Lipschitz-type condition. In
particular, the class generalizes the classical set-up and is sufficiently wide to account
for operators with unbounded memory (described by nonlinear integral equations, for
example) and for input–output operators of certain dynamical processes. We develop
a generalized multivariable circle criterion which is necessary and sufficient for global
asymptotic L2-stability (L2-GAS) of the closed-loop system shown in Fig. 1 for all
operators� in the class under consideration. The L2-GAS property implies in particu-
lar, that, for every L2-input u and all initial conditions, the solution of the closed-loop
system converges to 0 as time goes to ∞, see Sect. 2 for details on the concept of L2-
GAS. Furthermore, we derive an ISS version of this result, namely a circle criterion
which is necessary and sufficient for ISS of the system in Fig. 1 for all nonlinear
operators � satisfying an exponentially weighted L2-sector condition. By applying
the sufficiency part of the generalized circle criterion to the case wherein � is the
Nemytskii operator induced by a static nonlinearity, the classical circle criterion is
easily recovered.

We emphasize that the nonlinearities considered are real in the sense that real input
signals are mapped into real output signals. The key condition of the circle criterion is
the positive realness of a certain rational matrix depending onG(s) := C(s I − A)−1B,
the transfer function of the linear system given by (A, B, C), and the (possibly
dynamic) sector data. As has already been indicated above, the main contribution of
the paper is the proof of the equivalence of the positive-real condition in the circle crite-
rion and absolute stability with respect to all real nonlinear causal operators satisfying
a suitable L2-sector condition, a result, which, in a sense, mirrors a well-known the-
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orem from stability radius theory: namely the identity rC(A, B, C) = rR, d(A, B, C),
where rC(A, B, C) is the stability radius with respect to complex static linear per-
turbations and rR, d(A, B, C) is the stability radius with respect to real nonlinear
causal L2-bounded perturbation operators, where it is assumed that A is asymptoti-
cally stable (see [13, Proposition 4.4] and [14, Theorem 5.6.20]). Furthermore, we
remark that, in the complex case, the sufficiency of the circle criterion is trivial (in the
sense that the proof carries over from the real case without change) and the necessity
has been established in [9, Theorems 6.8 and 6.11], where it is shown, in a general
infinite-dimensional systems setting, that stability with respect to all complex linear
static feedbacks satisfying a sector condition determined by two matrices K1 and K2
implies the positive realness of (I − K1G)(I − K2G)−1.

The layout of the paper is as follows. In Sect. 2, we discuss some preliminaries,
present a number of auxiliary results and introduce the class of Lur’e systems which
will be considered in the rest of the paper. Section 3 is devoted to small gain conditions
for L2-GAS and ISS for Lur’e systems with nonlinear causal L2-bounded operators in
the feedback loop. Contact will be made with the Aizerman conjecture and the work
by Hinrichsen and Pritchard [13, 14]. In Sect. 4, it is established that a natural gener-
alization of the positive-real condition familiar from the circle criterion is sufficient
for L2-GAS (ISS) for all nonlinear causal operators satisfying a suitable (exponen-
tially weighted) L2-sector condition, whilst necessity of the positive-real condition
for absolute stability is proved in Sect. 5. Finally, a proof of an auxiliary result from
Sect. 2 is presented in Sect. 6.

2 Notation, terminology and auxiliary results

In this section, we present and discuss a number of preliminaries required for the
development of the main results of the paper.

Notation

The fields of real and complex numbers are denoted by R and C, respectively. We
set R+ := [0,∞) and, for α ∈ R, Cα := {s ∈ C : Re s > α}. Let Cα denote the
closure of Cα , that is, Cα = {s ∈ C : Re s ≥ α}. Throughout, let F be the field of real
or complex numbers, R or C, respectively. The matrix space Fm×p is endowed with
the operator norm induced by the 2-norm. For M ∈ C

m×p, let MT and M∗ denote the
transposition and Hermitian transposition of M , respectively, and, if m = p, we set

Re M := 1

2
(M + M∗).

We say that the matrix M ∈ C
m×m is Hurwitz if all its eigenvalues have negative real

parts. For M ∈ C
m×p and N ∈ C

q×p, we write

col (M, N ) :=
(

M
N

)
∈ C

(m+q)×p.
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We say that ϕ : R+ ×R
p → R

m is a (real) locally Lipschitz Carathéodory function if
the function t �→ ϕ(t, z) is Lebesgue measurable for every z ∈ R

p and z �→ ϕ(t, z) is
locally Lipschitz, uniformly in t on compact intervals. The set of all locally Lipschitz
Carathéodory functions R+ × R

p → R
m is denoted by C(R+ × R

p,Rm).
We will make use of the Hardy spaces H∞

p×m and H2
p×m of holomorphic func-

tions C0 → C
p×m with respective norms given by

‖H‖H∞ := sup
s∈C0

‖H(s)‖ and ‖H‖H2 := sup
σ>0

(∫ ∞

−∞
‖H(σ + iω)‖2dω

)1/2

,

where the norm on the RHS is the operator norm induced by the 2-norm. We recall
that a holomorphic function is in H2

p×m if, and only if, it is the Laplace transform of
a square-integrable function.

Stability and stability radii in the frequency domain

Let H be a rational matrix (the coefficients of the entries are not required to be real)
of format p × m, frequently interpreted as the transfer function matrix of a finite-
dimensional linear time-invariant control system. If H ∈ H∞

p×m , that is, H does not

have any poles inC0 ∪{∞}, then we say thatH is stable. Let RFH∞
p×m be the set of all

rational matrices which are in H∞
p×m and the entries of which have coefficients in F.

Equivalently, RFH∞
p×m is the set of stable rationalmatrices of format p×m which have

entries with coefficients in F. For ease of notation, we set H∞ := H∞
1×1, H2 := H2

1×1
and RFH∞ := RFH∞

1×1.
It is said that K ∈ RCH∞

m×p stabilizes H if HK := H(I − KH)−1 is stable. It is

clear that HK is the transfer function of the feedback system with H and K in the
forward and feedback loops, respectively. We note thatHK+L = (HK)L = (HL)K for
all K,L ∈ RCH∞

m×p. For the special case wherein K(s) is constant, K(s) ≡ K , we
introduce some convenient notation:

SF(H) := {
K ∈ F

m×p : K stabilizes H
}
.

If the rational matrix H is stable, we define the F-stability radius of H by

rF(H) := inf
{‖K‖ : K ∈ F

m×p and HK is not stable
}
.

We shall refer to the F-stability radius as the real or complex stability radius, depend-
ing on whether F = R or F = C, respectively. If H is stable and (A, B, C, D) is
a stabilizable and detectable realization of H, then rF(H) coincides with the stabil-
ity radius rF(A; B, C, D;C0) of A with respect to the weighting (B, C, D) and the
stability region C0 as defined in [14, Sect. 5.3]. It is clear that rR(H) ≥ rC(H) and
ifH(s) �≡ 0, then there exists a destabilizing feedback K ∈ F

m×p with ‖K‖ = rF(H).
We note that rF(H) can also be expressed in the following form

rF(H) = sup
{
ρ > 0 : K ∈ SF(H) for all K ∈ F

m×ps.t. ‖K‖ < ρ
}
.
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Furthermore, it is well known from [12, Proposition 2.1] or [14, Theorem 5.3.9] that

rC(H) = 1/‖H‖H∞ .

The above identity implies that, in the context of linear output feedback with complex
gains, the small-gain condition is sharp in the sense that there exists a destabilizing
output feedback K ∈ C

m×p such that ‖H‖H∞‖K‖ = 1 (provided that H(s) �≡ 0).
The following result shows that the complex stability radius plays a key role in the

context of stabilization and destabilization by real dynamic linear feedback.

Proposition 2.1 If H is a real-rational matrix of format p × m and K ∈ RRH∞
m×p

stabilizes H, then

sup
{
ρ : H(I − FH)−1 ∈ H∞

p×m for all F ∈ RRH∞
m×p s.t. ‖F − K‖H∞ < ρ

} = rC(HK).

(2.1)

Furthermore, assuming that H(s) �≡ 0, there exists F ∈ RRH∞
m×p such that ‖F −

K‖H∞ = 1/‖HK‖H∞ = rC(HK) and H(I − FH)−1 is not stable.

The key part of the proof of the above result relies on a construction from [27, Proof of
Theorem 4, Sect. 7.4]. For completeness, we have included a proof of Proposition 2.1
in Appendix.

Proposition 2.1 shows that, in the context of real dynamic linear output feedback,
the small-gain condition is sharp in the sense that there exists a destabilizing real
feedback K ∈ RRH∞

m×p such that ‖H‖H∞‖K‖H∞ = 1 (provided that H(s) �≡ 0).
We recall that a square rational matrixH is positive real if ReH(s) is positive semi-

definite for all s ∈ C0 which are not poles of H. It is well known that if H is positive
real, then H is holomorphic in C0. Furthermore, H is said to be strictly positive real
(strongly positive real ) if there exists ε > 0 such that s �→ H(s − ε) is positive real
(H− ε I is positive real). IfH is strongly positive real and does not have any poles on
the imaginary axis, then H is strictly positive real.

The following characterization of positive-real properties in terms of norm condi-
tions will be used later on.

Lemma 2.2 Let H be a square rational matrix.
(1)H is positive real if, and only if,det(I+H(s)) �≡0 and ‖(I −H)(I+H)−1‖H∞ ≤1.
(2) H is strongly positive real and stable if, and only if, det(I +H(s)) �≡ 0 and the

strict inequality ‖(I − H)(I + H)−1‖H∞ < 1 holds.

Statements (1) and (2) of the above lemma are special cases of [9, Corollaries 3.6 and
4.3], respectively.

We say thatH ∈ RRH∞
p×m has the real supremum-value property if there exists s† ∈

C0 ∪ {∞} such that H(s†) ∈ R
p×m and ‖H(s†)‖ = ‖H‖H∞ . As the function s �→

‖H(s)‖ is subharmonic, the maximum principle for subharmonic functions implies
that ifH has the real supremum-value property, then,without loss of generality,wemay
assume that there exists ω† ∈ R ∪ {∞} such that H(iω†) ∈ R

p×m and ‖H(iω†)‖ =
‖H‖H∞ .
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Case 1 of the proof of Proposition 2.1 (see Appendix) shows that the following
lemma holds.

Lemma 2.3 If H ∈ RRH∞
p×m has the real supremum-value property, then rR(H) =

rC(H).

We describe a number of scenarios in which the real supremum-value property holds.

Example 2.4 (a)LetH be a stable real-rational transfer functionmatrix of format p×m,
and let (A, B, C, D) be a realization ofH, where A is Hurwitz. If the impulse response
of H is nonnegative, that is, CeAt B ∈ R

p×m
+ for all t ≥ 0 and D ∈ R

p×m
+ , then, by

[21, Proposition 3], ‖H‖H∞ = ‖H(0)‖, and thus, H has the real supremum-value
property.

(b) Let A ∈ R
n×n be Hurwitz, B ∈ R

n×m+ and C ∈ R
p×n
+ . Assume that A is a

Metzlermatrix (that is, all off-diagonal entries of A are nonnegative); that is, (A, B, C)

is a positive and stable continuous-time controlled and observed linear system. Then,
CeAt B ∈ R

p×m
+ for all t ≥ 0, and setting, H(s) := C(s I − A)−1B, it follows from

part (a) that ‖H‖H∞ = ‖H(0)‖, showing thatH has the real supremum-value property.
(c) Let A ∈ R

n×n be symmetric and Hurwitz, b ∈ R
n+ and consider the single-

input single-output symmetric system (A, b, bT ) with transfer function H given by
H(s) := bT (s I − A)−1b. It follows from the symmetry of A that eAt is symmetric
and positive definite for all t ∈ R, and so bT eAt b ≥ 0 for all t ∈ R. Consequently, by
part (a), ‖H‖H∞ = |H(0)|. In particular, H has the real supremum-value property.

(d) LetH be a proper real-rational matrix of formatm ×m such thatH has precisely
one pole inC0, namely a simple pole at 0, and the residue matrix H0 := lims→0 sH(s)
is symmetric and positive definite. DefiningL(s) := H(s)−s−1H0, it is clear thatL ∈
RRH∞

m×m , and so

κ := sup
{
k ≥ 0 : I + 2kL is positive real

}
> 0.

The positive realness of the function s �→ s−1H0 implies that I +2kH is also positive
real for all k ∈ (0, κ), and thus, it follows from [20, Lemma 3.10] that ‖H−k I ‖H∞ =
1/k for all k ∈ (0, κ). AsH−k I (0) = (1/k)I , we see thatH−k I has the real supremum-
value property for every k ∈ (0, κ).

(e) In the previous examples, the supremum is achieved at s = 0. But there are
many examples of transfer functions having the real supremum-value property for
which the supremum is achieved at s = iω0 for some ω0 ∈ (0,∞) and not at s = 0.
Here, we provide one such example. Let a, b > 0 and consider the strictly proper
stable rational function H given by

H(s) = s

(s + a)(s + b)
.

Routine calculations yield
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‖H‖H∞ = max
ω∈R |H(iω)| = H(±i

√
ab) = 1

a + b
and

|H(iω)| <
1

a + b
∀ω ∈ R\{±√

ab},

showing thatH has the real supremum-value property with the supremum achieved at
precisely two points in C0, namely ±i

√
ab. ♦

Nonlinear operators

For q ∈ [1,∞] and J ⊂ R an interval, let Lq(J ,Rn) denote the usual Lebesgue
space of functions defined on J with values in R

n . The local version of Lq(J ,Rn) is
denoted by Lq

loc(J ,Rn). For 0 < τ ≤ ∞ and t ∈ [0, τ ), let πt : Lq
loc([0, τ ),Rn) →

Lq(R+,Rn) be the truncation operator; that is, for w ∈ Lq
loc([0, τ ),Rn), πtw is

the function in Lq(R+,Rn) which is equal to w on [0, t] and equal to 0 on (t,∞).
We recall that an operator � defined on L2(R+,Rm) or L2

loc(R+,Rm) and mapping
into L2

loc(R+,Rp) is said to be causal if πt� = πt�πt for all t ≥ 0. If an operator �

defined on L2(R+,Rm) is causal, then it naturally extends to a causal operator on
L2
loc(R+,Rm) via

(�(w))(s) := (�(πtw))(s) for every w ∈ L2
loc(R+,Rm) and all (s, t)

such that 0 ≤ s ≤ t < ∞.

The causality of � guarantees that �(w) is a well-defined function in L p
loc(R+,Rp).

Furthermore, we note that a causal operator � : L2
loc(R+,Rm) → L2

loc(R+,Rp) can
be “localized” as follows: for every τ ∈ (0,∞) and every w ∈ L2

loc([0, τ ),Rm), we
define �(w) ∈ L2

loc([0, τ ),Rp) by setting

(�(w))(s) := (�(πtw))(s) for all (s, t) such that 0 ≤ s ≤ t < τ.

Again, this definition is meaningful by the causality of �.
For τ ≥ 0, the shift (or delay) operator Sτ : L2

loc(R+,Rm) → L2
loc(R+,Rm) is

defined by

(Sτw)(t) =
{
0, 0 ≤ t < τ

w(t − τ), t ≥ τ.
(2.2)

A linear operator H : L2(R+,Rm) → L2(R+,Rp) is shift-invariant if Sτ H = HSτ

for all τ ≥ 0.We recall that linear shift-invariant operators are causal. A bounded linear
shift-invariant operator H : L2(R+,Rm) → L2(R+,Rp) has a transfer functionH ∈
H∞

p×m in the sense that, for every w ∈ L2(R+,Rm), the Laplace transform of Hw is
given by Hw, where w denotes the Laplace transform of w. Conversely, every H ∈
H∞

p×m such that H(s) is real for all s ∈ (0,∞) is the transfer function of a bounded
linear shift-invariant operator H : L2(R+,Rm) → L2(R+,Rp).We recall that the L2-
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induced operator norm of a bounded linear shift-invariant operator equals the H∞-
norm of its transfer function.

We say that a causal operator � : L2
loc(R+,Rm) → L2

loc(R+,Rp) is weakly
Lipschitz if, for every t0 ≥ 0, z ∈ R

p andw ∈ L2([0, t0],Rm), there exist l ≥ 0, r > 0
and t1 > t0 such that, for all w1, w2 ∈ L2

loc(R+,Rp) satisfying w1 = w2 = w

on [0, t0] and ‖wi (t) − z‖ ≤ r for almost every t ∈ [t0, t1], we have

‖�(w1) − �(w2)‖L2(t0,t1) ≤ l‖w1 − w2‖L∞(t0,t1).

We set

‖�‖ := sup
w∈L2, w �=0

‖�(w)‖L2

‖w‖L2
≤ ∞

and say that � is linearly bounded if ‖�‖ < ∞. Furthermore, if � is causal, weakly
Lipschitz and ‖�‖ < ∞, then �(0) = 0.

The time-domain equivalent of RRH∞
p×m is denoted by FRL p×m ; that is, FRL p×m is

the space of all real shift-invariant linear operators with transfer function in RRH∞
p×m .

The operators in FRL p×m are precisely the input–output operators of asymptotically
stable finite-dimensional linear time-invariant real state-space systems with m inputs
and p outputs. Trivially, every operator in FRLm×p is causal and weakly Lipschitz.

In the following, let N (R+ × R
m,Rp) be the set of static nonlinearities ϕ ∈

C(R+ × R
m,Rp) which are uniformly linearly bounded, that is,

‖ϕ‖ := sup
t≥0, z �=0

‖ϕ(t, z)‖
‖z‖ < ∞.

The symbol ‖ϕ‖ should not be confused with the function (t, z) �→ ‖ϕ(t, z)‖.
We provide two classes of examples of operators which are causal and weakly

Lipschitz.

Example 2.5 (a) Nemytskii operators. For ϕ ∈ N (R+ × R
m,Rp), let Nϕ denote

the corresponding Nemytskii operator acting on L2
loc(R+,Rm) via (Nϕ(w))(t) =

ϕ(t, w(t)). It is routine to show that Nϕ(w) is measurable for measurable w, and

‖Nϕ‖ = sup
w∈L2, w �=0

‖Nϕ‖L2

‖w‖L2
≤ ‖ϕ‖ < ∞,

implying that Nϕ maps L2(R+,Rm) to L2(R+,Rp) and L2
loc(R+,Rm) to L2

loc(R+,

R
p). Furthermore, Nϕ is causal and weakly Lipschitz. It is not difficult to show

that ‖Nϕ‖ = ‖ϕ‖ if, for each z ∈ R
p, the function t �→ ‖ϕ(t, z)‖ is lower semi-

continuous. Simple examples show that, in the absence of this lower semi-continuity
condition, it is possible that ‖Nϕ‖ < ‖ϕ‖. Finally, it is well known that Nϕ is con-
tinuous as a map from L2(R+,Rm) to L2(R+,Rp), see, for example, [18, Theorem
2.14].

123



Mathematics of Control, Signals, and Systems (2022) 34:461–492 469

(b) For k : {(t, θ) : t ≥ θ ≥ 0} → R
p×p and k0 ∈ R

p×p consider the correspond-
ing integral operator

(Jk(w))(t) =
∫ t

0
k(t, θ)w(θ)dθ + k0w(t), ∀ t ≥ 0.

Assume that
∫ ∞
0

∫ t
0 ‖k(t, θ)‖2dθdt < ∞ or k(t, θ) = l(t − θ), where l ∈

L1(R+,Fp×p), in which case Jk is a causal bounded operator from L2(R+,Rp)

into itself. For ϕ ∈ N (R+ × R
m,Rp), the operator Jk ◦ Nϕ maps L2(R+,Rm)

to L2(R+,Rp). If k maps into R
m×m and k0 ∈ R

m×m , then the composition Nϕ ◦ Jk

is an operator which maps L2(R+,Rm) to L2(R+,Rp). Both of these operators
are causal, weakly Lipschitz and linearly bounded. Operators of the form K ◦ Nϕ

and Nϕ ◦ H, where K ∈ FRL p×p and H ∈ FRLm×m , are special instances of these
types of operators. ♦

Lur’e systems with nonlinear causal operators in the feedback loop

Throughout the paper, let (A, B, C) ∈ R
n×n ×R

n×m ×R
p×n and letG be the transfer

function of the linear system given by (A, B, C), that is, G(s) = C(s I − A)−1B
(a strictly proper real-rational matrix). Furthermore, let � : L2

loc(R+,Rp) →
L2
loc(R+,Rm) be causal and weakly Lipschitz, (t0, x0, v, u) ∈ R+ × R

n ×
L2([0, t0],Rp) × L2

loc([t0,∞),Rn) and consider the following initial-value problem

ẋ(t) = Ax(t) + B
(
�([Cx]v)

)
(t) + u(t), t ≥ t0, x(t0) = x0, (2.3)

where the function [Cx]v is defined as follows

[Cx]v(t) := v(t) for t ∈ [0, t0] and [Cx]v(t) := Cx(t) for t > t0.

Note that the differential equation in (2.3) is a forced Lur’e system given by the linear
system (A, B, C), the nonlinearity � and the forcing (or input) function u, see Fig. 1.
Considering (2.3) with� = Nϕ , where ϕ ∈ N (R+×R

p,Rm), we obtain the standard
ODE initial-value problem

ẋ(t) = Ax(t) + Bϕ(t, Cx(t)) + u(t), t ≥ t0, x(t0) = x0, (2.4)

as a special case of (2.3). Obviously, as ϕ is memoryless, specification of the initial
segment v is redundant.

An absolutely continuous function x : [t0, τ ) → R
n , where t0 < τ ≤ ∞, is said to

be a solution of (2.3) on [t0, τ ) if x(t0) = x0 and the differential equation in (2.3) is
satisfied for almost every t ∈ [t0, τ ).

By a suitable modification of the arguments used in [13] (where the uncontrolled
case u = 0 is treated), it can be shown that, for every (t0, x0, v, u) ∈ R+ × R

n ×
L2([0, t0],Rp) × L2

loc([t0,∞),Rn), there exists t0 < τ ≤ ∞ such that (2.3) has a
solution on [t0, τ ) and that, for given t0 < τ ≤ ∞, there exists at most one solution
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of (2.3) on the interval [t0, τ ). Furthermore, if ‖�‖ < ∞, then (2.3) has a unique
solution defined on [t0,∞).

Remark 2.6 The case wherein t0 = 0 has a special feature which we wish to highlight.
In this case, the initial segment v is simply a point in Rp. Assume that x is a solution
of (2.3) with t0 = 0 and let v̂ ∈ R

p, v̂ �= v. Then, the functions [Cx]v and [Cx]v̂
coincide on the open interval (0, τ ), and so, they are equal almost everywhere in [0, τ ).
Hence, �([Cx]v) and �([Cx]v̂) are also equal almost everywhere in [0, τ ) and x
solves (2.3) with v replaced by v̂. Consequently, if t0 = 0, then the initial segment v

is irrelevant and, without loss of generality, we may assume that v = Cx0, in which
case [Cx]v = Cx . ♦

We say that (2.3) is globally asymptotically L2-stable ( L2-GAS), if, for every (t0, x0,
v, u) ∈ R+ × R

n × L2([0, t0],Rp) × L2
loc([t0,∞),Rn), there exists a solution x =

x(· ; t0, x0, v, u) of (2.3) defined on [t0,∞) and the following two conditions are
satisfied:

(i) the origin is L2 -stable in the large; that is, there exists κ ≥ 0 such that, for
all (t0, x0, v, u) ∈ R+ × R

n × L2([0, t0],Rp) × L2([t0,∞),Rn),

‖x( · ; t0, x0, v, u)‖L2(t0,t) + ‖x(t; t0, x0, v, u)‖
≤ κ

(‖x0‖ + ‖v‖L2(0,t0) + ‖u‖L2(t0,t)

) ∀ t ≥ t0;

(ii) the origin is globally L2-attractive, that is, x(t; t0, x0, v, u) → 0 as t → ∞ for
all (t0, x0, v, u) ∈ R+ × R

n × L2([0, t0],Rp) × L2([t0,∞),Rn).
When the system (2.3) is considered without forcing (u = 0), then the origin is

said to be globally asymptotically stable (GAS) if there exists κ ≥ 0 such that, for
all (t0, x0, v) ∈ R+ × R

n × L2([0, t0],Rp),

‖x(t; t0, x0, v, 0)‖ ≤ κ
(‖x0‖ + ‖v‖L2(0,t0)

) ∀ t ≥ t0,

and (ii) holds with u = 0. If property (ii) is satisfied with u = 0 and for some
(fixed) t0 ≥ 0, then the origin is said to be globally attractive at time t0.

Not surprisingly, if, in (2.3), � ∈ FRLm×p, then the above stability and attractivity
concepts are closely related to well-known frequency-domain properties.

Lemma 2.7 LetF ∈ FRLm×p, with transfer function denoted byF, and consider (2.3)
with � = F .

(1) If the origin of (2.3) is globally attractive at time t0 for some t0 ≥ 0, then GF ∈
H∞

p×m.

(2) If (A, B, C) is stabilizable and detectable and GF ∈ H∞
p×m, then (2.3) is L2-

GAS.
(3) If (A, B, C) is stabilizable and detectable and the origin of (2.3) is globally

attractive at time t0 for some t0 ≥ 0, then (2.3) is L2-GAS.

We remark that if F is not stable, then statement (2) is in general not true.
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Proof of Lemma 2.7. Let (AF , BF , CF , DF ) be a minimal realization of F . We note
that AF is Hurwitz and

(Fw)(t) =
∫ t

0
CFeAF (t−θ) BFw(θ)dθ + DFw(t) ∀ t ≥ 0, ∀w ∈ L2

loc(R+,Rp).

For arbitrary t0 ≥ 0, v ∈ L2([0, t0],Rp), u ∈ L2([t0,∞),Rn) and x0 ∈ R
n , let x =

x( · ; t0, x0, v, u) be the solution of (2.3). Setting

z(t) :=
∫ t

0
eAF (t−θ) BF [Cx]v(θ)dθ ∀ t ≥ 0, (2.5)

we have that, on [t0,∞), the function F([Cx]v) can be written as

(F[Cx]v)(t) = CF z(t) + DFCx(t) ∀ t ≥ t0.

We also note that there exists c ≥ 0 (not depending on t0, x0, v or u) such that

‖z(t0)‖ ≤ c‖v‖L2(0,t0). (2.6)

Consequently, on [t0,∞),

ẋ = Ax + B(CF z + DFCx) + u and ż = AF z + BFCx .

Setting x∗(t) = x(t + t0), z∗(t) = z(t + t0) and u∗(t) = u(t + t0) for all t ≥ 0, we
have that on [0,∞),

ẋ∗ = Ax∗ + B(CF z∗ + DFCx∗) + u∗, x∗(0) = x0,

ż∗ = AF z∗ + BFCx∗, z∗(0) = z(t0).

Using Laplace transformation, a routine calculation shows that

Cx∗(s) = (I − G(s)F(s))−1[C(s I − A)−1(x0 + u∗(s)) + G(s)CF (s I − AF )−1z(t0)
]
,

(2.7)

where x∗ and u∗ denote the Laplace transforms of x∗ and u∗, respectively.
(1) Let v = 0 (and so, z(t0) = 0), u = 0 and let t0 ≥ 0 be fixed, but arbitrary.

By (2.7)

Cx∗(s) = (I − G(s)F(s))−1C(s I − A)−1x0. (2.8)

The components ofCx∗ are strictly proper rational functions, and so sinceCx∗(t) → 0
as t → ∞ (because, by hypothesis, x(t) → 0 as t → ∞), we conclude that Cx∗(t)
converges to 0 exponentially fast as t → ∞. This in turn implies via (2.8) that, for
every x0 ∈ R

n , the function (I − G(s)F(s))−1C(s I − A)−1x0 does not have any
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poles in C0. Therefore, GF = (I − GF)−1G does not have any poles in C0, showing
that GF ∈ H∞

p×m .

(2) Assume that (A, B, C) is stabilizable and detectable and GF ∈ H∞
p×m . Rear-

ranging (2.7) leads to

Cx∗(s) = GF(s)CF (s I − AF )−1z(t0) + (I − G(s)F(s))−1C(s I − A)−1(x0 + u∗(s)).

(2.9)

We proceed in two steps.
Step 1. Define a rational matrixH byH(s) := (I −G(s)F(s))−1C(s I − A)−1. We

claim that H ∈ H∞
p×n ∩ H2

p×n . To this end, set T(s) := A + BF(s)C and note that

H(s) = C(s I − A)−1(I − BF(s)C(s I − A)−1)−1

= C(s I − T(s))−1 and GF(s) = C(s I − T(s))−1B.

By stabilizability, there exists K ∈ R
m×n such that A+ BK is Hurwitz. Trivially, s I −

T(s) − B(K − F(s)C = s I − A − BK and so,

(s I − T(s))(s I − A − BK )−1 − B(K − F(s)C)(s I − A − BK )−1 ≡ I .

Multiplying from the left by C(s I − T(s))−1 gives

C(s I − A − BK )−1 − GF(s)(K − F(s)C)(s I − A − BK )−1 = C(s I − T(s)−1,

showing that C(s I −T(s))−1 = H(s) is stable, that is,H ∈ H∞
p×n . AsH(s) = O(1/s)

as |s| → ∞, it is clear that H is also in H2
p×n .

Step 2. Using that GF is stable, the Hurwitz property of AF and Step 1, it follows
from (2.6) and (2.9) that there exists a constant b ≥ 0 (not depending on t0, x0, v or u)
such that

‖Cx∗‖H2 ≤ b
(‖x0‖ + ‖v‖L2(0,t0) + ‖u∗‖H2

)
,

and thus

‖Cx‖L2(t0,∞) ≤ b
(‖x0‖ + ‖v‖L2(0,t0) + ‖u‖L2(t0,∞)

)
.

By detectability, there exists H ∈ R
n×p such that A + HC is Hurwitz. As x satisfies

ẋ(t) = (A + HC)x(t) + B(F[Cx]v)(t) − HCx(t) + u(t) ∀ t ≥ t0

and

‖BF[Cx]v − HCx + u‖L2(t0,∞) ≤ a
(‖x0‖ + ‖v‖L2(0,t0) + ‖u‖L2(t0,∞)

)
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for suitable a ≥ 0 (not depending t0, x0, v or u), we conclude that (2.3) with � = F
is L2-GAS.

(3) This is an immediate consequence of statements (1) and (2). ��

3 Small gain conditions for L2-GAS and ISS

The first result in this section is a small-gain theorem for L2-GAS.

Theorem 3.1 Consider (2.3) and assume that (A, B, C) is stabilizable and detectable.
Let � : L2

loc(R+,Rp) → L2
loc(R+,Rm) be causal and weakly Lipschitz, and let K ∈

FRLm×p have transfer function K. If GK ∈ H∞
p×m and

‖� − K‖ = sup
w∈L2, w �=0

‖�(w) − Kw‖L2

‖w‖L2
<

1

‖GK‖H∞
= rC(GK), (3.1)

then (2.3) is L2-GAS.

We note that (3.1) is equivalent to the small-gain condition ‖GK‖H∞‖� − K‖ < 1,
where we adopt the common engineering jargon wherein the norms of operators or
transfer functions are referred to as gains of the corresponding systems.

Proof of Theorem 3.1 Let � satisfy (3.1). We proceed in two steps.
Step 1. Assume that G ∈ H∞

p×m and K = 0. Note that, by stabilizability and
detectability, thematrix A is Hurwitz. Let (t0, x0, v, u) ∈ R+×R

n ×L2([0, t0],Rp)×
L2([t0,∞),Rn). As in [13, proof of Theorem 3.12], it can be shown that there exists
a constant c ≥ 0 (not depending on (t0, x0, v, u)) such that

‖Cx( · ; t0, x0, v, u)‖L2(t0,t) ≤ c
(‖x0‖ + ‖v‖L2(0,t0) + ‖u‖L2(t0,t)

) ∀ t ≥ t0,

and routine arguments using the variation-of-parameters formula, theHurwitz property
of A and the linear boundedness of � show that (2.3) is L2-GAS. We remark that [13,
Theorem 3.12] is about GAS in the uncontrolled case u = 0 and not about L2-GAS,
but an inspection of the proof shows that obvious modifications of the arguments in
[13] establishes L2-GAS.

Step 2. Let (AK, BK, CK, DK) be a minimal realization of K (with state dimen-
sion nK) and set

Â :=
(

A + B DKC BCK
BKC AK

)
.

Furthermore, define B̂ := col (B, 0) and Ĉ := (C, 0) and note that the trans-
fer function of ( Â, B̂, Ĉ) is GK. As GK and K are stable, it follows that (I −
KG)−1, K(I − GK)−1 and (I − GK)−1 are also stable. Combining this with the
stabilizability and detectability of (A, B, C) and (AK, BK, CK, DK) shows that Â is
Hurwitz [27, Lemma 17, Sect. 5.1]. Setting n̂ := n + nK and letting (t0, ζ 0, v̂, û) ∈
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R+ × R
n̂ × L2([0, t0],Rp) × L2

loc([t0,∞),Rn̂), it now follows from Step 1 that

ζ̇ (t) = Âζ(t) + B̂
(
(�([Ĉζ ]v̂))(t) − (K[Ĉζ ]v̂)(t)

) + û(t), t ≥ t0, ζ(t0) = ζ 0

(3.2)

is L2-GAS.
Let x be the solution of (2.3). Obviously,

ẋ(t) = Ax(t) + B(K[Cx]v)(t) + B
(
(�([Cx]v))(t)

−(K[Cx]v)(t)
) + u(t) ∀ t ≥ t0. (3.3)

Defining z as in (2.5) (with F replaced by K), we have that

ż(t) = AKz(t) + BKCx(t) ∀ t ≥ t0, (3.4)

and there exists c ≥ 0 (not depending on (t0, x0, v, u)) such that

‖z(t0)‖ ≤ c‖v‖L2(0,t0). (3.5)

Moreover,CKz(t)+DKCx(t) = (K[Cx]v)(t) for all t ≥ t0. Combining thiswith (3.3)
shows

ẋ(t) = (A + B DKC)x(t) + BCKz(t) + B
(
(�([Cx]v))(t)

−(K[Cx]v)(t)
) + u(t) ∀ t ≥ t0. (3.6)

With ζ := col(x, z), we have that [Ĉζ ]v = [Cx]v , and we conclude from (3.4)
and (3.6) that ζ satisfies (3.2) with ζ 0 = col(x0, z(t0)), v̂ = v and û = col (u, 0). The
claim now follows from (3.5) and the L2-GAS property of (3.2). ��

Corollary 3.2 Let K ∈ FRLm×p with transfer function K, let ρ > 0 and assume
that (A, B, C) is stabilizable and detectable. If GF ∈ H∞

p×m for all F ∈ RRH∞
m×p

such that ‖F − K‖H∞ ≤ ρ, then (2.3) is L2-GAS for all causal and weakly Lipschitz
nonlinearities � : L2

loc(R+,Rp) → L2
loc(R+,Rm) satisfying ‖� − K‖ ≤ ρ.

Proof ByProposition 2.1,ρ < rC(GK), and thus, the claim follows fromTheorem3.1.
��

Roughly speaking, the above corollary says that if we consider all real feedback
operators in the ball of radius ρ centred at K, then stability for all real linear com-
pensators implies stability for all real nonlinear operators. As such, the corollary is
reminiscent of the Aizerman conjecture.

The next result is a straightforward consequence of Proposition 2.1, Lemma 2.7
and Theorem 3.1.
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Corollary 3.3 Let K ∈ FRLm×p with transfer function K, let ρ > 0, and assume
that (A, B, C) is stabilizable and detectable. System (2.3) is L2-GAS for all causal
and weakly Lipschitz nonlinearities � : L2

loc(R+,Rp) → L2
loc(R+,Rm) satisfying

‖� − K‖ ≤ ρ if, and only if, ρ < rC(GK).

Let� : L2
loc(R+,Rp) → L2

loc(R+,Rm)be causal andweaklyLipschitz, and letν ≥ 0.
It is a routine exercise to show that the operator �ν : L2

loc(R+,Rp) → L2
loc(R+,Rm)

defined by �ν(w) := eν · �(e−ν · w) is also causal and weakly Lipschitz. The oper-
ator �ν is called the ν-exponential weighting of � and will play a key role in the
context of exponential input-to-state stability (ISS), a concept which we will now
define. We say that (2.3) is exponentially ISS if there exist positive constants � and γ

such that, for all (t0, x0, v, u) ∈ R+ × R
n × L2([0, t0],Rp) × L∞

loc([t0,∞),Rn), the
solution x = x( · ; t0, x0, v, u) of (2.3) satisfies

‖x(t)‖ ≤ �
[
e−γ (t−t0)

(‖x0‖ + ‖v‖L2(0,t0)
) + ‖u‖L∞(t0,t)

] ∀ t ≥ t0. (3.7)

A sufficient condition for exponential ISS of (2.3) is provided by the next result.

Corollary 3.4 Let � : L2
loc(R+,Rp) → L2

loc(R+,Rm) be causal and weakly Lips-
chitz and K ∈ FRLm×p with transfer function K. If (A, B, C) is stabilizable and
detectable, GK ∈ H∞

p×m and there exists μ > 0 such that

sup
0≤ν≤μ

‖�ν − K‖ <
1

‖GK‖H∞
= rC(GK), (3.8)

then (2.3) is exponentially ISS.

We identify a number of scenarios for which (3.8) is satisfied for sufficiently small
μ > 0.

Example 3.5 (a) Let ϕ ∈ N (R+ × R
p,Rm), K ∈ R

m×p and ν > 0. Define ϕν ∈
N (R+ × R

p,Rm) by ϕν(t, z) := eνtϕ(t, e−νt z) and note that N ν
ϕ = Nϕν . As

sup
t≥0, z �=0

‖ϕν(t, z) − K z‖
‖z‖ = sup

t≥0, z �=0

‖ϕ(t, z) − K z‖
‖z‖ ,

we conclude that if

sup
t≥0, z �=0

‖ϕ(t, z) − K z‖
‖z‖ < rC(GK ),

then

‖N ν
ϕ − NK ‖ = ‖Nϕν − NK ‖ ≤ sup

t≥0, z �=0

‖ϕν(t, z) − K z‖
‖z‖ < rC(GK ),

and so (3.8) is satisfied for � = Nϕ , K = NK and all μ > 0.
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Finally, we remark that whilst ‖N ν
ϕ (w) − Nϕ(w)‖ = ‖Nϕν (w) − Nϕ(w)‖ → 0

as ν → 0 for every w ∈ L2(R+,Rp), in general, ‖N ν
ϕ − Nϕ‖ does not converge to 0

as ν → 0. In fact convergence in this sense is very rare: for time-independent ϕ, it can
be shown that ‖N ν

ϕ − Nϕ‖ → 0 as ν → 0 if, and only if, ϕ is positively homogeneous
of degree 1.

(b) Let L be a shift-invariant bounded linear operator from L2(R+,Rp) into
itself such that the transfer function L of L is bounded and holomorphic on C−ε

for some ε > 0. Then, for every ν ∈ (0, ε), Lν is a shift-invariant bounded linear
operator from L2(R+,Rp) into itself with transfer function Lν(s) = L(s − ν) and
thus ‖Lν‖ = supRe s>−ν ‖L(s)‖. It follows from [3, Theorem3.7] that ‖Lν−L‖H∞ →
0 as ν → 0, and so, ‖Lν −L‖ → 0 as ν → 0. Let ϕ ∈ N (R+ ×R

p,Rm) and consider
the operator � := Nϕ ◦ L. It is clear that �ν = Nϕν ◦ Lν and thus

‖�ν‖ = ‖(Nϕ ◦ L)ν‖ ≤ ‖ϕ‖‖Lν‖. (3.9)

Consequently, assuming thatG ∈ H∞
p×m , the condition ‖ϕ‖‖L‖ < rC(G) is sufficient

for (3.8) to hold with K = 0 and for sufficiently small μ > 0.
(c) In most instances, the inequality in (3.9) will of course be strict. Here, we

consider a special case of part (b) for which equality holds. Let ϕ be time-independent
and L = Sτ , where τ > 0 and Sτ is the delay (or shift) operator defined in (2.2). It is
clear that ‖Sν

τ ‖ = eτν for all ν ≥ 0, and it can be proved that

‖(Nϕ ◦ Sτ )
ν‖ = ‖ϕ‖‖Sν

τ ‖ = eτν‖ϕ‖.

Hence, assuming that G ∈ H∞
p×m , the condition ‖ϕ‖ < rC(G) is necessary and

sufficient for (3.8) to hold with�= Nϕ ◦Sτ andK=0 and for sufficiently smallμ>0.
♦

Proof of Corollary 3.4. Let ν > 0 and, for (t0, ζ 0, v̂, û) ∈ R+ ×R
n × L2([0, t0],Rp)×

L2
loc(R+,Rn), consider the initial-value problem

ζ̇ (t) = (A + ν I )ζ(t) + B(�ν([Cζ ]v̂))(t) + û(t), t ≥ t0, ζ(t0) = ζ 0. (3.10)

The transfer function Gν of the linear system (A + ν I , B, C) is given by Gν(s) =
G(s − ν). For sufficiently small ν > 0, the linear system (A + ν I , B, C) is
stabilizable and detectable, Gν(I − KGν)−1 is stable, and as ν → 0, we have
that ‖Gν(I − KGν)−1‖H∞ → ‖GK‖H∞ . It follows from (3.8) and Theorem 3.1 that
system (3.10) is L2-GAS for all sufficiently small ν > 0. Let x = x(· ; t0, x0, v, u)

be the solution of (2.3) and note that ζ given by ζ(t) := eνt x(t) satisfies (3.10)
with ζ 0 = eνt0x0, v̂(t) = eνtv(t) and û(t) = eνt u(t). Consequently, choos-
ing ν > 0 sufficiently small, there exists κ > 0 such that, for all (t0, x0, v, u) ∈
R+ × R

n × L2([0, t0],Rp) × L∞
loc(R+,Rn),

‖eνt x(t)‖ ≤ κ
(‖eνt0x0‖ + ‖eν ·v‖L2(0,t0) + ‖eν ·u‖L2(t0,t)

) ∀ t ≥ t0.
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Now, ‖eν ·v‖L2(0,t0) ≤ eνt0‖v‖L2(0,t0) and

‖eν ·u‖L2(t0,t) ≤ eνt

√
2ν

‖u‖L∞(t0,t) ∀ t ≥ t0,

and thus

‖x(t)‖ ≤ κ
[
e−ν(t−t0)

(‖x0‖ + ‖v‖L2(0,t0)
) + (2ν)−1/2‖u‖L∞(t0,t)

] ∀ t ≥ t0.

Hence, (3.7) holds with � = κ max(1, (2ν)−1/2) and γ = ν, showing that (2.3) is
exponentially ISS. ��

The following result is an immediate consequence of Corollary 3.4 and part (a) of
Example 3.5.

Corollary 3.6 Let ϕ ∈ C(R+ × R
p,Rm) and K ∈ R

m×p. If (A, B, C) is stabilizable
and detectable, GK ∈ H∞

p×m and

sup
t≥0, z �=0

‖ϕ(t, z) − K z‖
‖z‖ <

1

‖GK ‖H∞
= rC(GK ),

then (2.4) is exponentially ISS; that is, there exist positive constants � and γ such that,
for all (t0, x0, u) ∈ R+ × R

n × L∞
loc([t0,∞),Rn), the solution x = x( · ; t0, x0, u)

of (2.4) satisfies

‖x(t)‖ ≤ �
(
e−γ (t−t0)‖x0‖ + ‖u‖L∞(t0,t)

) ∀ t ≥ t0.

4 The circle criterion

In this section, we formulate a number of circle criteria for Lur’e systems of the form
(2.3), including an ISS version. The textbook form of the circle criterion is contained
in our considerations as a special case.

Throughout, let K1,K2 ∈ FRLm×p be given and let � : L2
loc(R+,Rp) →

L2
loc(R+,Rm) be causal and weakly Lipschitz. If

〈πt (�(w) − K1w),�(w) − K2w〉L2 ≤ 0 ∀w ∈ L2(R+,Rp) ∀ t ≥ 0, (4.1)

then � is said to satisfy a sector condition (determined by the sector dataK1 andK2).
Similarly, we say that � satisfies a strict sector condition if

sup
w∈L2, πt w �=0, t≥0

〈πt (�(w) − K1w),�(w) − K2w〉L2

‖πtw‖2
L2

< 0. (4.2)

The next lemma relates the above sector conditions to L2 norm conditions and facili-
tates the proofs of the main results of this section
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Lemma 4.1 Let K1,K2 ∈ FRLm×p and set

L := 1

2
(K2 − K1) and M := 1

2
(K1 + K2). (4.3)

(1) Assume that kerL = {0}. The operator � satisfies (4.1) if, and only if,

sup
w∈L2, w �=0

‖�(w) − Mw‖L2

‖Lw‖L2
≤ 1.

In particular, if (4.1) holds, then � is linearly bounded.
(2) Assume that kerL = {0}. If

sup
w∈L2, πt w �=0, t≥0

〈πt (�(w) − K1w),�(w) − K2w〉L2

‖πtw‖2
L2

≤ −ε (4.4)

for some ε > 0, then

sup
w∈L2, w �=0

‖�(w) − Mw‖L2

‖Lw‖L2
≤ 1 − ε

‖L‖2 . (4.5)

(3) Assume that c := inf‖w‖L2=1
‖Lw‖L2 > 0. If

sup
w∈L2, w �=0

‖�(w) − Mw‖L2

‖Lw‖L2
≤ θ (4.6)

for some θ ∈ (0, 1), then

sup
w∈L2, w �=0

〈�(w) − K1w,�(w) − K2w〉L2

‖w‖2
L2

≤ −c2(1 − θ). (4.7)

Proof Noting that K1 = M − L and K2 = M + L, a straightforward calculation
shows that

〈�(w) − K1w,�(w) − K2w〉L2(0,t)

= ‖�(w) − Mw‖2L2(0,t) − ‖Lw‖2L2(0,t) ∀w ∈ L2(R+,Rp), ∀ t ≥ 0.

(4.8)

Statement (1) is an immediate consequence of this identity. Furthermore, if (4.1) holds,
then ‖�(w)‖L2 ≤ (‖M‖ + ‖L‖)‖w‖L2 for all w ∈ L2(R+,Rp).

To prove statement (2), assume that (4.4) is satisfied. It then follows from (4.8) that

‖�(w) − Mw‖2L2 − ‖Lw‖2L2 ≤ −ε‖w‖2L2 ∀w ∈ L2(R+,Rp),
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implying that

‖�(w) − Mw‖2
L2

‖Lw‖2
L2

≤ 1 − ε

‖L‖2 ∀w ∈ L2(R+,Rp), w �= 0,

establishing (4.5).
We proceed to prove statement (3). Assuming that (4.6) is satisfied, (4.8) yields

〈(�(w) − K1w),�(w) − K2w〉L2

‖w‖2
L2

≤ −(1 − θ)
‖Lw‖2

L2

‖w‖2
L2

≤ −c2(1 − θ) ∀w ∈ L2(R+,Rp), w �= 0,

showing that (4.7) holds. ��
It is convenient to define the following sets of sector-bounded operators:

S[K1,K2] := set of all causal weakly Lipschitz operators L2
loc(R+,Rp) →

L2
loc(R+,Rm) satisfying the sector condition (4.1),

S(K1,K2) := set of all causal weakly Lipschitz operators L2
loc(R+,Rp) →

L2
loc(R+,Rm) satisfying the strict sector condition (4.2).

Obviously, S(K1,K2) ⊂ S[K1,K2].
The following corollary is a straightforward consequence of Lemma 4.1.

Corollary 4.2 The following statements hold.
(1) If ker(K2 − K1) = {0}, then � ∈ S[K1,K2] if, and only if, �(L2(R+,Rp)) ⊂

L2(R+,Rm) and 〈�(w) − K1w,�(w) − K2w〉L2 ≤ 0 for all w ∈ L2(R+,Rp).
(2) If inf‖w‖L2=1 ‖(K2 − K1)w‖L2 > 0, then � ∈ S(K1,K2) if, and only

if, �(L2(R+,Rp)) ⊂ L2(R+,Rm) and

sup
w∈L2, w �=0

〈�(w) − K1w,�(w) − K2w〉L2

‖w‖2
L2

< 0.

Let ϕ ∈ C(R+ × R
p,Rm) and K1, K2 ∈ R

m×p and note that

• if

〈ϕ(t, z) − K1z, ϕ(t, z) − K2z〉 ≤ 0 ∀ t ≥ 0, ∀ z ∈ R
p, (4.9)

then Nϕ ∈ S[NK1 , NK2 ];
• if ϕ satisfies

sup
t≥0, z �=0

〈ϕ(t, z) − K1z, ϕ(t, z) − K2z〉
‖z‖2 < 0, (4.10)

then Nϕ ∈ S(NK1 , NK2).
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Throughout the rest of the section, let K1 and K2 be the transfer functions of the
operators K1 ∈ FRLm×p and K2 ∈ FRLm×p, respectively.

To formulate themain result of this section, we introduce the following assumption.

(A) There exists an operator K# ∈ FRL p×m such that K#(K2 −K1) = I and ‖(K2 −
K1)K#‖ ≤ 1.

Assumption (A) is equivalent to the existence of a rational matrixK# ∈ RRH∞
p×m such

thatK#(K2−K1) = I and ‖(K2−K1)K#‖H∞ ≤ 1. If assumption (A) holds, then, for
all y ∈ im (K2−K1), we have that (K2−K1)K# y = y, showing that‖(K2−K1)K#‖ =
1, and consequently, ‖(K2 − K1)K#‖H∞ = 1.

Below we describe some situations in which assumption (A) is satisfied.

Example 4.3 (a) Assume that the sector data K1 and K2 are static, that is, K1 =
NK1 and K2 = NK2 for some K1, K2 ∈ R

m×p. If ker(K2 − K1) = {0}, then,
setting K := K2 − K1, the matrix K T K is invertible and K # := (K T K )−1K T is
a left-inverse of K . Moreover, K K # is the orthogonal projection onto im K along
ker K # = ker K T = (im K )⊥, and thus, ‖K K #‖ = 1. It follows that assumption (A)
holds for NK1 and NK2 , provided that ker(K2 − K1) = {0}.

(b) Assume that m = p. Invertibility of K2 − K1 in RRH∞
m×m is equivalent to

inf
s∈C0

| det(K2(s) − K1(s))| > 0. (4.11)

Consequently, assumption (A) is satisfied if, and only if, (4.11) holds. In other words,
assumption (A) is equivalent to det(K2 − K1) being a unit in the ring RRH∞.

(c) Assume that there exist K1, K2 ∈ R
m×p and K ∈ FRL p×p such that K1 =

NK1 ◦ K and K2 = NK2 ◦ K. Assumption (A) holds if ker(K2 − K1) = {0}
and infs∈C0 | detK(s)| > 0, where K is the transfer function of K.

(d)Assume that there exist K ∈ R
m×p andL1,L2 ∈ FRL p×p such thatK1 = NK ◦

L1 andK2 = NK ◦L2. Assumption (A) holds if ker K = {0} and infs∈C0 | det(L2(s)−
L1(s))| > 0, where L1 and L2 are the transfer functions of L1 and L2, respectively. ♦
We are now in the position to state and prove the following circle criterion for Lur’e
systems of the form (2.3).

Theorem 4.4 (Circle criterion: L2- GAS version) Assume that (A, B, C) is sta-
bilizable and detectable and that assumption (A) holds. The following statements
hold.

(1) If (I − K1G)(I − K2G)−1 is positive real, then (2.3) is L2-GAS for all � ∈
S(K1,K2).

(2) If (I − K1G)(I − K2G)−1 is strictly positive real, then (2.3) is L2-GAS for
all � ∈ S[K1,K2].
Proof Let L and M be as in (4.3). By assumption (A), the operator L# := 2K# ∈
FRL p×m is a left-inverse ofL and such that ‖LL#‖ ≤ 1. SettingH := (I −K1G)(I −
K2G)−1, then by positive realness of H, the rational matrix H + I is invertible (see
statement (1) of Lemma 2.2), and a routine calculation shows that

(H − I )(H + I )−1 = LG(I − MG)−1 = LGM, (4.12)

where L and M are the transfer functions of L and M, respectively.
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(1) Let � ∈ S(K1,K2). An application of statement (2) of Lemma 4.1 shows that
there exists θ ∈ (0, 1) such that

‖�(y) − My‖L2 ≤ θ‖Ly‖L2 ∀ y ∈ L2(R+,Rp).

Defining a causal weakly Lipschitz operator � : L2(R+,Rm) → L2(R+,Rm) by

�(w) := �(L#w) − ML#w ∀w ∈ L2(R+,Rm), (4.13)

we obtain that

‖�(w)‖L2 ≤ θ‖LL#w‖L2 ≤ θ‖w‖L2 ∀w ∈ L2(R+,Rm),

where we have used that ‖LL#‖ ≤ 1. By hypothesis, H is positive real and thus it
follows from (4.12) that ‖LGM‖H∞ ≤ 1 (see statement (1) of Lemma 2.2). We may
now conclude that

‖�‖ ≤ θ

‖LGM‖H∞
<

1

‖LGM‖H∞
= rC(LGM). (4.14)

Let (AL, BL, CL, DL) and (AM, BM, CM, DM) be minimal realizations of L
and M, respectively, with state dimensions denoted by nL and nM. Set ñ :=
n + nL + nM and define Ã ∈ R

ñ×ñ , B̃ ∈ R
ñ×m and C̃ ∈ R

p×ñ by

Ã :=
⎛
⎝A + B DMC BCM 0

BMC AM 0
BLC 0 AL

⎞
⎠ , B̃ :=

⎛
⎝B
0
0

⎞
⎠ , C̃ := (DLC, 0, CL).

(4.15)

For (t0, ζ 0, ṽ, ũ) ∈ R+ ×R
ñ × L2([0, t0],Rp)× L2([t0,∞),Rñ), consider the initial-

value problem

ζ̇ (t) = Ãζ(t) + B̃(�([C̃]ṽ))(t) + ũ(t), t ≥ t0, ζ(t0) = ζ 0. (4.16)

We now proceed in two steps.
Step 1: (4.16) is L2-GAS. As LGM is the transfer function of ( Ã, B̃, C̃), it follows

from (4.14) and Theorem 3.1 that (4.16) is L2-GAS (where the roles of G and K
in Theorem 3.1 are played by LGM and 0, respectively), provided that ( Ã, B̃, C̃) is
stabilizable and detectable. We will show that Ã is Hurwitz, which trivially implies
stabilizability and detectability of ( Ã, B̃, C̃). To this end, define

Â :=
(

A + B DMC BCM
BMC AM

)
, B̂ :=

(
B
0

)
, Ĉ := (C, 0)

123



482 Mathematics of Control, Signals, and Systems (2022) 34:461–492

and note thatGM is the transfer function of ( Â, B̂, Ĉ). Now,LGM is stable and soGM

is stable because the transfer function ofL# is a stable left-inverse ofL. It now follows
as in Step 2 of the proof of Theorem 3.1 that Â is Hurwitz which in turn implies that Ã
is also Hurwitz.

Step 2: (2.3) is L2-GAS. For (x0, v, u) ∈ R
n × L2([0, t0],Rp)× L2

loc([t0,∞),Rn),
let x = x( · ; x0, v, u) be the solution of (2.3). Defining

zM(t) :=
∫ t

0
eAM(t−θ) BM[Cx]v(θ)dθ and

zL(t) :=
∫ t

0
eAL(t−θ) BL[Cx]v(θ)dθ; ∀ t ≥ 0,

we have that

żM(t) = AMzM(t) + BMCx(t) and żL(t) = ALzL(t) + BLCx(t); ∀ t ≥ t0.

(4.17)

Setting ζ := col(x, zM, zL), we conclude that

(M[Cx]v)(t) = CMzM(t) + DMCx(t), (L[Cx]v)(t)
= CLzL(t) + DLCx(t) = C̃ζ(t); ∀ t ≥ t0. (4.18)

Furthermore, there exists c ≥ 0 (not depending on (t0, x0, v, u)) such that

‖zM(t0)‖ + ‖zL(t0)‖ ≤ c‖v‖L2(0,t0). (4.19)

It follows from (4.18) that [C̃ζ ]Lv = L[Cx]v . Consequently,

�([C̃ζ ]Lv) = �(L#[C̃ζ ]Lv) − ML#[C̃ζ ]Lv = �([Cx]v) − M[Cx]v,

implying that

(�([C̃ζ ]Lv))(t) = (�([Cx]v))(t) − CMzM(t) − DMCx(t), ∀ t ≥ t0.

Therefore, on [t0,∞),

ẋ = Ax + B�[Cx]v + u = Ax + B DMCx + BCMzM + B�[C̃ζ ]Lv + u,

and combining thiswith (4.17) shows that ζ satisfies (4.16)with ζ 0 = col (x0, zM(t0),
zL(t0)), ṽ = Lv and ũ = col (u, 0, 0). Using (4.19) and the fact that (4.16) is L2-GAS
shows that (2.3) is L2-GAS.

(2) Set

K := 2L = K2 − K1, (4.20)
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denote the transfer function of K by K and, for ρ ≥ 0, define

Hρ := (I − (K1 − ρK)G)(I − (K2 + ρK)G)−1.

The idea is to prove that, for sufficiently small ρ > 0, the conditions of statement
(1) hold with K1 and K2 replaced by K1 − ρK and K2 + ρK, respectively. A routine
calculation shows that

(Hρ − I )(Hρ + I )−1=(K2 − K1 + 2ρK)G(2I − (K1+K2)G)−1=(1 + 2ρ)LGM.

By hypothesis, H0 = H is strictly positive real and hence does not have any poles
inC0. AsH0(∞) = I ,H0 is also holomorphic at∞ and we conclude thatH0 is stable.
It follows from [9, Corollary 4.5] that H0 is strongly positive real, and an application
of statement (2) of Lemma 2.2 shows that

‖(H0 − I )(H0 + I )−1‖H∞ = ‖LGM‖H∞ < 1.

Consequently,

‖(Hρ − I )(Hρ + I )−1‖H∞ ≤ 1 ∀ ρ ∈ [0, ρ∗], where ρ∗ := 1

2

(‖LGM‖−1
H∞ − 1

)
,

and thus, Hρ is positive real for every ρ ∈ [0, ρ∗] by statement (1) of Lemma 2.2.
Furthermore, a straightforward calculation shows that, for arbitrary ρ ≥ 0 and for

all w ∈ L2(R+,Rp),

〈�(w) − (K1 − ρK)w,�(w) − (K2 + ρK)w〉L2

= 〈�(w) − K1w,�(w) − K2w〉L2 − ρ(1 + ρ)‖Kw‖2L2 .

By assumption (A), there exists c > 0 such that ‖Kw‖L2 ≥ c‖w‖L2 for all w ∈
L2(R+,Rp), and thus,

〈�(w) − (K1 − ρK)w,�(w) − (K2 + ρK)w〉L2 ≤ −c2ρ(1 + ρ)‖w‖2L2

∀w ∈ L2(R+,Rp),

showing that� ∈ S(K1−ρK,K2+ρK) for every ρ > 0. An application of statement
(1) (with K1 and K2 replaced by K1 − ρK and K2 + ρK , respectively, 0 < ρ ≤ ρ∗)
shows that (2.3) is L2-GAS. ��

Let Se[K1,K2] be the subset of all operators � in S[K1,K2] for which there
exists μ = μ(�) > 0 such that �ν ∈ S[K1,K2] for all ν ∈ [0, μ]. Fur-
thermore, Se(K1,K2) is the set of all operators � ∈ S(K1,K2) for which there
exists μ = μ(�) > 0 such that �ν ∈ S(K1,K2) for all ν ∈ [0, μ] and

sup
w∈L2, w �=0, ν∈[0,μ]

〈�ν(w) − K1w,�ν(w) − K2w〉L2

‖w‖2
L2

< 0.
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We now turn our attention to exponential ISS. Recall that (2.3) is said to be expo-
nentially ISS if there exist positive constants � and γ such that (3.7) holds for
all (t0, x0, v, u) ∈ R+ × R

n × L2([0, t0],Rp) × L∞
loc([t0,∞),Rn).

Corollary 4.5 (Circle criterion: ISS version) Assume that (A, B, C) is stabiliz-
able and detectable and that assumption (A) holds. The following statements hold.

(1) If (I − K1G)(I − K2G)−1 is positive real, then (2.3) is exponentially ISS for
all � ∈ Se(K1,K2).

(2) If (I − K1G)(I − K2G)−1 is strictly positive real, then (2.3) is exponentially
ISS for all � ∈ Se[K1,K2].
Proof (1) Let � ∈ Se(K1,K2). Then, there exist μ > 0 and ε > 0 such that �ν ∈
S(K1,K2) for all ν ∈ [0, μ] and

sup
w∈L2, w �=0, ν∈[0,μ]

〈�ν(w) − K1w,�ν(w) − K2w〉L2

‖w‖2
L2

≤ −ε.

Defining L and M as in (4.3), an application of statement (2) of Lemma 4.1 shows
that there exists θ ∈ (0, 1) such that

‖�ν(y) − My‖L2 ≤ θ‖Ly‖L2 ∀ y ∈ L2(R+,Rp), ∀ ν ∈ [0, μ].

By assumption (A), there exists L# ∈ FRL p×m such that L#L = I and ‖LL#‖ ≤ 1.
Defining � as in (4.13), it is clear that �ν(w) = �ν((L#)νw) − Mν(L#)νw for
all w ∈ L2(R+,Rm) and ν ∈ [0, μ], and, furthermore,

‖�ν(w)‖ ≤ θ‖L(L#)νw‖ + ‖Mν − M‖‖(L#)ν‖‖w‖
∀w ∈ L2(R+,Rm), ∀ ν ∈ [0, μ].

Since θ ∈ (0, 1), ‖LL#‖ ≤ 1 and ‖Mν − M‖ + ‖(L#)ν − L#‖ → 0 as ν → 0, we
conclude that there exist ν† ∈ (0, μ] and θ† ∈ (θ, 1) such that

‖�ν(w)‖ ≤ θ†‖w‖ ∀w ∈ L2(R+,Rm), ∀ ν ∈ [0, ν†].

As in the proof of statement (1) of Theorem4.4,we have that ‖LGM‖H∞ ≤ 1 (whereL
and M are the transfer functions of L and M, respectively) and thus

sup
0≤ν≤ν†

‖�ν‖ ≤ θ†

‖LGM‖H∞
<

1

‖LGM‖H∞
= rC(LGM).

An application of Corollary 3.4 to the system (4.16) (where the roles of �, G and K
in Corollary 3.4 are played by �, LGM and 0, respectively) yields that (4.16) is
exponentially ISS. The exponential ISS property of (2.3) follows in the same way
as L2-GAS of (2.3) was derived in the proof of statement (1) of Theorem 4.4.

(2) Defining K as in (4.20), denoting the transfer function ofK byK and using the
arguments from the proof of statement (2) of Theorem 4.4, it can be shown that, for
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sufficiently small ρ > 0, the rational matrix (I − (K1 −ρK)G)(I − (K2 +ρK)G)−1

is positive real and � ∈ Se(K1 − ρK,K2 + ρK). It now follows from statement (1)
that (2.3) is exponentially ISS. ��

We note that if ϕ ∈ C(R+ × R
p,Rm) and ν ≥ 0, then ϕν defined by ϕν(t, z) :=

eνtϕ(t, e−νt z) is in C(R+ ×R
p,Rm). If ϕ satisfies (4.9), then, trivially, for all ν ≥ 0,

〈ϕν(t, z) − K1z, ϕν(t, z) − K2z〉 ≤ 0 ∀ t ≥ 0, ∀ z ∈ R
p.

Similarly, if (4.10) holds, then, for all ν ≥ 0,

sup
t≥0, z �=0

〈ϕν(t, z) − K1z, ϕν(t, z) − K2z〉
‖z‖2

= sup
t≥0, z �=0

〈ϕ(t, z) − K1z, ϕ(t, z) − K2z〉
‖z‖2 < 0.

As N ν
ϕ = Nϕν , it follows that Nϕ ∈ Se[NK1 , NK2 ] or Nϕ ∈ Se(NK1 , NK2), wheneverϕ

satisfies (4.9) or (4.10), respectively. Combining this with Corollary 4.5 leads to the
following result.

Corollary 4.6 (Circle criterion: ISS version for static nonlinearities)
Let K1, K2 ∈ R

m×p. Assume that (A, B, C) is stabilizable and detectable and
that ker(K2 − K1) = {0}. The following statements hold.

(1) If (I − K1G)(I − K2G)−1 is positive real, then (2.4) is exponentially ISS for
every ϕ ∈ C(R+ × R

p,Rm) satisfying (4.10).
(2) If (I − K1G)(I − K2G)−1 is strictly positive real, then (2.4) is exponentially

ISS for every ϕ ∈ C(R+ × R
p,Rm) satisfying (4.9).

The textbook version of the circle criterion given in [2, 11, 17, 28] is essentially
statement (2) of Corollary 4.6 in the absence of forcing (u = 0); that is, the stability
conclusion in the textbook version is global exponential stability for the unforced
version of (2.4). The proofs in [2, 11, 17, 28] are based on the positive-real lemma and
Lyapunov theory, whilst Corollaries 4.5 and 4.6 have been derived by a small-gain
argument.

If, in statement (1), the sector condition (4.10) is replaced by the weaker sector
condition

sup
t≥0

〈ϕ(t, z) − K1z, ϕ(t, z) − K2z〉 ≤ −α(‖z‖)‖z‖ ∀ z ∈ R
p, (4.21)

where α : R+ → R+ is an arbitrary K∞ function (that is, α is continuous, strictly
increasing and surjective), then, in general, system (2.4) is not exponentially ISS,
but it is still ISS in the usual sense (see, for example, [4, 25, 26]) for all ϕ satisfy-
ing (4.21) [22, Corollary 3.10]. Furthermore, if in statement (1) of Corollary 4.5 the
sector condition (4.10) is further weakened to

sup
t≥0

〈ϕ(t, z) − K1z, ϕ(t, z) − K2z〉 < 0 ∀ z ∈ R
p, z �= 0, (4.22)
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then it can be shown (by using Lyapunov methods) that (2.4) with u = 0 is GAS for
all ϕ satisfying (4.22) [23, Corollary 11]. (We remark that [23] considers discrete-time
systems, but it is easy to see that the results carry over to the continuous-time case.)

5 Necessity of the circle criterion

Here, we will investigate scenarios in which the (strict) positive realness of (I −
K1G)(I − K2G)−1 is necessary for absolute stability. In particular, we will show
that the positive real conditions in Theorem 4.4 are necessary for absolute stability
with respect to all real nonlinear causal operators satisfying the relevant L2-sector
condition. Throughout this section, let K1,K2 ∈ FRLm×p and let K1 and K2 denote
the transfer functions of K1 and K2, respectively

Proposition 5.1 Let (A, B, C) be stabilizable and detectable.
(1) Assume that inf‖w‖L2=1 ‖(K2 −K1)w‖L2 > 0. If the origin of (2.3) is globally

attractive at time 0 for all � ∈ FRLm×p ∩ S(K1,K2), then (I −K1G)(I −K2G)−1

is positive real.
(2) Assume that ker(K2 −K1) = {0}. If the origin of (2.3) is globally attractive at

time 0 for all � ∈ FRLm×p ∩ S[K1,K2], then (I −K1G)(I −K2G)−1 is strictly and
strongly positive real.

Proof Define the linear operators L and M as in (4.3) with corresponding minimal
state-space realizations (AL, BL, CL, DL) and (AM, BM, CM, DM) and transfer
functions L andM, respectively. Let Ã, B̃ and C̃ be defined as in (4.15) and consider
the initial-value problem

ζ̇ = Ãζ(t) + B̃(�(C̃ζ ))(t), t ≥ 0, ζ(0) = ζ 0 (5.1)

with � ∈ FRLm×m . Denoting the transfer function of ( Ã, B̃, C̃) by G̃, we have
that G̃ = LGM. Setting H := (I − K1G)(I − K2G)−1, (4.12) shows that (H −
I )(H + I )−1 = LGM = G̃. Define � ∈ FRLm×p by �(w) := �(Lw) + Mw.

Let ζ be the solution of (5.1). Partitioning ζ = col (x, zM, zL) and ζ 0 =
col (x0, z0M, z0L), we have
C̃ζ = CLzL + DLCx = LCx + yL, where yL(t) := CLeALt z0L ∀ t ≥ 0,

CMzM + DMCx = MCx + yM, where yM(t) := CMeAMt z0M ∀ t ≥ 0,

and thus,

ẋ = Ax + B
(
�(L(Cx) + yL) + M(Cx) + yM

)
= Ax + B

(
�(Cx) + �(yL) + yM

)
.

Setting f := B(�(yL) + yM), we arrive at

ẋ(t) = Ax(t) + B(�(Cx))(t) + f (t), t ≥ 0, x(0) = x0, (5.2)

which is (2.3) with t0 = 0 and u = f ∈ L2(R+,Rn).
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(1) Assume that ‖�‖ < 1. Then,

sup
w∈L2, w �=0

‖�(w) − Mw‖L2

‖Lw‖L2
< 1,

and statement (3) of Lemma 4.1 yields that � ∈ S(K1,K2), whence � ∈ FRLm×p ∩
S(K1,K2). By hypothesis, the origin of (2.3) is globally attractive at time 0, and
hence, (2.3) is also L2-GAS by Lemma 2.7. Since x satisfies (5.2), we conclude
that x(t) → 0 as t → ∞, which in turn implies that ζ(t) → 0 as t → ∞. This shows
that the origin of (5.1) is globally attractive at time 0 for every � ∈ FRLm×m such
that ‖�‖ < 1, and so, in particular, Ã is Hurwitz and G̃ ∈ H∞

m×m . An application of
statement (1) of Lemma 2.7 to (5.1) shows that G̃F ∈ H∞

m×m for all F ∈ RRH∞
m×m

with ‖F‖H∞ < 1. Appealing to Proposition 2.1, we arrive at 1 ≤ rC(G̃) = 1/‖G̃‖H∞ .
Therefore, ‖(H − I )(H + I )−1‖H∞ = ‖G̃‖H∞ ≤ 1 which in conjunction with
statement (1) of Lemma 2.2 establishes that H is positive real.

(2) Assume that ‖�‖ ≤ 1. Proceeding as in the proof of statement (1), with
statement (3) of Lemma 4.1 replaced by statement (1) of Lemma 4.1, shows that
G̃F ∈ H∞

m×m for all F ∈ RRH∞
m×m with ‖F‖H∞ ≤ 1. Another application of Propo-

sition 2.1 yields that 1 < rC(G̃) = 1/‖G̃‖H∞ , whence ‖(H − I )(H + I )−1‖H∞ =
‖G̃‖H∞ < 1. It follows from statement (2) of Lemma 2.2 that H is strongly positive
real and H ∈ H∞

p×m and therefore H is also strictly positive real. ��
The following corollary shows that stability for all (real) nonlinear causal operators

in a sector and the corresponding positive realness property are equivalent.

Corollary 5.2 Assume that (A, B, C) is stabilizable and detectable and assumption
(A) holds. Set H := (I − K1G)(I − K2G)−1. The following statements hold.

(1) System (2.3) is L2-GAS for all � ∈ S(K1,K2) if, and only if, H is positive real.
(2) System (2.3) is L2-GAS for all � ∈ S[K1,K2] if, and only if, H is strictly

positive real.
(3) System (2.3) is GAS for all � ∈ S(K1,K2) if, and only if, H is positive real.
(4) System (2.3) is GAS for all � ∈ S[K1,K2] if, and only if, H is strictly positive

real.
(5) System (2.3) is exponentially ISS for all � ∈ Se(K1,K2) if, and only if, H is

positive real.

Proof Statements (1)–(4) are immediate consequences of Theorem 4.4 and Propo-
sition 5.1, and the sufficiency part of statement (5) follows from Corollary 4.5. To
prove the necessity part of statement (5), assume that (2.3) is exponentially ISS for
all � ∈ Se(K1,K2). Then, trivially, the origin of (2.3) is globally attractive for all
� ∈ FRLm×p ∩Se(K1,K2). Since ‖Fν −F‖ → 0 as ν → 0 for everyF ∈ FRLm×p,
it follows from Lemma 4.1 that FRLm×p ∩ Se(K1,K2) = FRLm×p ∩ S(K1,K2).
Invoking Proposition 5.1 shows that H is positive real. ��

We remark that statement (1) of Corollary 5.2 has some overlap with [28, Theorem
126, Sect. 6.6] where, in a single-input single-output context, it is shown that stability
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(in the sense of L2-input–output theory) for all causal nonlinearities in a L2-sector
(defined by static sector data) implies the positive-real condition of the circle criterion.
The proof given in [28] relies on a result on minimal norm destabilization by linear
delayed feedback of the form ρSτ , where ρ ∈ R (see [28, Lemma 112, Sect. 6.6])
and does not generalize to the general multivariable set-up considered in this paper.

Finally, we look at a scenario wherein, in the context of (real) static nonlinearities,
positive realness is necessary for absolute stability.

Proposition 5.3 Consider (2.4) and assume that (A, B, C) is stabilizable and
detectable. Let K1, K2 ∈ R

m×p, define

L := 1

2
(K2 − K1) and M := 1

2
(K1 + K2),

and assume that ker L = ker(K2 − K1) = {0}.
(1) If the origin of (2.4) is globally attractive for all ϕ given by ϕ(t, z) = K z

with K ∈ R
m×p satisfying

sup
z∈Rp, ‖z‖=1

〈K z − K1z, K z − K2z〉 < 0, (5.3)

and LGM has the real supremum-value property, then (I − K1G)(I − K2G)−1 is
positive real.

(2) If the origin of (2.4) is globally attractive for all ϕ given by ϕ(t, z) = K z
with K ∈ R

m×p satisfying

〈K z − K1z, K z − K2z〉 ≤ 0 ∀ z ∈ R
p, (5.4)

and LGM has the real supremum-value property, then (I − K1G)(I − K2G)−1 is
strictly and strongly positive real.

We remark that in general, on its own, global attractivity for all K ∈ R
m×p satis-

fying (5.3) does not imply positive realness of (I − K1G)(I − K2G)−1. Similarly,
global attractivity for all K ∈ R

m×p satisfying (5.4) does not guarantee strict or strong
positive realness of (I − K1G)(I − K2G)−1. The situation changes if complex feed-
back gains are considered: for example, if global attractivity holds for all ϕ given
by ϕ(t, z) = K z with complex K ∈ C

m×p satisfying

sup
z∈Cp, ‖z‖=1

Re 〈K z − K1z, K z − K2z〉 < 0,

then (I − K1G)(I − K2G)−1 is positive real, see [9, Theorem 6.8].

Proof of Proposition 5.3. Note that 〈Mz − K1z, Mz − K2z〉 = −‖Lz‖2 for all z ∈ R
p,

and so, as ker L = {0}, (5.3) holds with K = M . Consequently, under the hypothesis
of statements (1) or (2), A + B MC is Hurwitz. This implies that M ∈ SR(G) and
thus, G̃ := LGM ∈ H∞

m×m .
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(1) Let F be an arbitrary element in R
m×m such that ‖F‖ < 1 and set K :=

F L + M ∈ R
m×p. Then,

sup
z∈Rp, z �=0

‖K z − Mz‖
‖Lz‖ < 1,

and since 〈K z − K1z, K z − K2z〉 = ‖K z − Mz‖2−‖Lz‖2 for all z ∈ R
p and ker L =

{0}, we see that K satisfies (5.3). Now, the argument from the proof of statement (1)
of Proposition 5.1 can be used to conclude that all F ∈ R

m×m such that ‖F‖ < 1 are
in SR(G̃), whence 1 ≤ rR(G̃). As G̃ as the real supremum-value property, Lemma 2.3
shows that rR(G̃) = rC(G̃), and so, 1 ≤ rC(G̃) = 1/‖G̃‖H∞ . As in the proof of
statement (1) of Proposition 5.1, it now follows that (I − K1G)(I − K2G)−1 is
positive real.

(2) Arguing as in the prove of statement (1), we see that all F ∈ R
m×m such

that ‖F‖ ≤ 1 are in SR(G̃), implying that 1 < rC(G̃) = 1/‖G̃‖H∞ . As in the proof
of statement (2) of Proposition 5.1, it can be shown that (I − K1G)(I − K2G)−1 is
strictly and strongly positive real. ��

In the remark below, we describe how Proposition 5.3 can be used in the context
of positive systems.

Remark 5.4 Let the matrices B and C be nonnegative and assume that there exists F ∈
R

m×p such that A + B FC is Hurwitz and Metzler. Let P ∈ R
m×m be nonnegative

and set K1 := F − P and K2 := F + P . Then, defining L and M as in (4.3), we
see that LGM = PGF is the transfer function of the stable positive system (A +
B FC, B, PC), and so, by part (b) of Example 2.4, has the real supremum-value
property. Proposition 5.3 shows that if the origin of (2.4) is globally attractive for all ϕ
given by ϕ(t, z) = K z with K ∈ R

m×p satisfying (5.3), then (I − K1G)(I − K2G)−1

is positive real (strictly and strongly positive real if global attractivity holds for all K
satisfying (5.4)). ♦
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and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

6 Appendix

For completeness, we give a proof of Proposition 2.1.

Proof of Proposition 2.1. As (2.1) is trivially true in the case wherein H(s) ≡ 0, we
may, without loss of generality, assume thatH(s) �≡ 0. It is clear that if ‖F−K‖H∞ <

rC(HK) = 1/‖HK‖H∞ , then HF = (HK)F−K ∈ H∞
p×m . It remains to show that there
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exists F ∈ RRH∞
m×p such that ‖F − K‖H∞ = rC(HK ) and HF is not stable. To this

end, we note that there exists 0 ≤ ω† ≤ ∞ such that ‖HK(iω†)‖ = ‖HK‖H∞ =: γ .
Let v ∈ C

m be such that ‖v‖ = 1 and ‖HK(iω†)v‖ = γ . Defining

u := 1

γ
HK(iω†)v ∈ C

p and F := 1

γ
vu∗ ∈ C

m×p,

we have that ‖u‖ = 1 and Fw = (1/γ )〈w, u〉v for all w ∈ C
p, and so, ‖F‖ = 1/γ .

Furthermore,

(I − FHK(iω†))v = v − 1

γ
〈HK(iω†)v, u〉v = v − v = 0,

showing that (I − FHK)−1 = FHK(I − FHK)−1 + I has a pole at iω†. Conse-
quently, (HK)F = HK(I − FHK)−1 has a pole at iω†. Setting F := K + F , we
conclude that ‖F − K‖H∞ = 1/γ and HF = HK+F = (HK)F has a pole at iω†.

We now consider two cases; namely,HK(iω†) is real (which happens, for example,
if ω† = 0 or ω† = ∞) and HK(iω†) is not real.

Case 1: HK(iω†) is real. In this case, v can be chosen to be real, and so u and F
are real and the claim follows with F(s) = K + F .

Case 2: H(iω†) is not real. In this case, 0 < ω† < ∞ and v and u are in general
not real. Let v j and u j denote the components of v and u, respectively. Using a
construction from [27, Proof of Theorem 4, Sect. 7.4], we note that there exist real
vectors (v̂1, . . . , v̂m)T ∈ R

m and (û1, . . . , û p)
T ∈ R

p and ψ j , θ j ∈ [0, π) such that

v j = v̂ j e
ψ j , j = 1, . . . , m and ū j = û j e

θ j , j = 1, . . . , p.

Define

v(s) :=
⎛
⎜⎝

v̂1(s − a1)/(s + a1)
...

v̂m(s − am)/(s + am)

⎞
⎟⎠ and u(s) :=

⎛
⎜⎝

û1(s − b1)/(s + b1)
...

û p(s − bp)/(s + bp)

⎞
⎟⎠ ,

where a j and b j are nonnegative real constants such that

iω† − a j

iω† + a j
= eiψ j , j = 1, . . . , m and

iω† − b j

iω† + b j
= eiθ j , j = 1, . . . , p.

Setting

F(s) := K(s) + 1

γ
v(s)u(s)T ,
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it is clear thatF ∈ RRH∞
m×p and‖F−K‖H∞ ≤ 1/γ .AsF(iω†)−K(iω†) = (1/γ )vu∗,

we conclude that ‖F − K‖H∞ = 1/γ . Furthermore,

(
I − (F(iω†) − K(iω†))HK(iω†)

)
v = 0,

showing that HF = HK(I − (F − K)HK)−1 has a pole at iω†, completing the proof.
��
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