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a b s t r a c t

We present sufficient conditions for integral input-to-state stability (iISS) and strong iISS of the
zero equilibrium pair of continuous-time forced Lur’e systems, where by strong iISS we mean the
conjunction of iISS and small-signal ISS. Our main results are reminiscent of the complex Aizerman
conjecture and the well-known circle criterion. We derive a number of corollaries, including a result
on stabilisation by static feedback in the presence of input saturation. In particular, we identify classes
of forced Lur’e systems with saturating nonlinearities which are strongly iISS, but not ISS.

© 2019 Published by Elsevier Ltd.

1. Introduction

We study (strong) integral input-to-state stability properties
of the class of forced Lur’e systems:

ẋ = Ax + Bf (Cx + Dev) + Bev, x(0) = x0. (1.1)

Here A, B, Be, C and De are real matrices, f is a (nonlinear)
function, x denotes the state, with initial state x0, and v is a
forcing function (also named, or interpreted, as a disturbance,
control or input). Lur’e systems are a common and important
class of nonlinear control system, and arise in a number of en-
gineering scenarios, such as the stabilisation of linear systems
by saturated static feedback. The study of the stability proper-
ties of Lur’e systems constitutes absolute stability theory which,
loosely speaking, seeks to conclude stability of the feedback sys-
tem (1.1) through the interplay of frequency domain properties
of the linear system given by (A, B, C) and boundedness or sector
properties of the nonlinearity f (Khalil, 2002) and (Vidyasagar,
1993). Recently, absolute stability ideas have been merged with
input-to-state stability (ISS) theory to obtain ISS criteria which
resemble classical absolute stability results, see Arcak and Teel
(2002), Guiver, Logemann, and Opmeer (2019), Jayawardhana,
Logemann, and Ryan (2009), Jayawardhana, Logemann, and Ryan
(2011), Sarkans and Logemann (2015), Sarkans and Logemann
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(2016a) and Sarkans and Logemann (2016b). The ISS criteria
obtained in Sarkans and Logemann (2015) have been used in Bill,
Guiver, Logemann, and Townley (2017) to prove converging-
input converging-state properties for Lur’e systems.

The concepts of ISS and integral ISS (iISS) were introduced
in Sontag (1989) and Sontag (1998), respectively. Over the last
30 years, an extensive ISS Lyapunov theory has been developed,
synthesising state-space and input–output viewpoints. The result
is a comprehensive stability theory for nonlinear control systems
see, for example, the survey papers (Dashkovskiy, Efimov, & Son-
tag, 2011; Sontag, 2006). Roughly speaking, ISS and iISS mean
that the state has ‘‘nice’’ boundedness properties, expressed in
terms of suitable comparison functions, with respect to the norm
of initial states and the ‘‘size’’ of the input signals. In the case
of ISS, the ‘‘size’’ of the input signal is its L∞-norm, whilst the
integral of the norm of the input plays a key role in the context
of iISS. ISS implies iISS, but the converse is false in general.

Strong iISS is a recent stability concept, introduced in Chaillet,
Angeli, and Ito (2014), and is the conjunction of iISS and ISS
with respect to small signals, or small-signal ISS. The small-signal
ISS property guarantees that the boundedness of the state is
robust with respect to small, but potentially persistent, forcing.
The emphasis of the current paper is on strong iISS, which is
an ‘‘intermediate property’’ with the benefits of ‘‘the robustness
strengths of ISS and the generality of iISS’’ (Chaillet et al., 2014).

The results obtained in this paper are reminiscent of the com-
plex Aizerman conjecture (Hinrichsen & Pritchard, 1995, 2005)
and the circle criterion (Haddad & Chellaboina, 2008; Jayaward-
hana et al., 2011; Khalil, 2002): we show that, when suitably
modified, these classical absolute stability results are sufficient
for (strong) iISS. In particular, our main result, Theorem 3.1,
shows that if every complex output feedback gain matrix in the
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open ball BC(K , r) (centred at K and of radius r > 0) stabilises the
underlying linear system (A, B, C), then the zero equilibrium pair
of the forced Lur’e system (1.1) is strongly iISS for all f satisfying
the inequality

∥f (z) − Kz∥ ≤ r∥z∥ − α(∥z∥) ∀ z ∈ Rp , (1.2)

where α : R+ → R+ is a comparison function of class K (see
Section 2 for the definition of K).

The contribution of this work very much resonates with that
in the paper Sarkans and Logemann (2015), where ISS conditions
for Lur’e systems are derived which are inspired by the complex
Aizerman conjecture and the circle criterion. In particular, the
condition (1.2) plays an important role in Sarkans and Logemann
(2015). Not surprisingly, the sense in which (1.2) holds, that is,
for which types of α, is crucial for the stability property which
may be inferred, see the discussion in Section 5, in particular
Theorem 5.1. The consequences of Theorem 3.1 include a strong
iISS version of the well-known circle criterion which provides a
sufficient condition for strong iISS in terms of positive-real and
sector properties of the transfer function and the nonlinearity,
respectively, see Corollary 3.8.

One motivation for the present work is its relevance to the
stabilisation of linear systems subject to input saturation, a prob-
lem which has received considerable and persistent attention in
the literature, see, for instance Azouit, Chaillet, Chitour, and Greco
(2016), Fuller (1977), Guiver, Logemann and Townley (2017), Lin
and Saberi (1993), Liu, Chitour, and Sontag (1996), Seidman and
Li (2001), Slemrod (1989), Sontag (1984), Sontag and Sussmann
(1990), and Sussmann, Sontag, and Yang (1994). It is well-known
that a necessary condition for stabilisation (in the sense of 0-
GAS) is that A has no eigenvalues with positive real part and
that the pair (A, B) is stabilisable. More recently, it was shown
in Sarkans and Logemann (2015, Proposition 3.4) that if A has
eigenvalues with non-negative real part, then the zero equilib-
rium pair of (1.1) system cannot be ISS when f is bounded (in
particular, when f is a saturation nonlinearity). In Theorem 4.2,
we provide sufficient conditions for the zero equilibrium pair of
such a feedback interconnection to be strongly iISS for a class
of saturating nonlinearities. Theorem 4.2 strengthens the recent
result (Azouit et al., 2016, Theorem 2) which considers the same
problem. We discuss how our results relate to others in the
literature in Remark 4.5.

The paper is organised as follows. Section 2 gathers notation
and preliminaries. Our main results are presented in Section 3,
and are applied to a class of Lur’e systems with saturating nonlin-
earities in Section 4. Section 5 contains a discussion which places
our work in the wider context provided by related papers in
the literature. To avoid disruption to the presentation, all proofs
appear in the appendices.

2. Notation and preliminaries

The set of positive integers is denoted by N, and R and C
denote the fields of real and complex numbers, respectively. We
set R+ := {r ∈ R : r ≥ 0} and N0 = N ∪ {0}. For n ∈ N, Rn

and Cn denote the usual real and complex n-dimensional vector
spaces, respectively, both equipped with the 2-norm denoted by
∥ · ∥ induced by the standard inner product ⟨·, ·⟩.

Form ∈ N, let Rn×m and Cn×m denote the normed linear spaces
of n × m matrices with real and complex entries, respectively,
both equipped with the operator norm induced by the 2-norm,
also denoted by ∥ · ∥. A matrix M ∈ Cn×n is said to be Hurwitz if
all its eigenvalues have negative real parts.

For K ∈ Rm×p, F = R or F = C, and r > 0, we set

BF(K , r) :=
{
Z ∈ Fm×p

: ∥Z − K∥ < r
}
,

the open ball in Fm×p centred at K and of radius r .
We recall terminology and definitions pertaining to so-called

comparison functions. Let K denote the set of all continuous and
strictly increasing functions φ : R+ → R+ such that φ(0) = 0.
Note that if φ ∈ K, then φ(s) > 0 for all s > 0. The subset
of K consisting of all unbounded functions is denoted by K∞.
Obviously, if φ ∈ K∞, then φ(s) → ∞ as s → ∞. The set
KL consists of all functions φ : R+ × R+ → R+ which satisfy
φ(·, t) ∈ K for all t ≥ 0 and, for all s ≥ 0, φ(s, ·) is non-increasing
with φ(s, t) → 0 as t → ∞. Following the convention of Sontag
(1998), we do not impose continuity in the definition of a KL-
function. By Sontag (1998, Proposition 7 or Lemma 8), it follows
that a discontinuous KL-function can be bounded from above by
a continuous one. The reader is referred to Kellet (2014) for more
information on comparison functions.

As usual, L1(R+,Rn) and L∞(R+,Rn) denote the spaces of
(equivalence classes of) measurable functions R+ → Rn which
are integrable and essentially bounded, respectively. The space of
measurable locally essentially bounded functions f : R+ → Rn is
denoted by L∞

loc(R+,Rn).
Consider the initial value problem (1.1). Here, and throughout,

Σ := (A, B, C, Be,De)

∈ Rn×n
× Rn×m

× Rp×n
× Rn×q

× Rp×q , (2.1)

for fixed n,m, p, q ∈ N. Further, f : Rp
→ Rm in (1.1) is

locally Lipschitz. For given x0 ∈ Rn and v ∈ L∞

loc(R+,Rq), we let
x = x(· ; x0, v) denote the unique maximally defined absolutely
continuous forward solution of the initial value problem (1.1).
Note that if f is affinely linearly bounded, that is, there exist
positive constants a and b such that ∥f (z)∥ ≤ a + b∥z∥ for all
z ∈ Rp, then (1.1) is forward complete, meaning that, for all
x0 ∈ Rn and all v ∈ L∞

loc(R+,Rq), the solution x is defined on R+

(see, for example, Logemann and Ryan (2014, Proposition 4.12)).
We refer to (1.1) with v = 0, as the unforced Lur’e system.

If 0 is an equilibrium of the unforced system (1.1), then we
abbreviate ‘‘global asymptotic stability of the zero equilibrium of
the unforced system (1.1)’’ to the familiar ‘‘system (1.1) is 0-GAS’’.

The Lur’e system (1.1) may be seen as the closed-loop system
arising from the feedback interconnection of the forced linear
system

ẋ = Ax + Bu + Bev, x(0) = x0,
y = Cx + Dev ,

}
(2.2a)

with state x, input u, output y and forcing v, and the static
nonlinear output feedback

u = f (y). (2.2b)

Note that (2.2) encompasses systems of the form

ẋ = Ax + Bf (Cx + d) + w, x(0) = x0 , (2.3)

where d is an output disturbance and w is another forcing func-
tion. Indeed, setting q := n + p,

Be :=
(
I 0

)
, De :=

(
0 I

)
, and v :=

(
w

d

)
,

it is clear that system (2.3) can be written in the form (2.2).
Therefore, we focus attention on (2.2), or, equivalently, on (1.1).

We call (x∗, v∗) ∈ Rn
× Rq an equilibrium pair of (1.1) if

Ax∗
+ Bf (Cx∗

+ Dev
∗) + Bev

∗
= 0, that is, x∗ is a constant

solution of (1.1) with constant forcing v(t) ≡ v∗. Without loss
of generality, we shall assume throughout that f (0) = 0 and
(x∗, v∗) = (0, 0) — called the zero equilibrium pair. The general
case can be reduced to the zero equilibrium pair.

Following Chaillet et al. (2014), the zero equilibrium pair is
said to be strongly iISS if it is iISS and small-signal ISS. The iISS



C. Guiver and H. Logemann / Automatica 111 (2020) 108641 3

property was introduced in Sontag (1998), see also Angeli, Sontag,
and Wang (2000), and means that there exist β ∈ KL and γ1, γ2 ∈

K such that, for all x0 ∈ Rn and all v ∈ L∞

loc(R+,Rq), and all t ≥ 0

∥x(t)∥ ≤ β(∥x0∥, t) + γ1

(∫ t

0
γ2(∥v(s)∥) ds

)
. (2.4)

Furthermore, we say that the zero equilibrium pair is small-signal
ISS if there exist R > 0, β ∈ KL and γ ∈ K such that: for all
x0 ∈ Rn, all v ∈ L∞

loc(R+,Rq), and all t ≥ 0,

∥v∥L∞(0,t) < R

⇒ ∥x(t)∥ ≤ β(∥x0∥, t) + γ (∥v∥L∞(0,t)). (2.5)

The K-function γ2 in (2.4) is sometimes called an ‘‘iISS gain’’ for
the system (1.1) The constant R which appears in the definition
of small-signal ISS is referred to as an input threshold (Chaillet
et al., 2014).

In the following, for the sake of brevity, we shall say that (1.1)
is strongly iISS if the zero equilibrium pair is strongly iISS. We
adopt a similar convention for other stability notions. If (2.5)
holds with R = ∞, then we say that (1.1) is ISS.

Remark 2.1. The following statements are consequences of
routine arguments.
(i) If (1.1) is strongly iISS and v ∈ L∞

loc(R+,Rq) is such that v(t) →

0 as t → ∞, then x(t; x0, v) → 0 as t → ∞.
(ii) If (1.1) is iISS and v ∈ L∞

loc(R+,Rq) is such that the function
t ↦→ γ2(∥v(t)∥) is integrable, then x(t; x0, v) → 0 as t → ∞. ⋄

Throughout the present work, we let G, given by G(s) =

C(sI − A)−1B, denote the transfer function of the linear system
specified by (A, B, C) (that is, the transfer function of (2.2a) from
input u to output y). Applying static output feedback to (A, B, C)
with gain K ∈ Rm×p leads to the linear system specified by
(A + BKC, B, C), the transfer function of which shall be denoted
by GK . A straightforward calculation shows that

GK (s) = C(sI − A − BKC)−1B = G(s)(I − KG(s))−1.

As usual, H∞(Cp×m) denotes the space of holomorphic, bounded
functions C0 → Cp×m, which is a Banach space when equipped
with the norm

∥H∥H∞ := ess sup
ω∈R

∥H(iω)∥ ∀ H ∈ H∞(Cp×m).

For F = R or F = C, let SF(G) denote the set of stabilising output
feedback gains in Fm×p, that is,

SF(G) :=
{
K ∈ Fm×p

: GK
∈ H∞(Cp×m)

}
.

We shall typically impose the assumption that (A, B, C) is stabil-
isable and detectable, in which case,

SF(G) :=
{
K ∈ Fm×p

: A + BKC is Hurwitz
}
.

The following result provides a characterisation of balls of sta-
bilising complex feedback gains in terms of a related H∞-norm
condition. A proof may be found in Guiver, Logemann and Op-
meer (2017, Proposition 5.6) or (Sarkans & Logemann, 2015,
Lemma 2.1).

Lemma 2.2. For K ∈ Rm×p and r > 0, BC(K , r) ⊆ SC(G) if, and
only if, ∥GK

∥H∞ ≤ 1/r.

We emphasise that Lemma 2.2 does not hold if in the state-
ment C is replaced by R. More specifically, the inclusion BR(K , r)
⊆ SR(G) does in general not imply that ∥GK

∥H∞ ≤ 1/r .
We shall make extensive use of the following stability re-

sult, the so-called complex Aizerman conjecture, for the unforced
system (1.1), see Hinrichsen and Pritchard (1995, Theorem 3.14

and Corollary 3.15) or Hinrichsen and Pritchard (2005, Theorem
5.6.22). We note that the complex Aizerman conjecture is true,
whereas it is well-known that the real Aizerman conjecture is
false in general, see, for example, Hinrichsen and Pritchard (1990,
Example 6.9) and Willems (1971).

Theorem 2.3. Given Σ as in (2.1) and locally Lipschitz f : Rp
→

Rm, assume that (A, B, C) is stabilisable and detectable. Assume
further that K ∈ Rm×p and r > 0 are such that BC(K , r) ⊆ SC(G).
If

∥f (z) − Kz∥ < r∥z∥ ∀ z ∈ Rp, z ̸= 0 , (2.6)

then (1.1) is 0-GAS.

3. Strong iISS for forced Lur’e systems

The following theorem is the main result of the paper.

Theorem 3.1. Given Σ as in (2.1) and locally Lipschitz f : Rp
→

Rm, assume that (A, B, C) is stabilisable and detectable. Assume
further that K ∈ Rm×p and r > 0 are such that BC(K , r) ⊆ SC(G),
and that there exists α : R+ → R+ such that

∥f (z) − Kz∥ ≤ r∥z∥ − α(∥z∥) ∀ z ∈ Rp. (3.1)

(1) If α ∈ K, then (1.1) is strongly iISS. Moreover, the iISS
estimate (2.4) holds with

γ2(s) = as + bs2 ∀ s ∈ R+ (3.2)

for some a > 0 and b ≥ 0, with b = 0 if De = 0.
(2) If α ∈ K∞, then (1.1) is ISS.

We provide some commentary on the above theorem.

Remark 3.2. (i) Statement (1) is the main novel contribution of
the present work. Statement (2) is a generalisation of Sarkans
and Logemann (2015, Theorem 3.1) which considers (1.1) with
De = 0, and is included here for completeness. iISS and strong
iISS are not considered in Sarkans and Logemann (2015).
(ii) The claim that the estimate (2.4) holds with γ2 of the form
(3.2) implies that, for all x0 ∈ Rn, the solution x(· ; x0, v) of (1.1)
converges to zero if v ∈ L1(R+,Rq) ∩ L2(R+,Rq) (v ∈ L1(R+,Rq)
in the case wherein De = 0), see Remark 2.1.
(iii) In Theorem 5.1, we present a condition in terms of the data
r , K and f , which is equivalent to the existence of a (evidently
non-unique) function α ∈ K (or α ∈ K∞) satisfying (3.1). ⋄

Invoking Lemma 2.2, the following nonlinear small-gain ver-
sion of statement (1) of Theorem 3.1 is immediate.

Corollary 3.3. Given Σ as in (2.1) and locally Lipschitz f : Rp
→

Rm, assume that (A, B, C) is stabilisable and detectable, and that
K ∈ SR(G). If there exists α ∈ K such that, for all z ∈ Rp

\{0},

∥GK
∥H∞

∥f (z) − Kz∥
∥z∥

≤ 1 −
α(∥z∥)
∥z∥

, (3.3)

then (1.1) is strongly iISS. Moreover, the iISS estimate (2.4) holds
with γ2 of the form (3.2).

The following corollary of Theorem 3.1 shows that if f is
globally Lipschitz, then the function γ2 in (2.4) can be chosen to
be linear.

Corollary 3.4. Imposing the notation and assumptions of state-
ment (1) of Theorem 3.1, if f is globally Lipschitz, then the iISS
estimate (2.4) holds with γ2(s) = as for some a > 0.
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In the context of small-signal ISS, it is important and inter-
esting to compute or estimate the largest possible value for the
input threshold R appearing in (2.5) in terms of the data of the
Lur’e system, including the comparison function α in (3.1) and
(3.3). Whilst this is difficult in general (although see Chaillet et al.
(2014, Theorems 1 and 2)), we give a class of examples where the
‘‘optimal’’ value for R turns out to be equal to lims→∞ α(s).

Example 3.5. The forced scalar differential equation

ẋ = −x + f (x) + v, x(0) = x0 , (3.4)

where f : R → R, is a special case of (1.1) with A = −1 and
B = C = 1 = Be and De = 0. Here G(s) = 1/(s + 1) and so,
trivially, ∥G∥H∞ = G(0) = 1. Hence, BC(K , r) ⊆ SC(G) with K = 0
and r = 1. We shall revisit this example throughout the paper in
various contexts.

Let φ ∈ K\K∞ be such that φ(s) < s for all s > 0 and fix f (x)
= x − sign(x)φ(|x|) for all x ∈ R. Then

|f (x)| = |x| − φ(|x|), ∀ x ∈ R ,

and so, choosing α = φ, condition (3.1) and the small-gain
inequality (3.3) are satisfied. By Theorem 3.1 (or Corollary 3.3),
the zero equilibrium pair is strongly iISS, and so, in particular, has
the small signal ISS property. The closed-loop feedback system
may be written as

ẋ = −sign(x)φ(|x|) + v ,

and, setting R∗
:= lims→∞ α(s) = lims→∞ φ(s), it is clear that

inputs v with ∥v∥L∞ < R∗ lead to bounded state trajectories.
Furthermore, we claim that, for every R ∈ (0, R∗), there exist
β ∈ KL and γ ∈ K such that (2.5) holds. To prove this, it is
sufficient to show that, for any R ∈ (0, R∗), there exist ψ and λ in
K∞ such that, for every solution x generated by an input v with
∥v∥L∞ ≤ R, we have
1
2

d
dt

x2(t) ≤ −ψ(|x(t)|) + λ(∥v∥L∞ ) a.e. t ≥ 0. (3.5)

Choose L > 0 such that φ(s) > R for all s ≥ L, and set
ψ1(s) := s(φ(s) − R) for s ≥ L. Let ψ0 : [0, L] → R+ be strictly
increasing such that ψ0(L) = ψ1(L) and ψ0(s) ≤ sφ(s) and define
a K∞-function ψ2 by

ψ2(s) :=

{
ψ0(s), s ∈ [0, L)
ψ1(s), s ≥ L.

Then, for all v such that ∥v∥L∞ ≤ R,
1
2

d
dt

x2(t) = x(t)ẋ(t) ≤ −|x(t)|φ(|x(t)|) + |x(t)||v(t)|

≤ −ψ2(|x(t)|) + L|v(t)| a.e. t ≥ 0.

Consequently, with the choices ψ = ψ2 and λ(s) = Ls, inequal-
ity (3.5) holds for all inputs v with ∥v∥L∞ ≤ R.

Finally, we claim that the constant input v(t) ≡ R∗ generates
divergent state trajectories: indeed, defining the function F by

F (z) :=

∫ z

0

dξ
R∗ − sign(ξ )φ(|ξ |)

∀ z ∈ R,

and invoking separation of variables, we see that the solution x
with initial value equal to 0 satisfies F (x(t)) = t for all t ≥ 0,
implying that x(t) → ∞ as t → ∞.

To conclude the example, we note that any complex feedback
gain k with Re k ≥ 1 = r destabilises G and that, with our choice
α = φ, conditions (3.1) and (3.3) hold with equality. This means
that both r and α are as large as they can be (for fixed K = 0),
and thus, in this sense, the scenario considered in the example is
‘‘extreme’’. ⋄

We note that although the model dataΣ and f in Theorem 3.1
are assumed to be real, a key hypothesis is that every feedback
gain in the complex ball BC(K , r) is stabilising for G. Our next re-
sult shows that the complex ball condition may be weakened to a
real ball condition, provided that a suitable additional assumption
is satisfied. We say that a proper rational matrix H ∈ H∞(Cp×m)
has the real supremum value property if there exists s∗ ∈ {s ∈ C :

Re s ≥ 0} ∪ {∞} such that

∥H∥H∞ = ∥H(s∗)∥ and H(s∗) ∈ Rp×m ,

where H(∞) := lim|s|→∞ H(s). We are now in position to state
the following corollary to Theorem 3.1.

Corollary 3.6. Given Σ as in (2.1) and locally Lipschitz f : Rp
→

Rm, assume that (A, B, C) is stabilisable and detectable. Assume
further that K ∈ Rm×p and r > 0 are such that BR(K , r) ⊆ SR(G)
and GK has the real supremum value property. Then statements (1)
and (2) of Theorem 3.1 hold.

We provide some classes of systems for which the real supre-
mum value assumption is satisfied.

Example 3.7. The following examples have the property that

∥GK
∥H∞ = ∥GK (0)∥. (3.6)

Since GK (0) is real, it follows that GK satisfies the real supremum
value assumption.
(i) Recall that a square matrix is called Metzler if every off-
diagonal entry is nonnegative (see, for example, Berman and
Plemmons (1994, Ch. 6)). If (A, B, C) and K are such that A+ BKC
is Hurwitz and Metzler and B and C are nonnegative, that is B ∈

Rn×m
+ and C ∈ Rp×n

+ , then GK is the transfer function of a stable
positive system, and so satisfies (3.6) by, for instance, Hinrichsen
and Son (1996, Theorem 5).
(ii) If K and (A, B, C) are such that (A + BKC, B, C) is a so-called
symmetric system, meaning A + BKC = (A + BKC)T and C = BT ,
then (3.6) holds, see Liu, Sreeram, and Teo (1998, Remark 4.1 2.).
(iii) Let (Ã, b̃, c̃T ) ∈ Rn×n

× Rn
× R1×n with Hurwitz Ã, transfer

function H, and let g be a real parameter. Consider the integral
control feedback system

ẋ = Ãx + b̃u, y = c̃T x, u̇ = w − gy ,

where w is an external input. This (n + 1)-dimensional system
(with input w and output y) is described by the triple (Ag , b, cT ),
where

Ag :=

(
Ã b̃

−gc̃T 0

)
, b :=

(
0
1

)
, cT :=

(
c̃T 0

)
.

The transfer function Gg of the triple (Ag , b, cT ) is given by

Gg (s) =
H(s)

s + gH(s)
.

It follows from Logemann and Townley (1997, Proposition 3.9)
that if H(0) ̸= 0, then there exists g∗ > 0 such that, for all g with
gH(0) > 0 and 0 < |g| < g∗,

∥Gg∥H∞ =
1
|g|

= |Gg (0)|.

In particular, (3.6) holds with G = Gg and K = 0. ⋄

Next we present a version of Theorem 3.1 which is reminiscent
of the well-known circle criterion (Haddad & Chellaboina, 2008;
Khalil, 2002; Vidyasagar, 1993). To this end, recall that a square
proper rational matrix-valued function s ↦→ H(s) of a complex
variable s is said to be positive real if for every s ∈ C0, which is
not a pole of H, the matrix [H(s)]∗ +H(s) is positive semi-definite.
Here the superscript ∗ denotes the Hermitian transpose. It follows
from Guiver, Logemann, Opmeer (2017, Proposition 3.3) that if H
is positive real, then H is holomorphic on C0.
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Corollary 3.8. Given Σ as in (2.1) and locally Lipschitz f : Rp
→

Rm, assume that (A, B, C) is stabilisable and detectable. Assume
further that K1, K2 ∈ Rm×p are such that (I − K2G)(I − K1G)−1 is
positive real, and there exists α : R+ → R+ such that, for all z ∈ Rp

⟨f (z) − K1z, f (z) − K2z⟩ ≤ −∥z∥α(∥z∥). (3.7)

(1) If α ∈ K, then (1.1) is strongly iISS. Moreover, the iISS
estimate (2.4) holds with γ2 of the form (3.2).

(2) If α ∈ K∞, then (1.1) is ISS.

The remark below provides some commentary on the above
corollary.

Remark 3.9. (i) Statement (1) of Corollary 3.8 is the primary
novel contribution of the present work in the context of the
circle criterion — statement (2) is a generalisation of Sarkans
and Logemann (2015, Corollary 3.10) which considers (1.1) with
De = 0, and is included for completeness.
(ii) Corollary 3.8 is closely related to the classical circle criterion,
which is known to be sufficient for global asymptotic stability of
unforced Lur’e system, see Haddad and Bernstein (1993, Theorem
5.1), Haddad and Chellaboina (2008, Corollary 5.8) and Khalil
(2002, Theorem 7.1). The term ‘‘circle criterion’’ is motivated by
the graphical interpretation of the positive-real condition in the
single-input single-output case (m = p = 1), see Khalil (2002,
pp. 266–270). In the formulation of the classical circle criterion it
is usually assumed that:

(a) K1, K2 ∈ Rm×p are such that K1 − K2 is left invertible;
(b) H := (I − K2G)(I − K1G)−1 is strictly positive real, meaning

there exists ε > 0 such that the function s ↦→ H(s − ε) is
positive real;

(c) f satisfies the sector condition ⟨f (z) − K1z, f (z) − K2z⟩ ≤

0 ∀ z ∈ Rp.
It is known that (a)–(c) together imply that the hypotheses of
Corollary 3.8 are satisfied with some α ∈ K∞ (see the proofs
of Sarkans and Logemann (2015, corollaries 3.10 and 3.11)). Con-
sequently, if (a)–(b) hold, then (1.1) is ISS, and, a fortiori, strongly
iISS.
(iii) In the paper Arcak and Teel (2002), an ISS result is obtained
for the Lur’e system (1.1) under the assumptions that Be = B
and De = 0, the underlying linear system is positive real, and
the nonlinearity (which may have superlinear growth) satisfies
a suitable cone condition, see Arcak and Teel (2002, Theorem
1). The overlap between Corollary 3.8 and Arcak and Teel (2002,
Theorem 1) is very small as Arcak and Teel (2002) focusses solely
on ISS and differs in the assumptions on the linear system. ⋄

Our final result of this section demonstrates that, under an ad-
ditional assumption on the linear system, a well-known condition
which is sufficient for 0-GAS of the unforced system (1.1) (see
Theorem 3.1) guarantees iISS of (1.1).

Proposition 3.10. Given Σ as in (2.1) and locally Lipschitz f :

Rp
→ Rm, assume that (A, B, C) is (i) stabilisable and observable, or

(ii) controllable and detectable. Assume further that K ∈ Rm×p and
r > 0 are such that BC(K , r) ⊆ SC(G) and that (2.6) is satisfied.
Then (1.1) is iISS and the iISS estimate (2.4) holds with γ2 of the
form (3.2).

By way of comparing the conditions (3.1) and (2.6), note that
the latter is equivalent to the existence of a continuous function
α : R+ → R+ such that α(0) = 0, α(s) > 0 for s > 0 and

∥f (z) − Kz∥ ≤ r∥z∥ − α(∥z∥) ∀ z ∈ Rp.

We do not know whether or not the controllability/observability
assumption in Proposition 3.10 is necessary. What is clear, as
the following example demonstrates, is that the condition (2.6),
which, by Proposition 3.10, is sufficient for iISS, is not sufficient
for strong iISS.

Example 3.11. Consider the scalar Lur’e system (3.4) from
Example 3.5. The triple (A, B, C) = (−1, 1, 1) is trivially control-
lable and observable. Let f in (3.4) be given by

f : R → R, f (z) = z − ze−z2
∀ z ∈ R.

Obviously, with the choices K = 0 and r = 1, there does not exist
α ∈ K such that (3.1) is satisfied, but (2.6) does hold. In particular,
by Proposition 3.10, the zero equilibrium pair is iISS.

However, for each ε > 0, it is possible to choose x0 sufficiently
large so that x(t; x0, ε) (with constant input ε) diverges as t → ∞.
We conclude that the small-signal ISS property does not hold, and
so the zero equilibrium pair is not strongly iISS. ⋄

Remark 3.12. Consider the situation wherein the nonlinear term
f in (1.1) is assumed to be time-varying, that is, the differential
equation in (1.1) is replaced by

ẋ(t) = Ax(t) + Bf (t, Cx(t) + Dev(t)) + Bev(t) , (3.8)

where f has enough regularity to ensure that, for all x0 ∈ Rn

and v ∈ L∞

loc(R+,Rq), a unique absolutely continuous solution
x(· ; x0, v) of (3.8) exists. It is not difficult to see that the conclu-
sions of Theorem 3.1 and Proposition 3.10 continue to hold if the
conditions (3.1) and (2.6) are satisfied uniformly in time, that is,

∥f (t, z) − Kz∥ ≤ r∥z∥ − α(∥z∥) ∀ (t, z) ∈ R+ × Rp,

and

sup
t≥0

∥f (t, z) − Kz∥ < r∥z∥ ∀ z ∈ Rp, z ̸= 0,

respectively. The same is true of Corollary 3.8, provided that the
sector condition (3.7) holds uniformly in time. ⋄

4. Strong iISS for Lur’e systems with saturating nonlinearities

The present section is motivated by Sarkans and Logemann
(2015, Proposition 3.4) and the recent paper Azouit et al. (2016).
The former result states that if, in the Lur’e system (1.1) the
matrix A is not Hurwitz and f is bounded, then the (0, 0) equi-
librium cannot be ISS. The situation wherein A is not Hurwitz
and f is bounded arises, for instance, in the stabilisation of linear
systems (2.2a) by saturated feedback. The main result in this
section provides sufficient conditions for strong iISS of forced
Lur’e systems for a given class of nonlinearities which includes
saturation functions, and strengthens the result (Azouit et al.,
2016, Theorem 2).

To be specific, we consider the class F of locally Lipschitz
functions f : Rm

→ Rm which have the following two properties:

(F .1) ∥f (w)∥2
≤ ⟨f (w), w⟩ for w ∈ Rm;

(F .2) there exists β , γ , δ > 0 such that, for all w ∈ Rm

⟨f (w), w⟩ ≥ β∥w∥
2 if∥w∥ ≤ δ

and ⟨f (w), w⟩ ≥ γ ∥w∥ if∥w∥ ≥ δ.

The first condition (F .1) states that f belongs to the sector
[0, I] in the terminology of Khalil (2002, Definition 6.2, p. 232)
and, if it holds, then evidently f (0) = 0. Property (F .2) is the
same as that imposed in Curtain and Zwart (2016, Theorem 2.2).

Before stating our main result of the section we provide two
families of saturation functions which belong to F , the first of
which is not ‘‘diagonal’’. The proofs that these functions belong
to F are elementary exercises, and are therefore omitted.

Example 4.1. (i) For all δ > 0, the function θ : Rm
→ Rm defined

by θ (w) = w if ∥w∥ ≤ δ and θ (w) = δw/∥w∥ if ∥w∥ ≥ δ
belongs to F . The function θ is, up to a sign change, equal to the
saturation function considered in Slemrod (1989), see Slemrod
(1989, equation (2.8)).
(ii) The ubiquitous diagonal saturation function, see for exam-
ple Khalil (2002, p. 19), always belongs to F . ⋄
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Theorem 4.2. Given Σ as in (2.1), assume that (A, B, C) is
stabilisable and detectable. If there exists K ∈ Rm×p, K ̸= 0, such
that BC(K , ∥K∥) ⊆ SC(G), then, for every g ∈ F the forced Lur’e
system

ẋ = Ax + Bg(KCx + KDev) + Bev, x(0) = x0 , (4.1)

is strongly iISS, and the iISS estimate (2.4) holds with γ2 of the
form (3.2).

We give two examples of classes of systems where the ball
condition BC(K , ∥K∥) ⊆ SC(G) is satisfied.

Example 4.3. (i) If G is positive real, then for every k > 0,
it follows from Guiver, Logemann, Opmeer (2017, Lemma 2.4)
and Guiver, Logemann, Opmeer (2017, Theorem 6.4) that BC
(−kI, k) ⊆ SC(G), and so the ball condition in Theorem 4.2 holds
with K = −kI .
(ii) Suppose that m = p and the transfer function G of (A, B, C)
has the form G(s) = H(s)/s, for H ∈ H∞(Cm×m) with H(0) =

H(0)∗ positive definite. Then, by Logemann and Townley (1997,
Proposition 3.9), there exists k∗ > 0 such that Gk

= G(I−kG)−1
∈

H∞ and ∥Gk
∥H∞ = 1/|k| for all k ∈ (−k∗, 0). Consequently, by

Lemma 2.2, the ball condition in Theorem 4.2 is satisfied with
K = kI for all k ∈ (−k∗, 0). ⋄

Theorem 4.2 generalises Azouit et al. (2016, Theorem 2) by
imposing weaker assumptions than Azouit et al. (2016, Theorem
2). To see this, we recall the definitions of the sets of saturation
functions S and Sm considered in Azouit et al. (2016), see also Liu
et al. (1996). A function σ : R → R belongs to S if σ is locally Lip-
schitz, bounded, sσ (s) > 0 for all nonzero s, lim infs→0 σ (s)/s > 0
and lim inf|s|→∞ σ (s) > 0. For m ∈ N, the set Sm comprises
functions σ : Rm

→ Rm such that (σ (z))i = σi(zi) for some σi ∈ S ,
for all i ∈ {1, . . . ,m} and all z = (z1, z2, . . . , zm)T ∈ Rm. The
following proposition relates the class of functions Sm to F .

Proposition 4.4. For every σ ∈ Sm, there exists l > 0 such that
the function z ↦→ σ (lz) is in F .

We comment that we should not, in general, expect a converse
of Proposition 4.4 to hold as F contains functions which are not
‘‘diagonal’’.

Remark 4.5. (i) To see that Azouit et al. (2016, Theorem 2)
follows from Theorem 4.2, we note that Azouit et al. (2016)
considers the forced Lur’e system (1.1) with linear component
(A,−B, B∗) where A = −A∗, and nonlinearity σ ∈ Sm. Since
the triple (A, B, B∗) is positive real by, for example, Guiver, Lo-
gemann, Opmeer (2017, Corollary 7.4), an application of part (1)
of Example 4.3 yields that BC(kI, k) ⊆ SC(G) for all k > 0.
Moreover, Azouit et al. (2016, Theorem 2) assumes that (A, B) is
controllable, so that (B∗,−A∗) is observable, and thus (A,−B, B∗)
is stabilisable and detectable. By Proposition 4.4, there exists l >
0 such that the function z ↦→ σ (lz) is in F . Therefore, strong iISS
of the zero equilibrium pair follows from Theorem 4.2 with k :=

1/l > 0, as evidently σ (s) = σ (lks) for all s ∈ R. Consequently,
the skew symmetric structure and diagonal saturation functions
imposed in Azouit et al. (2016, Theorem 2) are not required.
(ii) We provide some comments on related literature. To this end,
consider the controlled linear system with nonlinear feedback

ẋ = Ax +Φ(x), x(0) = x0 , (4.2)

with Φ a bounded function. The papers Sontag and Sussmann
(1990), Sussmann et al. (1994) investigate asymptotic stability
of (4.2) and Lin and Saberi (1993) consider semi-global exponen-
tial stabilisation of (4.2) by (diagonally) saturated linear feedback.
These three papers do not consider ISS-type stability notions — no

external forcing is present. The paper (Liu et al., 1996) primarily
considers (input/output) Lp-stability of (1.1) (for all p ∈ [1,∞])
with x(0) = 0, f = σ ∈ Sm, and a small bounded forcing term
Bev (in the notation of the current paper). Whilst Liu et al. (1996)
contains a result of ISS-type (see Liu et al. (1996, inequality (60))),
it does not provide conditions which guarantee the iISS property.
We note that the relevant results in Lin and Saberi (1993) and Liu
et al. (1996) are different to Theorem 4.2: in Lin and Saberi (1993)
and Liu et al. (1996), for a fixed saturation function, the existence
of a linear stabilising feedback is established. In contrast, we
assume that K is a stabilising feedback for the linear system
specified by (A, B, C). Theorem 4.2 says that if K additionally
satisfies the ball condition BC(K , ∥K∥) ⊆ SC(G), then the forced
Lur’e system (4.1) is strongly iISS for all saturation functions
g ∈ F . ⋄

5. Discussion

We conclude by placing the findings of this paper into the con-
text given by related results in the literature, thereby providing
a wider perspective. As usual, we assume that the nonlinearity
f in (1.1) satisfies f (0) = 0. Recall that the unforced Lur’e
system (1.1) is said to be stable in the large if there exists M > 0
such that, for every initial condition x0,

∥x(t; x0, 0)∥ ≤ M∥x0∥ ∀ t ≥ 0.

Furthermore, (1.1) is said to be exponentially ISS if there exist
M, γ > 0 such that, for all v ∈ L∞

loc(R+,Rq), all x0 ∈ Rn, and all
t ≥ 0

∥x(t; x0, v)∥ ≤ M
(
e−γ t

∥x0∥ + ∥v∥L∞(0,t)
)
. (5.1)

Note that exponential ISS of (1.1) implies that the zero equilib-
rium of the associated unforced system is globally exponentially
stable. Finally, we say that (1.1) is semi-globally exponentially ISS
if, for all Γ > 0, there exist M, γ > 0 such that (5.1) holds for all
v ∈ L∞(R+,Rq) and x0 ∈ Rn such that

∥x0∥ + ∥v∥L∞ ≤ Γ . (5.2)

For all practical purposes the above semi-global exponential ISS
property is adequate: for any given application context, there ex-
ists a Γ > 0 such that every practically relevant initial condition
x0 and forcing term v combined will satisfy (5.2).

The following theorem provides an overview of stability re-
sults for (1.1) and its unforced version, formulated in the spirit of
the complex Aizerman conjecture.

Theorem 5.1. Given Σ as in (2.1) and locally Lipschitz f : Rp
→

Rm, assume that (A, B, C) is stabilisable and detectable, and let K ∈

Rm×p, r > 0 be such that BC(K , r) ⊆ SC(G). Define ∆ : Rp
→ R by

∆(z) := r∥z∥ − ∥f (z) − Kz∥ ∀ z ∈ Rp.

The following statement holds.

(1) If ∆(z) ≥ 0 for all z ∈ Rp, then (1.1) is stable in the large.

Furthermore, assuming that ∆(z) > 0 for all z ∈ Rp
\{0}, the

following statements hold.

(2) System (1.1) is 0-GAS. If additionally (A, B, C) is controllable
or observable, then (1.1) is iISS.

(3) If lim inf∥z∥→∞∆(z) > 0, then (1.1) is strongly iISS.
(4) If ∆ is radially unbounded, then (1.1) is ISS.
(5) If ∆ is radially unbounded and lim inf∥z∥→0

∆(z)
∥z∥ > 0, then

(1.1) is semi-globally exponentially ISS.
(6) If lim inf∥z∥→0

∆(z)
∥z∥ > 0 and lim inf∥z∥→∞

∆(z)
∥z∥ > 0, then (1.1)

is exponentially ISS.
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Observe that ∆(z) is an indicator of how close f (z) is to
the boundary of the ball centred at Kz of radius r∥z∥. A key
assumption in Theorem 5.1 is that every linear feedback in the
ball BC(K , r) is stabilising. The conditions (1)–(6) require that f
is ‘‘further from the boundary’’ of the ball in increasingly strong
senses — with particular emphasis on the behaviour of f near the
origin and at infinity.

The following example demonstrates that the hypotheses in
(1)–(5) in Theorem 5.1 do not, in general, imply the stability
property guaranteed by that in the subsequent hypothesis.

Example 5.2. We consider again the scalar Lur’e system (3.4)
from Example 3.5. As described there, (3.4) satisfies BC(K , r) ⊆

SC(G) with K = 0 and r = 1, where G(s) = 1/(1 + s). Trivially, in
the context of the scalar Lur’e system (3.4), the triple (A, B, C) is
controllable and observable.
(i) For f given by f (z) = z, we have that ∆(z) ≡ 0, and so,
by statement (1), the uncontrolled system (3.4) is stable in the
large. Obviously, the condition ∆(z) > 0 is violated for every
z ̸= 0. Trivially, in this example, the solution of the uncontrolled
system (3.4) is constant, x(t) ≡ x0, and so the zero equilibrium is
not globally asymptotically stable.
(ii) Example 3.11 shows that the condition ∆(z) > 0 for all
z ∈ Rp

\{0} is not sufficient for strong iISS of the forced Lur’e
system (3.4).
(iii) It is straightforward to find nonlinearities for which ∆ is
bounded, ∆(z) > 0 for all z ∈ Rp

\{0} and lim inf∥z∥→∞∆(z) >
0 (so that, by statement (3), the system (3.4) is strongly iISS),
but (3.4) fails to be ISS, see Sarkans and Logemann (2015).
(iv) Fixing κ ∈ (0, 1), consider (3.4) with f : R → R given by

f (z) =

⎧⎨⎩ z − z3 |z| ∈ [0, κ)

z − κ3 ln
(

|z|
κ

e
)

|z| ≥ κ.
(5.3)

Then ∆(z) > 0 for all z ̸= 0 and ∆ is radially unbounded,
and thus, statement (4) guarantees that (3.4) is ISS. The lim inf
assumption of statement (5) does not hold, however. Note that,
for x0 ∈ (0, κ) and v(t) ≡ 0, the solution of (3.4) is given by

x(t) =

√
(x0)2

2t(x0)2 + 1
∀ t ≥ 0.

This function does not converge to zero exponentially, and con-
sequently, (3.4) cannot be semi-globally exponentially ISS.
(v) Finally, consider (3.4) with f : R → R given by

f (z) =

⎧⎪⎨⎪⎩
z −

1
2
z |z| ∈ [0, 1]

z −
1
2
sign (z)|z|

1
2 |z| > 1.

(5.4)

The function f in (5.4) is such that ∆(z) > 0 for all z ̸= 0, ∆
is radially unbounded and ∆(z)/z satisfies the lim inf condition
at z = 0, but not that at infinity. Hence, by statement (5), the
system (3.4) with f given by (5.3) is semi-globally exponentially
ISS. However, for x0 > 1 and v(t) ≡ 0, the solution x satisfies

x(t) =

(
x0 −

1
4
t
)2

∀ t ∈ [0, 4(x0 − 1)].

We claim that there does not exist M, γ > 0 such that, for all
x0 ∈ R

|x(t)| ≤ Me−γ t
|x0| ∀ t ≥ 0.

Indeed, seeking a contradiction, if such M, γ > 0 were to exist,
then choose x0 > 1 large enough so that

t∗ :=
1
γ

log(Mx0) < 4x0 − 4,

and so x0 − t∗/4 > 1. Evaluating x at t∗, we obtain the contradic-
tion

1 = Me−γ t∗x0 ≥ x(t∗; x0, 0) =

(
x0 −

1
4
t∗

)2

> 1.

We conclude that (3.4) with v(t) ≡ 0 is not exponentially stable,
and, a fortiori, cannot be exponentially ISS. ⋄

Summary

To summarise, we have derived sufficient conditions for iISS
and strong iISS of the zero equilibrium pair of finite-dimensional,
continuous-time, forced Lur’e systems. Strong iISS is the combi-
nation of iISS and small-signal ISS, and was introduced in Chaillet
et al. (2014). Our main result, Theorem 3.1, says that if a complex
ball BC(K , r) of linear static output-feedback gains is stabilising
for a given linear system, then the zero equilibrium pair of the
related forced Lur’e system (1.1) is strongly iISS for all nonlinear-
ities f for which there exists α ∈ K such that ∥f (z) − Kz∥ ≤

r∥z∥ − α(∥z∥) for all z. Under a weaker assumption on the
nonlinearity, Proposition 3.10 provides a similar sufficient con-
dition for iISS. We note that these results are reminiscent of the
complex Aizerman conjecture (a well-known result in absolute
stability theory Hinrichsen & Pritchard, 1995, 2005) and resonate
with recent work on ISS of Lur’e systems (Sarkans & Logemann,
2015). Consequences of Theorem 3.1 include Corollary 3.8 and
Theorem 4.2: the former extends the classical circle criterion to
a strong iISS setting, the latter provides a sufficient condition
for stabilisation of linear systems by saturated feedback and is
related to the recent work (Azouit et al., 2016).

Appendix

A.1. Proof of Theorem 3.1

We collect some notation and preliminary technical results
used in the proof. For positive semi-definite symmetricM ∈ Rn×n,
we define the semi-norm |·|M via

|z|2M := ⟨z,Mz⟩ ∀ z ∈ Rn.

We note that |z|M = 0 if, and only if, z ∈ kerM . Moreover, |z|M =

∥M1/2z∥, where M1/2 denotes the unique positive semi-definite
square root of M . Consequently, we obtain the Cauchy–Schwarz
inequality ⟨z1,Mz2⟩ ≤ |z1|M |z2|M for all z1, z2 ∈ Rn which we
shall use extensively. Obviously, |·|M is a norm if, and only if, M
is positive-definite. The operator semi-norm induced by |·|M is
denoted by the same symbol. In particular, if N ∈ Rn×m, then
|N|M = 0 if, and only if, imN ⊂ kerM . Finally, a straightforward
calculation shows that ∇|z|M = Mz/|z|M for all z ∈ Rn with
|z|M ̸= 0, where ∇ denotes the gradient.

The theorem below is a combination of Angeli et al. (2000,
Theorem 1) and Angeli et al. (2000, Remark II.3), interpreted in
the context of the Lur’e system (1.1).

Theorem A.1. If (1.1) is 0-GAS, and there exist a continuously
differentiable radially unbounded function V : Rn

→ R+ with
V (0) = 0 and V (z) > 0 for z ̸= 0, and ζ ∈ K, such that, for all
(z, w) ∈ Rn

× Rq

⟨(∇V )(z), Az + Bf (y) + Bew⟩ ≤ ζ (∥w∥) , (A.1)

where y = Cz + Dew, then (1.1) is iISS.

Lemma A.2. Let κ ∈ K and g1 > 0 be such that 2g1 < sup κ and
set g2 := 2κ−1(2g1). Then

2sw ≤ sκ(s) + g2w ∀ s ≥ 0, ∀ w ∈ [0, g1]. (A.2)
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For κ ∈ K∞, the above lemma follows immediately from Kellet
(2014, Lemma 17), and the extension to κ ∈ K is straightforward.
For completeness, we point out that if sup κ < ∞ (that is, κ ̸∈

K∞) and if g1 > 0 is such that 2g1 > sup κ , then there does not
exist a constant g2 > 0 such that (A.2) holds.

Let K ∈ Rm×p be as in Theorem 3.1 and set

AK
:= A + BKC, BK

e := Be + BKDe

and f K := f − K .

}
(A.3)

Lemma A.3. Imposing the notation and assumptions of Theo-
rem 3.1, there exists positive semi-definite P = PT

∈ Rn×n such
that

(AK )TP + PAK
+ r2CTC = −LT L ,

PB = −LT ,

}
(A.4)

and a constant d > 0 such that

∥Cz∥ ≤ d|z|P ∀ z ∈ Rn. (A.5)

Further, there exist positive-definite Q = Q T
∈ Rn×n and δ > 0

such that

⟨AK z + Bu,Qz⟩ + ⟨z,Q (AK z + Bu)⟩

≤ − δ∥z∥2
+ ∥u∥2

∀ z ∈ Rn, ∀ u ∈ Rm. (A.6)

Without loss of generality, we may assume that P ̸= 0, as
if P = 0, then C = 0 by (A.5). Therefore, A is Hurwitz by
the detectability assumption. Moreover, the Lur’e system (1.1)
reduces to

ẋ = Ax + Bf (Dev) + Bev ,

which is easily seen to be exponentially ISS, and so is trivially iISS
with linear γ2 in the iISS estimate (2.4).

Proof of Lemma A.3. Since GK
∈ H∞(Cp×m), it follows from

the stabilisability and detectability assumptions that AK
:= A +

BKC is Hurwitz. Moreover, ∥GK
∥H∞ ≤ 1/r by Lemma 2.2. Now

the triple (AK , B, rC) is a stabilisable and detectable realisation
of the transfer function rGK and an application of the bounded
real lemma (see, for example, Hinrichsen and Pritchard (2005,
Theorem 5.3.25, Remark 5.3.27, p. 604)) to (AK , B, rC) shows that
there exist a positive semi-definite P = PT

∈ Rn×n and L ∈ Rm×n

such that (A.4) holds.
Note that (A.4) implies that ker P ⊆ ker C . Obviously, | · |P is a

norm on (ker P)⊥ and so there exists l > 0 such that ∥z∥ ≤ l|z|P
for all z ∈ (ker P)⊥. Hence, for all z = z1 + z2 ∈ Rn, z1 ∈ (ker P)⊥
and z2 ∈ ker P , we have that

∥Cz∥ = ∥Cz1 + Cz2∥ = ∥Cz1∥ ≤ ∥C∥∥z1∥
≤ l∥C∥|z1|P = l∥C∥|z1 + z2|P = d|z|P ,

where d := l∥C∥, which is (A.5).
Next, since AK is Hurwitz, there exists positive definite Q0 =

Q T
0 ∈ Rn×n such that

(AK )TQ0 + Q0AK
= −I.

It follows that

⟨AK z + Bu,Q0z⟩ + ⟨z,Q0(AK z + Bu)⟩

= ⟨((AK )TQ0 + Q0AK )z, z⟩ + 2⟨z,Q0Bu⟩

≤ − ∥z∥2
+ 2∥Q0B∥∥z∥∥u∥ ∀ (z, u) ∈ Rn

× Rm.

By using the inequality

2z1z2 ≤ ρz21 + z22/ρ ∀ z1, z2 ∈ R, ∀ ρ > 0 , (A.7)

on the second term on the right hand side of the above inequality,
and defining Q as a suitable positive multiple of Q0, we conclude
that there exists δ > 0 such that (A.6) holds. □

Proof of Theorem 3.1. The proof draws inspiration from ideas
in Arcak and Teel (2002) and Sarkans and Logemann (2015), but
the actual arguments differ substantially to those used in Arcak
and Teel (2002) and Sarkans and Logemann (2015) because of the
different stability notions and Lur’s systems under consideration.

Statement (1). Trivially, if the inequality (3.1) is satisfied with
α = β ∈ K∞, then, a fortiori, it holds for any α ∈ K\K∞ such that
α(s) ≤ β(s) for all s ≥ 0. Therefore, without loss of generality, we
may assume that α ∈ K\K∞, and so, α is bounded.

There are two claims to prove: system (1.1) is integral ISS and
small-signal ISS.

Integral ISS. The inequality (3.1) implies that (2.6) holds, and so
an application of Theorem 2.3 ensures that the unforced Lur’e
system is 0-GAS. We seek to apply Theorem A.1 to establish iISS
via a Lyapunov analysis, and so we shall construct a function V
satisfying (A.1) with ζ given by ζ (s) = as + bs2 for all s ≥ 0,
where a > 0 and b ≥ 0, with b = 0 if De = 0. Furthermore, we
will establish that ζ is an iISS gain for the Lur’e system (1.1) and
thus the comparison function γ2 can be chosen to satisfy (3.2).

We proceed in three steps.

Step 1: Preparations For The Lyapunov Analysis. The inequal-
ity (3.1) implies that

∥f K (z)∥2
≤ r2∥z∥2

∀ z ∈ Rp , (A.8)

where recall that f K is defined in (A.3). Moreover, it follows
from (3.1) that

α(s) ≤ rs ∀ s ∈ R+. (A.9)

Let P and Q be as in Lemma A.3. By equivalence of the norms ∥·∥

and |·|Q , there exist q1, q2 > 0 such that

q1∥z∥ ≤ |z|Q ≤ q2∥z∥ ∀ z ∈ Rn. (A.10)

Furthermore, there exists µ > 0 such that

|z|P ≤ µ|z|Q ∀ z ∈ Rn. (A.11)

Define the positive constants

j0 := δ/q22, j1 := min
{
1,

√
j0/(2r)

}
,

j2 := min
{
1,

√
j0/(dr)

}
,

}
(A.12)

where δ is as in (A.6). Define θ : R+ → R+ by

θ (s) =

⎧⎨⎩
0 s = 0
1
s

∫ s

0
α(j1τ ) dτ s > 0.

The function θ is positive and continuously differentiable on
(0,∞) and satisfies

0 ≤ θ (s) ≤ α(j1s) ≤ α(s) ∀ s ≥ 0 , (A.13)

and

θ (s) + sθ ′(s) =
d
ds

(sθ (s)) = α(j1s) ∀ s > 0. (A.14)

The combination of (A.13) and (A.14) yields that θ ′(s) ≥ 0 for all
s > 0, and so θ is non-decreasing. Choose ν > 0 sufficiently small
so that

min
{
s2,

1
1 + s

}
= s2 ∀ s ∈

[
0,

r3ν2

j0

]
. (A.15)

Since the function s ↦→ sθ (j2s) is in K∞, it is clear that there exists
ε1 > 0 such that
ε1r|C |Qµ∥α∥L∞

q1
s3 ≤ 1 for all s ≥ 0 such that

sθ (j2s) ≤ r3ν2/j0. (A.16)
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Choose ε2 > 0 sufficiently small so that

ε2 min
{
s2θ2(j2s),

1
1 + sθ (j2s)

}
sα(j1j2s)

≤
q1α(ν/2)α(j1ν/d)

r|C |Qµ
∀ s ≥ 0. (A.17)

Such a choice is possible owing to the boundedness of α and the
fact that θ is non-decreasing. Set ε := min{ε1, ε2} and define
k, h : R+ → R+ by

k(s) = εmin
{
s2,

1
1 + s

}
and h(s) =

∫ s

0
k(τ ) dτ

⎫⎪⎪⎬⎪⎪⎭ for all s ≥ 0.

Step 2: Lyapunov Analysis. Define V : Rn
→ R+ by

V (z) := 2|z|Pθ (|z|P ) + 2h
(
|z|Q θ (j2|z|Q )

)
∀ z ∈ Rn.

This function is continuously differentiable and satisfies V (0) = 0
and V (z) > 0 for z ̸= 0. Moreover, by setting

VP (z) := 2|z|Pθ (|z|P )
and VQ (z) := 2h

(
|z|Q θ (j2|z|Q )

)} ∀ z ∈ Rn,

it is clear that

V (z) ≥ VQ (z) = 2h
(
|z|Q θ (j2|z|Q )

)
∀ z ∈ Rn,

and so V is radially unbounded as

h(s) =

∫ s

0
k(τ ) dτ ≥ ε

∫ s

1

1
1 + τ

dτ ∀ s ≥ 1,

diverges as s → ∞.
Defining the map F : Rn

× Rq
→ Rn by

F (z, w) := AK z + Bf K (Cz + Dew) + BK
ew , (A.18)

it is clear that, for all (z, w) ∈ Rn
× Rq,

F (z, w) = Az + Bf (Cz + Dew) + Bew. (A.19)

We will show that there exists c > 0 such that

⟨(∇V )(z), F (z, w)⟩ ≤ c
(
∥BK

ew∥ + ∥Dew∥ + ∥Dew∥
2)

∀ (z, w) ∈ Rn
× Rq. (A.20)

Setting y = Cz + Dew, a straightforward calculation using (A.14)
shows that

⟨(∇VP )(z), F (z, w)⟩

= 2 ⟨Pz, AK z + Bf K (y) + BK
ew⟩

α(j1|z|P )
|z|P

∀ (z, w) ∈ Rn
× Rq with z ̸∈ ker P . (A.21)

Using the Cauchy–Schwarz inequality, we majorise the terms
in (A.21) which contain BK

ew by

2 ⟨Pz, BK
ew⟩

α(j1|z|P )
|z|P

≤ 2α(j1|z|P )|B
K
ew|P

≤ c1∥BK
ew∥ , (A.22)

where c1 := 2
√

∥P∥∥α∥L∞ . Next, we estimate the terms in (A.21)
which do not contain BK

ew. Using (A.4), we compute

2⟨Pz, AK z + Bf K (y)⟩

= − r2∥Cz∥2
− ∥Lz + f K (y)∥2

+ ∥f K (y)∥2

≤ − r2∥Cz∥2
+ ∥f K (y)∥2

= − r2∥y∥2
+ ∥f K (y)∥2

+ r2∥Dew∥
2
+ 2r2⟨Cz,Dew⟩

≤ − r∥y∥α(∥y∥) + r2∥Dew∥
2
+ 2r2⟨Cz,Dew⟩

∀ (z, w) ∈ Rn
× Rq , (A.23)

where the last inequality follows from (3.1) and (A.9). Using (A.5)
and (A.9), we obtain that(

∥Dew∥
2
+ 2⟨Cz,Dew⟩

) α(j1|z|P )
|z|P

≤ max
{
rj1, 2d∥α∥L∞

}(
∥Dew∥ + ∥Dew∥

2
)

∀ (z, w) ∈ Rn
× Rq, z ̸∈ ker P . (A.24)

Since α is non-negative, we obtain from (A.23) and (A.24) that

2⟨Pz, AK z + Bf K (y)⟩
α(j1|z|P )

|z|P

≤ − r∥y∥α(∥y∥)
α(j1|z|P )

|z|P
+ c2

(
∥Dew∥ + ∥Dew∥

2
)

∀ (z, w) ∈ Rn
× Rq, z ̸∈ ker P , (A.25)

where c2 := r2 max
{
rj1, 2d∥α∥L∞

}
. Therefore, the conjunction

of (A.21), (A.22) and (A.25) gives,

⟨(∇VP )(z), F (z, w)⟩

≤ − r∥y∥α(∥y∥)
α(j1|z|P )

|z|P
+ c1∥BK

ew∥ + c2
(
∥Dew∥

+ ∥Dew∥
2
)

∀ (z, w) ∈ Rn
× Rq, z ̸∈ ker P . (A.26)

Next we estimate the inner product ⟨(∇VQ )(z), F (z, w)⟩. To this
end, set kz := k

(
|z|Q θ (j2|z|Q )

)
for z ∈ Rn. A calculation similar to

that leading to (A.21) yields

⟨(∇VQ )(z), F (z, w)⟩

= 2h′(|z|Q θ (j2|z|Q ))⟨F (z, w),Qz⟩
α(j1j2|z|Q )

|z|Q

= 2kz⟨AK z + Bf K (y) + BK
ew,Qz⟩

α(j1j2|z|Q )
|z|Q

∀ (z, w) ∈ Rn
× Rq, z ̸= 0, (A.27)

where we have used that h′
= k. We estimate the terms on

the right hand side of (A.27) with and without BK
ew separately.

For which purpose, we invoke the Cauchy–Schwarz inequality, to
obtain, for all (z, w) ∈ Rn

× Rq with z ̸= 0

2kz⟨BK
ew,Qz⟩

α(j1j2|z|Q )
|z|Q

≤ 2∥k∥L∞∥α∥L∞ |BK
ew|Q

= c3∥BK
ew∥ , (A.28)

where c3 := 2q2∥k∥L∞∥α∥L∞ and q2 is as in (A.10). Returning
to (A.27), we now use (A.6) and (A.8) to estimate that

2⟨AK z + Bf K (y),Qz⟩

≤ − δ∥z∥2
+ r2

(
∥Cz∥2

+ 2∥Cz∥∥Dew∥ + ∥Dew∥
2)

∀ (z, w) ∈ Rn
× Rq. (A.29)

Akin to (A.24), we estimate using (A.5) and (A.9) that

r2kz
(
2∥Cz∥∥Dew∥ + ∥Dew∥

2)α(j1j2|z|Q )
|z|Q

≤ r2∥k∥L∞ max
{
2dµ∥α∥L∞ , rj1j2

}(
∥Dew∥ + ∥Dew∥

2)
∀ (z, w) ∈ Rn

× Rq, z ̸= 0 , (A.30)

where we have made use of (A.11). Combining (A.27)–(A.30)
yields that, for all (z, w) ∈ Rn

× Rq with z ̸= 0

⟨(∇VQ )(z), F (z, w)⟩

≤ kz
(
−δ∥z∥2

+ r2∥Cz∥2
)α(j1j2|z|Q )

|z|Q
+ c3∥BK

ew∥

+ c4
(
∥Dew∥ + ∥Dew∥

2) , (A.31)



10 C. Guiver and H. Logemann / Automatica 111 (2020) 108641

where c4 := r2∥k∥L∞ max
{
2dµ∥α∥L∞ , rj1j2

}
. We claim that there

exists c5 > 0 such that,

r2∥Cz∥2kz
α(j1j2|z|Q )

|z|Q
≤ r∥y∥α(∥y∥)

α(j1|z|P )
|z|P

+ j0kz |z|Qα(j1j2|z|Q ) + c5∥Dew∥

∀ (z, w) ∈ Rn
× Rq, z ̸∈ ker P . (A.32)

So as to avoid disrupting the flow of the present argument, we
postpone the proof of (A.32) until later.

By choice of the constant j0 > 0 we have that

j0kz |z|Qα(j1j2|z|Q ) ≤ δ∥z∥2kz
α(j1j2|z|Q )

|z|Q
∀ z ∈ Rn, z ̸= 0. (A.33)

Adding (A.26) and (A.31), and using (A.32) and (A.33), we arrive
at the estimate

⟨(∇V )(z), F (z, w)⟩ = ⟨(∇VP + ∇VQ )(z), F (z, w)⟩

≤ c
(
∥BK

ew∥ + ∥Dew∥ + ∥Dew∥
2)

∀ (z, w) ∈ Rn
× Rq, z ̸∈ ker P , (A.34)

where c :=
∑5

i=1 ci. Let now z ∈ ker P . Choosing z⊥
∈ (ker P)⊥,

z⊥
̸= 0 (which is possible since P ̸= 0), we have that zλ :=

z + λz⊥
̸∈ ker P for every non-zero λ ∈ R. For w ∈ Rq, it follows

from (A.34) that

⟨(∇V )(zλ), F (zλ, w)⟩ ≤ c
(
∥BK

ew∥ + ∥Dew∥ + ∥Dew∥
2)

∀w ∈ Rq, ∀ λ ∈ R, λ ̸= 0.

Letting λ → 0 above and invoking the continuity of ∇V and
F , we infer that (A.34) extends to all (z, w) ∈ Rn

× Rq, which
yields (A.20). Therefore, setting

a := c(∥BK
e ∥ + ∥De∥) and b := c∥De∥

2,

and ζ (s) := as + bs2, we arrive at, for all (z, w) ∈ Rn
× Rq,

⟨(∇V )(z), F (z, w)⟩ ≤ ζ (∥w∥). (A.35)

It now follows from Theorem A.1 and (A.19) that the Lur’e sys-
tem (1.1) is iISS.

Step 3: The function γ2 in (2.4) may be chosen to satisfy (3.2).
We note that, for every compact set Γ ⊂ Rn, there exists l > 0
such that

∥F (z, w)∥ ≤ l
(
1 + ζ (∥w∥)

)
∀ (z, w) ∈ Γ × Rq.

Together with (A.35) and Wang and Weiss (2008, Theorem 2.4)
this implies that (2.4) holds with γ2 = ζ , showing that γ2 may be
chosen to satisfy (3.2). Moreover, if De = 0, then b = 0, in which
case γ2 = ζ is linear.

To complete the argument which will establish the iISS prop-
erty, it remains to show that (A.32) holds. To this end, we first
prove that

kzr2∥Cz∥2 α(j1j2|z|Q )
|z|Q

≤ r∥Cz∥α
(
∥Cz∥/2

)α(j1|z|P )
|z|P

+ j0kz |z|2Q
α(j1j2|z|Q )

|z|Q
∀ z ∈ Rn

\ker P . (A.36)

Since (A.36) trivially holds if Cz = 0, we assume that Cz ̸= 0 and
consider two exhaustive cases.

Case 1: ∥Cz∥ ≥ ν, where ν > 0 is as in (A.15). In this case, it
follows from (A.5) that

ν ≤ d|z|P , (A.37)

and so, we may estimate

kzr∥Cz∥
α(j1j2|z|Q )

|z|Q
|z|P ≤ α(ν/2)α(j1ν/d)

≤ α

(
∥Cz∥/2

)
α(j1|z|P ) ,

where the first inequality follows from (A.17) and the definition
of k, whilst we have used (A.37) and the fact that α is increasing
to obtain the second inequality. Dividing both sides of the above
by |z|P > 0 and multiplying by r∥Cz∥ gives (A.36), as required.

Case 2: ∥Cz∥ < ν. We note that if

r2∥Cz∥2
≤ j0|z|2Q ,

then (A.36) holds, because in this case the LHS of (A.36) is less
or equal to the second term on the RHS of (A.36). Therefore, we
assume that

j0|z|2Q ≤ r2∥Cz∥2. (A.38)

Hence, j0|z|2Q ≤ r2∥Cz∥2
≤ r2ν2, and so,

|z|Q θ (j2|z|Q ) ≤ |z|Qα(j1j2|z|Q ) ≤
r3ν2

j0
, (A.39)

where the first inequality follows from (A.9), (A.13), and the fact
that j1, j2 ≤ 1. Consequently, in light of (A.15), we have that, for
all z satisfying (A.38),

k
(
|z|Q θ (j2|z|Q )

)
= ε|z|2Q θ

2(j2|z|Q )

≤ ε1|z|2Q θ
2(j2|z|Q ). (A.40)

We require two further estimates. The first,

θ (j2|z|Q ) ≤ α(j1j2|z|Q ) ≤ α(j1|z|Q )

≤ α(j1(r/
√
j0)∥Cz∥) ≤ α(∥Cz∥/2) , (A.41)

follows from (A.12) and (A.13) and the monotonicity of α. The
second,

θ (j2|z|Q ) ≤ α(j1j2|z|Q ) ≤ α(j1j2(r/
√
j0)∥Cz∥)

≤ α(j1(j2rd/
√
j0)|z|P ) ≤ α(j1|z|P ) , (A.42)

is a consequence of (A.5), (A.12) and (A.13).
Appealing to (A.39)–(A.42), we obtain that

k
(
|z|Q θ (j2|z|Q )

)
r∥Cz∥

α(j1j2|z|Q )
|z|Q

|z|P

≤ ε1|z|2Q θ
2(j2∥z∥Q )r∥Cz∥

α(j1j2|z|Q )
|z|Q

|z|P

≤ ε1r|z|2Q∥Cz∥α
(
∥Cz∥/2

)
α(j1|z|P )

α(j1j2|z|Q )
|z|Q

|z|P

≤
ε1r|C |Qµ∥α∥L∞

q1
|z|3Qα

(
∥Cz∥/2

)
α(j1|z|P )

≤α
(
∥Cz∥/2

)
α(j1|z|P ) , (A.43)

where the final inequality above follows from the definition of ε1
in (A.16) and crucially uses (A.39). Dividing both sides of (A.43)
by |z|P > 0 and multiplying by r∥Cz∥ gives (A.36).

Using that y = Cz + Dew, and α is increasing and bounded, it
is routine to prove that

∥Cz∥α
(
∥Cz∥/2

)
≤ ∥y∥α(∥y∥) + 2∥α∥L∞∥Dew∥

∀(z, w) ∈ Rn
× Rq. (A.44)

Inserting (A.44) into (A.36) yields (A.32) with c5 := 2∥α∥L∞ rj1,
where we have used that α(j1|z|P ) ≤ rj1|z|P for all z ∈ Rn.

Small-signal ISS. The proof is very similar to that of Sarkans
and Logemann (2015, Theorem 3.2), and so we only outline the
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argument. To establish the small-signal ISS property, it suffices
to find R > 0, a continuously differentiable W : Rn

→ R+, and
α1, α2, γ , µ ∈ K∞ such that

α1(∥z∥) ≤ W (z) ≤ α2(∥z∥) ∀ z ∈ Rn , (A.45)

and, furthermore,

⟨(∇W )(z), F (z, w)⟩ ≤ −γ (∥z∥) + µ(∥w∥)

∀ (z, w) ∈ Rn
× BR(0) , (A.46)

see Chaillet et al. (2014, Section IV.A.), where BR(0) is the open
ball in Rq centred at the origin and of radius R. Let P,Q ∈ Rn×n

be as in Lemma A.3, and satisfy (A.4) and (A.6), respectively. A
suitable W is given by

W (z) := |z|2P + h
(
|z|2Q

)
∀ z ∈ Rn , (A.47)

where h : R+ → R+ is defined by h(0) = 0 and

h(s) = ν0

∫ s

0
min

{
τ ,
α(ν1

√
τ )

√
τ

}
dτ ∀ s > 0 ,

with ν0 := q1/(r∥C∥) and ν1 :=
√
δ/(4rq2). The motivation for the

choice of ν0 and ν1 is apparent when estimating ⟨∇W (z), F (z, w)⟩.
The argument now mirrors that used in the proof of Sarkans
and Logemann (2015, Theorem 3.2). The function µ defined
on Sarkans and Logemann (2015, p. 448) is replaced by the K
function

κ(s) := min
{
ν2s3, ν3α(ν1q1s)

}
∀ s ≥ 0 , (A.48)

where ν2 := (ν0q21δ)/8 and ν3 := ν0δ/(8q2), and references
to Sarkans and Logemann (2015, Lemma 2.4) should be replaced
by references to Lemma A.2. Although Sarkans and Logemann
(2015, Theorem 3.2) consider the case wherein De = 0, the
analysis in Sarkans and Logemann (2015) extends to the case of
nonzero De (which gives rise to extra terms of the form ∥Dew∥

2,
cf. (A.26) and (A.31)) and shows that there exist constants d, R >
0 such that, for all (z, w) ∈ Rn

× BR(0),

⟨∇W (z), F (z, w)⟩ ≤ −∥z∥κ(∥z∥) + d
(
∥w∥ + ∥w∥

2).
The proof of statement (1) is complete.

Statement (2). This statement is a generalisation of Sarkans and
Logemann (2015, Theorem 3.2) to the case wherein De ̸= 0.
The proof in Sarkans and Logemann (2015) extends to this case
subject to comments similar to those made in the proof of the
small-signal ISS property. In particular, since α ∈ K∞, the func-
tion κ in (A.48) is in K∞, and W given in (A.47) is an ISS Lyapunov
function for (1.1), completing the proof of the theorem. □

A.2. Remaining proofs

Proof of Corollary 3.4. We rewrite (1.1) as

ẋ = Ax + Bf (Cx) + B
(
f (Cx + Dev) − f (Cx)

)
+ Bev, x(0) = x0 , (A.49)

which we view as another instance of (1.1) with Be, De and v
replaced by

B̃e :=
(
Be I

)
, D̃e := 0,

and ṽ :=

(
v

f (Cx + Dev) − f (Cx)

)
,

respectively. An application of statement (1) of Theorem 3.1
to (A.49) shows that (A.49) is iISS (with respect to the input ṽ)
and, as D̃e = 0, γ2 is of the form γ2(s) = as for some constant
a > 0. The claim now follows since, as a consequence of the global
Lipschitz property, there exists λ > 0 such that ∥ṽ(t)∥ ≤ λ∥v(t)∥
for all t ≥ 0. □

Proof of Corollary 3.6. We claim that

∥GK
∥H∞ ≤ 1/r. (A.50)

If (A.50) holds, then Lemma 2.2 yields that BC(K , r) ⊆ SC(G), and
the corollary now follows from Theorem 3.1.

It remains to prove (A.50). Seeking a contradiction, suppose
that ∥GK

∥H∞ > 1/r . By the real supremum value property, there
exists s∗ ∈ {s ∈ C : Re s ≥ 0} ∪ {∞} such that GK (s∗) ∈ Rp×m and

∥GK (s∗)∥ = ∥GK
∥H∞ >

1
r
.

Note that here ∥GK (s∗)∥ is the 2-norm induced norm of GK (s∗)
as an operator from Cm to Cp. Since, for R ∈ Rp×m, the real and
complex operator norms induced by the 2-norm coincide (Taylor,
1958), that is,

sup
x∈Rm, x̸=0

∥Rx∥
∥x∥

= sup
z∈Cm, z ̸=0

∥Rz∥
∥z∥

,

there exists u ∈ Rm such that ∥u∥ = 1 and

∥GK (s∗)u∥ = ∥GK (s∗)∥ = ∥GK
∥H∞ .

Set γ := ∥GK (s∗)u∥ = ∥GK
∥H∞ > 1/r , and define w :=

(1/γ )GK (s∗)u ∈ Rp and L ∈ Rm×p by Ly := ⟨y, w⟩u/γ for all
y ∈ Rp. We see that

(I − LGK (s∗))u = u − LGK (s∗)u = 0,

so L ̸∈ SR(GK ), and, moreover,

∥Ly∥ =
|⟨y, w⟩|

γ
∥u∥ ≤

∥y∥
γ

< r∥y∥ ∀ y ∈ Rp,

from which we deduce that L ∈ BR(0, r). We conclude that
BR(0, r) ̸⊆ SR(GK ), showing that BR(K , r) ̸⊆ SR(G), and thus
yielding a contradiction. Consequently, (A.50) holds. □

Proof of Corollary 3.8. The proof is very similar to that of Sarkans
and Logemann (2015, Corollary 3.10). Therefore, we will be brief
and focus on the modifications required to make the proof of
Sarkans and Logemann (2015, Corollary 3.10) carry over to the
current situation. Setting L := (K1 − K2)/2, it can be shown as
in Sarkans and Logemann (2015) that L is left invertible (with left
inverse L♯ := (LT L)−1LT ) and, furthermore,

BC(−LL♯, 1) ⊆ SC(LGK1 ). (A.51)

Set AK1 := A + BK1C . Since (A, B, C) is stabilisable and detectable
and L is left invertible, it follows that the triple (AK1 , B, LC) is
stabilisable and detectable. Note that LGK1 is the transfer function
of (AK1 , B, LC). Defining f̃ : Rm

→ Rm by

f̃ (ξ ) = f (L♯ξ ) − K1L♯ξ ∀ ξ ∈ Rm,

it is straightforward to show that (v, x) satisfies (1.1) if, and only
if, (v, x) satisfies

ẋ = AK1x + Bf̃ (LCx + LDev)

+ (Be + BK1De)v, x(0) = x0. (A.52)

As in the proof of Sarkans and Logemann (2015, Corollary 3.10),
it can be shown that there exists β ∈ K such that

∥f̃ (z) + LL♯z∥ ≤ ∥z∥ − β(∥z∥) ∀ z ∈ Rm , (A.53)

with β ∈ K∞ if α ∈ K∞. In light of (A.51) and (A.53), an
application of Theorem 3.1 (with r = 1 and K = −LL♯) to (A.52)
establishes the claim. □

Proof of Proposition 3.10. We seek to invoke Theorem A.1.
The 0-GAS property follows from Theorem 2.3. It remains to
establish the estimate (A.1) for a suitable function V . To this
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end, set AK
:= A + BKC and let P be as in (A.4). Note that the

controllability/observability assumption implies that P is positive
definite (if the observability assumption holds, then this follows
from Hinrichsen and Pritchard (2005, Remark 5.6.24), and a du-
ality argument can be used to deal with the case wherein the
controllability assumption is satisfied). Set

k(s) := min
{
s,

1
1 + s

}
and h(s) :=

∫ s

0
k(τ ) dτ

⎫⎪⎪⎬⎪⎪⎭ ∀ s ≥ 0,

and define V : Rn
→ R+ by V (z) := h

(
|z|2P

)
for all z ∈ Rn.

It is easily seen that V is continuously differentiable, radially
unbounded, V (0) = 0 and V (z) > 0 for all z ̸= 0 (where we
have used that P is positive definite). Defining F : Rn

×Rq
→ Rn

by (A.18), a routine calculation similar to that leading to (A.23)
shows that

⟨(∇V )(z), F (z, w)⟩ = 2h′(|z|2P )⟨Pz, F (z, w)⟩

≤ k(|z|2P )r
2
∥Dew∥

2
+ 2k(|z|2P )|z|P

(
r2d∥Dew∥

+ ∥P1/2
∥∥BK

ew∥
)

∀ (z, w) ∈ Rn
× Rq,

where d > 0 is as in (A.5). Using that the functions k and s ↦→

k(s2)s are bounded, and appealing to (A.19), it follows that (A.1)
holds with ζ given by ζ (s) = as+bs2, where a > 0 and b ≥ 0 are
suitable constants. The argument that ζ is an iISS gain is the same
as that in the proof of Theorem 3.1. Consequently, ζ is a possible
choice for γ2, showing that γ2 may be chosen to satisfy (3.2). □

Proof of Theorem 4.2. We seek to apply statement (1) of
Theorem 3.1 with r := ∥K∥ > 0 and f : Rp

→ Rm given by
f (z) := g(Kz). For which purpose, it only remains to check that
there exists α ∈ K such that (3.1) holds. Since g ∈ F , there exist
β, γ , δ > 0 such that properties (F .1) and (F .2) hold.

Let z ∈ Rp. Invoking (F .1), we estimate that

∥f (z) − Kz∥2
= ∥g(Kz) − Kz∥2

= ∥g(Kz)∥2
− 2⟨g(Kz), Kz⟩ + ∥Kz∥2

≤ ∥Kz∥2
− ⟨g(Kz), Kz⟩. (A.54)

We distinguish between two cases.

Case 1: If ∥Kz∥ ≤ δ, then, invoking the first inequality in (F .2), it
follows from (A.54) yields that

∥f (z) − Kz∥2
≤ ∥Kz∥2

− β∥Kz∥2
= (1 − β)∥Kz∥2.

Without loss of generality, we may assume that β ∈ (0, 1), and
so

∥f (z) − Kz∥ ≤

√
1 − β ∥K∥∥z∥

≤ ∥K∥∥z∥ − α1(∥z∥) , (A.55)

for all α1 ∈ K which satisfy α1(s) ≤ ∥K∥
(
1 −

√
1 − β

)
s for all

s ≥ 0.

Case 2: If ∥Kz∥ ≥ δ, then the second inequality in (F .2) combined
with (A.54) yields that

∥f (z) − Kz∥2
≤ ∥Kz∥2

− γ ∥Kz∥ ≤ (∥Kz∥ − γ /2)2.

Without loss of generality, we may assume that γ /2 ≤ δ ≤ ∥Kz∥
and, therefore,

∥f (z) − Kz∥ ≤ ∥Kz∥ − γ /2 ≤ ∥K∥∥z∥ − γ /2
≤ ∥K∥∥z∥ − α2(∥z∥) ,

for all α2 ∈ K which satisfy α(s) ≤ γ /2 for all s ≥ 0. Hence, in
light of (A.54) and (A.55), taking α := min{α1, α2} ∈ K ensures
that f satisfies (3.1), completing the proof. □

In the following, for σ ∈ Sm and l > 0, it is convenient to
define σ l(z) := σ (lz) for all z ∈ Rm. It is obvious that σ l

∈ Sm. To
facilitate the proof of Proposition 4.4, we state a simple lemma.

Lemma A.4. Let σ ∈ S . The following statements hold.

(1) If there exists l > 0 such that(
σ l(s)

)2
≤ sσ l(s) ∀ s ∈ R,

then, for any k > 0(
σ k(s)

)2
≤ (k/l)sσ k(s) ∀ s ∈ R.

(2) Assume that there exist positive l, b and δ such that

sσ l(s) ≥ bs2 ∀ s ∈ R s.t. |s| ≤ δ.

Then, for any k > 0,

sσ k(s) ≥ (k/l)bs2 ∀ s ∈ R s.t. |s| ≤ (l/k)δ.

(3) For every l > 0 and every ε > 0, there exists c > 0 such that

sσ l(s) ≥ c|s| ∀ s ∈ R s.t. |s| ≥ ε.

The straightforward proof of the above lemma is left to the
reader.

Proof of Proposition 4.4. We consider the cases m = 1 and
m > 1 separately.

Case 1: m = 1. Let σ ∈ S. By the local Lipschitz property, there
exists L > 0 such that

|σ (s)| ≤ L|s| ∀ s ∈ R s.t. |s| ≤ ∥σ∥L∞ ,

and thus,

(σ (s))2 ≤ Lsσ (s) ∀ s ∈ R s.t. |s| ≤ ∥σ∥L∞ . (A.56)

Obviously, we may assume that L ≥ 1, and so, l := 1/L ≤ 1.
Consequently, by (A.56),(
σ l(s)

)2
≤ L(ls)σ (ls) ≤ sσ l(s)

∀ s ∈ R s.t. |s| ≤ ∥σ∥L∞ . (A.57)

Moreover,(
σ l(s)

)2
≤∥σ ∥L∞ |σ l(s)| ≤ sσ l(s)

∀ s ∈ R s.t. |s| > ∥σ∥L∞ .

Together with (A.57) this gives(
σ l(s)

)2
≤ sσ l(s) ∀ s ∈ R,

showing that σ l satisfies (F .1).
Since lim inf|s|→∞ σ (s)/s > 0, there exist positive constants β

and δ such that
σ l(s)
s

= l
σ (ls)
ls

≥ β ∀ s ∈ R s.t. |s| ≤ δ,

implying that

sσ l(s) ≥ βs2 ∀ s ∈ R s.t. |s| ≤ δ. (A.58)

Furthermore, statement (3) of Lemma A.4 guarantees the exis-
tence of a constant γ > 0 such that

sσ l(s) ≥ γ |s| ∀ s ∈ R s.t. |s| > δ.

Together with (A.58) this shows that σ l satisfies (F .2). Conse-
quently, σ l

∈ F .

Case 2: m > 1. Let σ ∈ Sm. Then there exist σ1, . . . , σm ∈ S such
that

σ (z) =
(
σ1(z1), . . . , σm(zm)

)T
∀ z = (z1, . . . , zm)T ,
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where zi denotes the ith component of z. By Case 1, there exist
positive constants li, βi and δi such that, for all i ∈ m :=

{1, . . . ,m},(
σ

li
i (s)

)2
≤ sσ li

i (s) ∀ s ∈ R

and sσ li
i (s) ≥ βis2 ∀ s ∈ R s.t. |s| ≤ δi.

We set

l := min
i∈m

li, δ := min
i∈m

δi and β := min
i∈m

( l
li
βi

)
,

and note that, l ≤ li, δ ≤ δi and β ≤ βi for all i ∈ m. Furthermore,
by statement (1) of Lemma A.4,(
σ l
i (s)

)2
≤ sσ l

i (s) ∀ s ∈ R, ∀ i ∈ m , (A.59)

and, by statement (2) of Lemma A.4,

sσ l
i (s) ≥ βs2 ∀ s ∈ R s.t. |s| ≤ δ, ∀ i ∈ m. (A.60)

Statement (3) of Lemma A.4 guarantees the existence of a con-
stant η > 0 such that, for all i ∈ m

sσ l
i (s) ≥ η|s| ∀ s ∈ R s.t. |s| ≥ δ/

√
m. (A.61)

Appealing to (A.59), we obtain that

∥σ l(z)∥2
=

m∑
i=1

(
σ l
i (zi)

)2
≤

m∑
i=1

ziσ l
i (zi) = ⟨σ l(z), z⟩ ∀ z ∈ Rm ,

showing that σ l satisfies (F .1).
We proceed to establish that σ l also satisfies (F .2). To this end,

we make use of (A.60) to conclude that

⟨σ l(z), z⟩ =

m∑
i=1

ziσ l
i (zi) ≥ β

m∑
i=1

z2i = β∥z∥2

∀ z ∈ Rm s.t. ∥z∥ ≤ δ. (A.62)

Finally, by (A.61),

⟨σ l(z), z⟩ =

m∑
i=1

ziσ l
i (zi) ≥ zjσj(zj) ≥ η|zj|

∀ z ∈ Rm s.t. ∥z∥ > δ ,

where |zj| = maxi∈m |zi| ≥ ∥z∥/
√
m > δ/

√
m. Hence, setting

γ := η/
√
m, we arrive at

⟨σ l(z), z⟩ ≥ ηmax
i∈m

|zi| ≥ γ ∥z∥ ∀ z ∈ Rm s.t. ∥z∥ > δ.

Together with (A.62) this shows that (F .2) holds for σ l. Conse-
quently, σ l is in F . □

Proof of Theorem 5.1. For a proof of statement (1) see Sarkans
(2014, Proposition 8.2.1).

Assume now that∆(z) > 0 for all z ∈ Rm, z ̸= 0. Statement (2)
follows from Theorem 2.3 and Proposition 3.10. To facilitate the
proofs of statements (3)–(6), define γ : R+ → R+ by

γ (s) = rs − sup
∥z∥=s

∥f (z) − Kz∥ = inf
∥z∥=s

∆(z) ∀ s ≥ 0.

The function γ is continuous, γ (0) = 0 and γ (s) > 0 for all s > 0.
Moreover, setting

β(s) := inf
τ≥s
γ (τ ) ∀ s ≥ 0,

we note that β(0) = 0 and β : R+ → R+ is non-decreasing and
continuous. It is clear that either β(s) > 0 for all s > 0 or β(s) ≡ 0,

and we note that the former is equivalent to lim inf∥z∥→∞∆(z) >
0. Finally, defining α : R+ → R+ by α(s) := (1 − e−s)β(s) for all
s ≥ 0, it is clear that α(0) = 0, α is continuous and

α(s) ≤ β(s) ≤ γ (s) ≤ inf
∥z∥=s

∆(z) ∀ s ≥ 0.

Consequently, α(∥z∥) ≤ ∆(z) for all z ∈ Rm and thus,

∥f (z) − Kz∥ ≤ r∥z∥ − α(∥z∥) ∀ z ∈ Rm. (A.63)

To prove statement (3), assume that lim inf∥z∥→∞∆(z) > 0. Then
α is strictly increasing, whence is in K, and statement (3) follows
from (A.63) and Theorem 3.1.

We proceed to prove statement (4). By the radial unbounded-
ness assumption, it is obvious that γ (s) → ∞ as s → ∞, and so
β(s) → ∞ as s → ∞, which in turn implies that α(s) → ∞

as s → ∞, showing that α ∈ K∞. Statement (4) is now a
consequence of (A.63) and Theorem 3.1.

Next, before we prove statement (5), we establish statement
(6). By hypothesis, there exist δ1 > 0 and 0 < ρ1 < ρ2 such that
∆(z)
∥z∥

≥ δ1 ∀ z ∈ Rm s.t. 0 < ∥z∥ < ρ1 or ∥z∥ > ρ2.

By continuity of ∆ and the assumption that ∆(z) > 0 for all
z ∈ Rp, z ̸= 0, there exists δ2 > 0 such that
∆(z)
∥z∥

≥ δ2 ∀ z ∈ Rm s.t. ρ1 ≤ ∥z∥ ≤ ρ2.

Hence, ∆(z) ≥ δ∥z∥ for all z ∈ Rp, where δ := min{δ1, δ2}.
Therefore,

∥f (z) − Kz∥ ≤ (r − δ)∥z∥ ∀ z ∈ Rp,

and it follows from Guiver et al. (2019, Theorem 4.1) that sys-
tem (1.1) is exponentially ISS.

To prove statement (5), let Γ > 0 be given. By statement (4),
the Lur’e system (1.1) is ISS, and so, for all x0 ∈ Rn and v ∈

L∞(R+,Rq) such that ∥x0∥ + ∥v∥L∞ ≤ Γ , there exists λ > 0 such
that the output Cx + Dev of (1.1) satisfies

∥Cx(t) + Dev(t)∥ ≤ λ ∀ t ≥ 0.

Since lim inf∥z∥→0(∆(z)/∥z∥) > 0 and ∆(z) > 0 for z ̸= 0, there
exists δ > 0 such that
∆(z)
∥z∥

≥ δ ∀ z ∈ Rm s.t. 0 < ∥z∥ ≤ λ,

and so, for all z ∈ Rm such that 0 < ∥z∥ ≤ λ

∥f (z) − Kz∥ ≤ (r − δ)∥z∥. (A.64)

Define the function f̃ : Rp
→ Rm by

f̃ (z) :=

⎧⎨⎩
f (z) , ∥z∥ ≤ λ ,

f
(
λ

z
∥z∥

)
+ (∥z∥ − λ) K

z
∥z∥

, ∥z∥ > λ.

Observe that f̃ is locally Lipschitz, and, for z ∈ Rp with ∥z∥ > λ,
we have that

∥f̃ (z) − Kz∥ =

f (
λ

z
∥z∥

)
− Kλ

z
∥z∥


≤ (r − δ)λ ≤ (r − δ)∥z∥.

Together with (A.64) this yields

∥f̃ (z) − Kz∥ ≤ (r − δ)∥z∥ ∀ z ∈ Rp,

and consequently, by statement (6), the Lur’e system

ẋ = Ax + Bf̃ (Cx + Dev) + Bev, x(0) = x0 , (A.65)

is exponentially ISS. Now, by construction, for all x0 ∈ Rn and
v ∈ L∞(R+,Rq) such that ∥x0∥ + ∥v∥L∞ ≤ Γ , the solution x :=
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x(· ; x0, v) of (1.1) satisfies f (Cx(t) + Dev(t)) = f̃ (Cx(t) + Dev(t))
for all t ≥ 0, and thus it also solves (A.65), showing that (1.1)
semi-globally exponentially ISS. The proof is complete. □
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