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1. Introduction

We consider stability and convergence properties of the feed-
back interconnection shown in Fig. 1.1, which comprises a linear
system in the forward path and a static nonlinearity in the feed-
back path. Such systems are often termed Lur’e systems, and
their stability and convergence properties is a well-researched
area. The study of the stability of Lur'e systems is called ab-
solute stability theory, which seeks to conclude stability of the
feedback system given in Fig. 1.1, via the interplay of frequency-
domain properties of the linear component and sector properties
of the nonlinearity. Lyapunov approaches have been used to
deduce global asymptotic stability of unforced Lur’e systems (see,
for example, [1-3]), and input-output methods, pioneered by
Sandberg and Zames in the 1960s, have been used to infer L?
and L*° stability (see, for example, [4,5]). More recently, forced
Lur'e systems have been analysed in the context of input-to-
state stability (ISS) theory, with attention focused on the extent
to which results from classical absolute stability theory can be
generalised to ensure ISS [6-11]. Originating in the paper [12],
ISS is a property of general controlled nonlinear systems and,
roughly, ensures a natural boundedness property of the state, in
terms of initial conditions and inputs. ISS theory has been, and
still is, a very active research area, see, in addition to the previous
references, for example [13-16] and the survey papers [17,18].
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Incremental ISS is concerned with bounding the difference of
two state trajectories in terms of the difference of initial condi-
tions and the difference of inputs. For background information
regarding incremental stability notions for general nonlinear sys-
tems, we refer the reader to [19]. Related ideas, which have been
explored in the contexts of contraction methods and convergent
systems, can be found in [20-22] and the references therein.
Recently, in [23,24], sufficient conditions have been determined
which guarantee that certain infinite-dimensional Lur'e systems
are exponentially incrementally ISS. Moreover, in [23,24], exponen-
tial incremental ISS is used to infer convergence properties such
as the converging-input converging-state (CICS) property (see, for
example, [25]) and the asymptotic periodicity of the response to
asymptotically periodic inputs.

Here we consider discrete-time, finite-dimensional Lur’e sys-
tems and the incremental stability notion termed semi-global
incremental ISS, which is considerably weaker than exponential
incremental ISS. Our main result is Theorem 3.2 which pro-
vides sufficient conditions, reminiscent of well-known absolute
stability criteria, for semi-global incremental ISS. Theorem 3.2 un-
derpins our subsequent investigation of the asymptotic properties
of the response of discrete-time Lur’e systems to asymptotically
almost periodic inputs. Theorem 4.3 provides sufficient condi-
tions under which, for every almost periodic input v, there
exists a unique almost periodic state trajectory x*P such that any
state trajectory x generated by an input of the form v + w with
lim;_ oo w(t) = 0 satisfies lim,_, o (x(t) — x*’(t)) = 0. In par-
ticular, under the assumptions of Theorem 4.3, state trajectories
generated by asymptotically almost periodic inputs are asymptot-
ically almost periodic. Sufficient conditions for the CICS property
are obtained as a corollary. The relation between the present
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Fig. 1.1. Lur'e system with linear part (A, B, C), nonlinearity f, output y and
input v.

paper and our earlier work [23-25] is discussed in Remarks 3.3,
3.4 and 4.7.

The layout of the paper is as follows. In Section 2, we gather
some preliminary results and definitions and, in Section 3, these
are used to derive our main results. The response to asymptot-
ically almost periodic inputs is addressed in Section 4, and an
example is presented in Section 5.

Notation. Throughout, we denote the set of integers by Z,
the set of positive integers by N and we define Z, := N U {0}.
We denote the sets of real and complex numbers by R and C,
respectively, and define E := {z € C : |z| > 1} and R, := [0, o0).
We fix n, m, p € N. We let C™*P denote the set of complex m x p
matrices, which is a normed space when equipped with the usual
induced operator norm

IK|| := sup ||[KE|| VK e C™P.

lIE1=1
Here the norms in C™ and CP are the 2-norms. Furthermore, for
r > 0, we define

Be(K,r):={Le C™P: K —L|| <r}.

A square matrix A is said to be Schur if the eigenvalues of A
are contained in the set {z € C : |z|] < 1}. The transpose and
conjugate transpose of A are denoted by AT and A*, respectively.

The Hardy space H;ﬁm is the set of all holomorphic functions
H:E — CP*™ with

[[Hl|poe := sup |H(z)|| < oc.
zeR

As usual, for Z = Z or Z,, (R"Y is the vector space of functions
v:Z — R" and £>*(Z,R") is the space of all v € (R"¥ such
that ||v|lge = sup;ez lv(t)]] < oco. We further define K as the
set of strictly increasing, continuous functions R, — R, that are
zero at zero. The subset of K comprising all unbounded functions
is denoted K. We let KL stand for the set of functions ¢ :
R4 X Zy — R4 such that for each fixed t € Z,, ¥(-,t) € K and
for each fixed s € R, ¥(s, -) is non-increasing and lim;_, o, ¥ (s, t)
=0.

For t € R, we define |t] to be the greatest integer less than or
equal to t and [t] to be the smallest integer greater than or equal
to t. Moreover, we definet :== {0, 1,...,t}and t := {t, t+1,...}.
Finally, for = € Z,, the left-shift operator A, : (R")2+ — (R")2+
is defined by (A,v)(t) := v(t + t) for every t € Z, and every
v e (R")%,

2. Preliminaries

We begin with some preliminary definitions and results re-
garding the following controlled and observed linear difference
equation

xt =Ax+Bu+v, (2.1)
where (A, B, C) € L := R™" x R™™ x RP*" y e (R™)%+ and
v € (R")%+. Here and throughout, x* = A;x for x € (R")%+.
We denote the transfer function of (A, B, C) by G, that is, G(z) =

C(zI —A)~'B. For K € C™*P, we define A := A+ BKC and denote
the transfer function of (AX, B, C) by GX. It is easily verified that

G(z) = Gz)I — KG(z2))™".

y==0C,

For F = C or R, we denote the set of stabilising output feedback
matrices (over FF) for (A, B, C) by Sp(G), that is,
Sr(G) = {K e F™P : G e H}.

pxm

Furthermore, for K € C™*P and r > 0, we obtain from [11, Lemma
6] that B¢(K, 1) € Sc(G) if, and only if, |GK||go < 1/r.

Application of the feedback law u = f(y) to (2.1), where
f : RP — R™ is a nonlinearity, leads to the closed-loop system

x* = Ax + Bf(Cx) + v. (2.2)

We define the behaviour of (2.2) by

Br(A,B,C) == {(v,x) € (R")** x (R"** : (v,x) satisfies (2.2)},

and note that (v,x) € Bf(A,B,C) if, and only if, (v,x) €
Bf_K(AK, B, C), so-called loop shifting. For ease of notation, from
hereon in we shall write B = B(A, B, C) when no ambiguity shall
arise. We note that B is left-shift invariant, that is,

(v,x) e B = (Agv, AsX)€EB VYo €Z,. (2.3)

For given (A,B,C) € L and K € Sg(G), we shall repeatedly
make use of the following assumption throughout the rest of this

paper:
(A, B, C) is (i) controllable and observable,
or (ii) stabilisable and detectable, and (A)

; K K
min 1G™ (D)l < IG™ llmoe.

Assumption (A) is the key hypothesis underlying the ISS theory
of discrete-time Lur’e systems developed in [11]. It is required
for Lemma 2.2, which in turn underpins Theorem 3.2, the main
result on semi-global incremental ISS. The last condition in (A)
means that ||GX|| is not constant on the unit circle and guar-
antees the existence of suitable solutions to the discrete-time
bounded-real Lur’e equations in the absence of controllability
and observability, cf. [11, Lemma 3] and [26]. Interestingly, the
continuous-time version of the assumption on ||GX|| in (A) is not
required in the continuous-time setting, see [9, Lemma 2.2] and
[11, pp. 1742/1743] for more details.

We conclude the section with two technical results. The first
is elementary and so we do not provide a proof.

Lemma 2.1. Let h : RP — R™ be continuous, and W C RP be
compact. Then & + sup,cw ||h(§ + w) — h(w)|| is a continuous
function.

The second result is an input-to-state stability criterion for
x(t + 1) = Ax(t) + Bg(t, Cx(t)) +u(t) VteZ,, (2.4)
a controlled Lur'e system with time-varying nonlinearity.
Lemma 2.2. Llet (A,B,C) € L, K € Sg(G) and ¢ € K. If
assumption (A) holds, then r := 1/||GX|ly~ < oo and there exist

¥ € KL and ¢ € K such that, for all g : Z, x RP — R™ satisfying,
forall & € RP,

sup [|g(t, &) — K&[l < &l —a(lE1).

teZ4

(2.5)

and for every (v, x) € (R")?+ x (R")2+ satisfying (2.4),

IO < v IO, O+ sup [)]) VeeN.
set—1
Lemma 2.2 extends [11, Theorem 13] to the time-varying
case. The proof is a straightforward generalisation of the proof of
[11, Theorem 13] and we therefore omit the details.
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3. Incremental stability properties

The present section contains our main stability results. The
stability notion we consider is so-called semi-globally incremen-
tally input-to-state stable.

Definition 3.1. Let (A,B,C) € L and f : RP — R™. We say
that (2.2) is semi-globally incrementally input-to-state stable if for
any R > 0, there exist v € K£ and ¢ € K such that, for all
(vi, %) € B with [[%(0)]] + [lville» <R, i=1,2,

lx1(t) — x2(E)Il <3 (I1x1(0) — x2(0)]l, £)
+ ¢(sup ls(s) — v2(5)||) VieN. (3.1)

set—1
Although this stability notion is semi-global, it is suitable for
almost all practical applications, as all relevant initial conditions
and inputs are likely to have their norm bounded by some R >
0. We refer the reader to papers such as [19,23,24] for varying
notions of global incremental stability.
The following theorem is the main result of the paper.

Theorem 3.2. L[Let (A,B,C) e L, f : RP. — R™ and K € Sg(G).
If (A) holds, f satisfies

If(§ +¢)—f(e) K&l <rlgl V& ¢ eR, E#0,  (32)

where r :== 1/||GX ||y, and there exists n € RP such that

1§ = nll —If(5) —f(n) — K(& —n)ll > oo as [l — o0, (3.3)
then (2.2) is semi-globally incrementally input-to-state stable.

In the next two remarks we provide some commentary on
Theorem 3.2, and compare and contrast our present results to
those in [23-25].

Remark 3.3.

(i) Under the assumptions of Theorem 3.2, it follows from
[25, Lemma 4.2], that for every ¢ € RP, there exists o, €
Koo Such that

If(& +¢) = f(&) = K& <Tl&Nl — e (IIE]) VE €RP.
In particular, if f(0) = 0, then

If(&) — K& < rllg] — xo(lIEN) VE € R,

which we recognise as the main assumption of
[11, Theorem 13]. Hence, in this case, the assumptions of
Theorem 3.2 guarantee input-to-state stability of (2.2) (see,
for example, [11,12,14]). The paper [11] does not consider
notions of incremental stability.

Note that condition (3.2) can be written in the form, for all

L ERLEAD
(& +6) —F() — gl _
&1

which can be viewed as a small incremental gain condition.
However, it is not excluded that there exists ¢ € R? such
that the left-hand side of (3.4) converges to 1 as ||§]| — oo
or ||£] — 0, and so, (3.4) is not a small incremental gain
condition in the sense of the classical input-output theory
of feedback systems [4,5]. Finally, note that even if (3.3)
holds for some 1 € RP, then the left-hand side of (3.4) with
¢ = n may not be bounded away from 1.

(iii) Although (A) guarantees that ||GX|z > 0, we high-
light that, by [23, Remark 3.4], the conclusions of
Theorem 3.2 remain valid in the situation wherein ||GX ||

(ii

—

I1GX |yoe 1, (3.4)

= 0 (which is equivalent to G = 0), provided that f is glob-
ally Lipschitz. More precisely, if (A, B, C) € L is stabilisable
and detectable, G = 0 and f : R? — R™ is globally Lip-
schitz, then (2.2) is semi-globally incrementally input-to-
state stable. o

Remark 3.4. The paper [25] considers the CICS property for
finite-dimensional, continuous-time Lur'e systems, and does not
consider incremental stability notions. The approach in [25] is
based on ISS arguments, rather than the semi-global incremental
ISS framework adopted here. We note that the assumptions (3.2)
and (3.3) on the nonlinear term f are the same as those in
[25, Theorem 4.3 (2)] which guarantee the CICS property.

The papers [23,24] derive incremental ISS properties for large
classes of infinite-dimensional discrete-time and continuous-time
systems, respectively, under the assumption that there exists § >
0 such that, for all &, ¢ € RP

If(& +¢)—f(&) — K&l < (r = S)lIEN - (3.5)

Obviously, if condition (3.5) is satisfied for some § > 0, then (3.2)
and (3.3) hold, but (3.5) is significantly more restrictive than the
combination of (3.2) and (3.3) (see also Example 5.1). Note that
if (3.5) is satisfied for some § > 0, then

£.geRP 1
£40

which is a small incremental gain condition in the sense of
classical input-output theory [4,5].

A key difference between the present work and [23,24] is
that Theorem 3.2, via Lemma 2.2 and [11], is underpinned by
an ISS Lyapunov theory for Lur'e systems, whilst, in the ab-
sence of such a theory in the infinite-dimensional case, [23,
24] is based on small-gain and exponential weighting methods.

o

Proof of Theorem 3.2. We seek to apply Lemma 2.2. By invok-
ing (3.3) and [25, Statement (1) of Lemma 4.2], we obtain that,
for all ¢ € RP,

g =l = If(€§) = f(¢) = K(§ — O)Il = oo as [|§]| — oo.

Consequently,

rllgll — If(§) — f(0) — K&|| — oo as [|§]| — oco. (3.6)
By settingf(f) = f(&) — f(0) for all £ € RP, it is clear from (3.2)

and (3.6) that f —K : R? — R™ is continuous, ||f(§)—1($|| <r|&]l
for all & € RP\{0}, and r|I&]l — [If(§) — K&|| — oo as [|E]] — oo.
Hence, f — K satisfies the hypotheses of [25, Statement 2 of
Lemma 4.2] and so, there eXists oy € Ko such that

IF(5) = KEIl < T1&] — aolllE]) VE € RP. (3.7)

We shall use (3.7) to establish the existence of @y € K, and
s; > 0 such that

If(&) = KEII < rlEll —ar(IEN) V& €R? st [|§]l >s1.  (3.8)
For which purpose, we note that, for all £ € R?,
IF(€) — K&|| < If(&) — KE| + IF (O]

<rlEll —aollEIN + IFCON,
where we have used (3.7). Defining @ € K., by
~ oo Je(s),
o) = {ao(l)s,
we obtain that, for all £ € RP such that [|£]] > 1,
If(§) — K& < rlgll — aClgN) + IF (0.

ifs>1,
if0<s<1,
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Therefore, if we let s; > 1 be such that a(s) > ||f(0)| for all
s > s1, and define o € Ko, by

[ats) - 1F)].
ols) = {(a(su ~IFOs/s.

we obtain that (3.8) holds.

Next, fix R > 0 and combine (3.8) with [11, Corollary 17]
to obtain the existence of a constant p > 0 such that, for all
(v, x) € B with [|x(0)]| + [[vlle> <R,

if s > 54
if0 <s < sy,

IO <p VteZy. (3.9)
We set W .= {£ e RP : ||| < p} € RP and claim that

gl — sup If(§ +w) — f(w) — K&|l — oo as [[§]] - oo. (3.10)
we
To avoid interruption of the argument, we relegate the validation
of (3.10) to the end of the proof.
Invoking (3.2), the continuity of f and compactness of W, we
conclude that, for all & € RP\{0},

sup [If(§ +w) — f(w) — K& < rl|€]l.

weW

(3.11)

By Lemma 2.1, the function &  sup,cw [If(§ +w)—f(w)—KE&||
is continuous which, in conjunction with (3.10) and (3.11) and an
application of [25, Statement (2) of Lemma 4.2], shows that there
exists & € K such that, for all £ € RP

SUV?/ If(§ +w) — f(w) — K& = rli§1l — (). (3.12)
we
Let (v, x;) € B with ||x;(0)|| + ||villee < R, i = 1, 2, and define

g:Zy x RP — R™ by

gt &) =fE+Cna)— [f(Cx(t) V(t.§)eZ, xR".

Note that x := x; — X, and v := v; — v, satisfy (2.4). Moreover,
from (3.9) and (3.12), we see that (2.5) holds. We now invoke
Lemma 2.2 to obtain the existence of ¥ € K£ and ¢ € K such
that

MO = VXN 0 +(sup v Ve e
Since ¢ and ¢ depend only on (A, B,C) and « (and not on
(v1, x1) or (v, X2)), we see that this gives semi-global incremental
input-to-state stability.

All that is left to prove is (3.10). Since f is continuous, and W
is compact, it follows that for each & € RP, there exists w; € W
such that

sup [If(§ + w) —f(w) —K&|l = [If(§ + we) —f(wg) —K&|l. (3.13)

weW

In particular, ||wg|| < p for all £ € RP. Thus, we estimate, by use
of (3.7), that

If(§ + we) — f(wg) — K&l
= If(§ + we) — f(0) — K(& + we)ll + [IF(O)]
+ [IKwe [ 4 [If (wg )l
= rlEl + rllwe |l — eo(llE + we 1) + IF(O)

+ K Hwe |+ ILf (we)ll - (3.14)

By the reverse triangle inequality, we have that

ao(lI§ + well) = ao(lIE Nl — lwell) V& € RP, 1]l = [lwell. (3.15)
Hence, combining (3.13)-(3.15) gives

rligl — sup If(§ +w) — f(w) — K&l

> —rllwell + ao(lIE1 — lwg ) — If (0]
= IKIHwell = If (we)ll
— o0 as ||&]] = oo,

establishing (3.10). O

Remark 3.5. The above and subsequent results can be gener-
alised to systems of the form

X" =Ax+Bu+v, y=C, u=fy+w),

where w € (RP)%+ is an output disturbance. This more general
system can be analysed by using methods similar to those em-
ployed here, and so, in the interest of brevity, we do not give
formal statements and instead refer the reader to the forthcoming
thesis [27]. o

We conclude this section with a corollary of Theorem 3.2.
The result presents sufficient conditions, reminiscent of the well-
known circle-criterion (see, for example, [2]), which guarantee
that (2.2) is semi-globally incrementally input-to-state stable.
Before giving this result, we recall that a C™*™-valued rational
function H is positive real if H(z) + H(z)* is positive semi-definite
for every z € E which is not a pole of H.

Corollary 3.6. Let (A,B,C)eL,f: R — R™and Ky, K, € R™P,
Assume that H := (I—K,G)(I—K;G)~ ! is positive real and that either
(A, B, C) is (i) controllable and observable, or (ii) stabilisable and
detectable and there exists z € C such that |z| = 1 and H(z)+H(z)*
is positive definite. If, in addition,

(F(E+ ) —f(&)-K:i&. f(§ + ) = f({) - K:§) <O
VE L ERP, E#£0,

and there exists n € RP such that

(3.16)

1

m(fn(s)—lqs,fn(s)—les) — —oo as [|§]l - oo,
where f,(§) .= f(§ +n)—f(n), then (2.2) is semi-globally incremen-
tally input-to-state stable.

The following proof uses ideas and methods from the proofs
of [25, Corollary 4.15] and [11, Corollary 11].
Proof of Corollary 3.6. We begin by defining

1 1

L= E(K] — Kz) and M = E(Kl +K2)
We then obtain that, for all £, ¢ € R?,
(FE+¢)— (&) —Ki, f(§ + &) — f(5) — K6)

= IIf(€ +¢) — f(¢) — ME|* — ||LE|1>.

By combining this with (3.16), it can easily be seen that kerL =
{0}. Subsequently, LTL is invertible and we define L := (LTL)"!LT,
which is a left-inverse of L. Now, we highlight that (v, x) € B if,
and only if, (v, x) satisfies

xT = AKX + Bg(LCx) + v, (3.17)

where g : R™ — R™ is defined by g(¢) = f(l:é) - Klis for all
& € R™. To complete the proof, it is therefore sufficient to show
that (3.17) is semi-globally incrementally input-to-state stable. To
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do so, we shall show that the assumptions of Theorem 3.2 are
satisfied in the context of (3.17). To this end, we set K = —LL
and define F to be the transfer function of (A1, B, LC), the linear
system underlying the Lur’e system (3.17), that is,

F(z) == LC(zl — A¥) B = LGN (2).

By invoking arguments similar to those used in the proof of
[11, Corollary 11], it can be shown that 1/||F||y~ > 1 where
FX = F(I — KF)~! and that (A) holds in the context of (3.17).
Furthermore, it is also easy to show, again by following similar
arguments to those seen in proof of [11, Corollary 11], that

lg(& +¢)—8(g)— K& < €Il V&, ¢ €R™, & #0,
and that there exists 8 € K, such that

g + Ln) —g(Ln) — K& < ] — BIEN) V& € R™

We therefore may invoke Theorem 3.2 to deduce that (3.17),
and hence (2.2), is semi-globally incrementally input-to-state
stable. O

4. Lur’e systems subject to almost periodic forcing

In this section, we use Theorem 3.2 to investigate the re-
sponse of discrete-time Lur'e systems to asymptotically almost
periodic forcing. In particular, we will show that state trajecto-
ries corresponding to asymptotically almost periodic inputs are
asymptotically almost periodic.

We begin by presenting some relevant background material.
let Z = Z or Z,. A set S C Z is called relatively dense (in Z) if
there exists L € N such that

{a,...,a+L}NS#0 VaeZ.
For ¢ > 0, we say that t € Z is an s-period of v € (R"Y if
lv(t) —v(t+7)| <e VteZ

We denote by P(v, ¢) C Z the set of e-periods of v and we say
that v € (R"Y is almost periodic if P(v, ¢) is relatively dense in Z
for every ¢ > 0. We denote the set of almost periodic functions
v € (R"Y by AP(Z, R") and note that AP(Z, R") is a closed linear
subspace of ¢°°(Z, R"). Trivially, a periodic function is almost
periodic. An example of a function which is almost periodic but
not periodic, is v € (R") defined by

u(t) == sin(zv/2t) VteZ.

The straightforward proof of the following lemma is left to the
reader.

Lemma 4.1. If v € AP(Z, R"), then, for every T € Z
sup  [[v™P(E)]] = [[v*P]l¢oe.
teZy, t>T

Furthermore, if v® € AP(Z, R"), then, for every T € Z,

sup [[v*P(E)]] = [[v*Pl¢ee
tez, t>T

and  sup [[v*P(6)] = [[v*P]leo.
tez, t<T

A consequence of Lemma 4.1 is that almost periodic functions
are completely determined by their “infinite tails”: if v,w €
AP(Z.,R") and there exists t € Z, such that v(t) = w(t) for
all t € 7, then v = w; similarly, if v, w € AP(Z, R") and there
exists T € Z such that v(t) = w(t) forallt e T, or forall t € —7,
then v = w.

We say that a function v € (R")%+ is asymptotically almost
periodic if it is of the form v = v¥® +w with v € AP(Z, R") and
w € ¢o(Z4, R"), where co(Zy, R") is the space of functions u €

(R™)%+ such that lim,_, «, u(t) = 0. The space of all asymptotically
almost periodic functions v € (R")%+ is denoted by AAP(Z,, R"),
that is,

AAP(Z-I—’ Rn) = AP(Z-I-’ IRn) + CO(Z+5 Rn)
Noting that, by Lemma 4.1,

v+ wllee = [[vflee Yv € AP(Z4+,R"), Yw € co(Z4,R"),

it is easy to see that AAP(Z,,R") is a closed subspace of
L°(Zy, R™).

As an immediate consequence of Lemma 4.1, we obtain the
following result.

Lemma 4.2. The following statements hold.

(i) AP(Z+, R") N co(Z4, R") = {0}.
(ii) If v € AAP(Z,,R"), then the decomposition v = v* + w,
where v¥® € AP(Z,, R") and w € co(Z, R"), is unique.

It is well-known that v € (R")? is almost periodic if, and only
if, the set of translates {A,v : T € Z} is relatively compact in
£%°(Z, R™). Since, for any v € ¢o(Z, R"), the set of translates
{Av T € Z4} is relatively compact in £*°(Z,,R"), it is
clear that the above characterisation of almost periodicity on Z
is not valid for functions in (R")%+. Interestingly, the elements
of AAP(Z,R") are precisely the functions v in (R")%+ for which
the set {A,v : t € Z.} is relatively compact in £*(Z, R"),
see [28]. For more information on and further characterisations
of almost periodicity, we refer the reader to the literature, see,
for example, [29-32].

There exists a close relationship between the spaces
AP(Z,,R") and AP(Z, R") which we now briefly explain. Follow-
ing an idea in [33, Remark on p. 318], for every v € AP(Z,, R"),
we define a function v. € (R")% by

ve(t) = lim v(t + 1) Vt € Z,
k— 00

where 1, € P(v, 1/k) for each k € N and 1, — oo as k — oo. For
given t € Z, we have

lo(t + @) — v(t + )l < lv(t + ) — v(t + % + )l
+ [lv(t + 7 + @) — v(t + )l
- 1 . 1
-1k
for all k, I € N sufficiently large, and so (v(t + 7))k is a Cauchy
sequence. Hence v¢(t) is well-defined for each t € Z. It is clear
that ve(t) = wv(t) for all t € Z,, that is, v. extends v to Z.
Furthermore, it is not difficult to show that ve € AP(Z, R") and
there is no other function in AP(Z, R") which extends v to Z.
Moreover, Lemma 4.1 guarantees that
sup [lve(t)ll = sup [lv(t)]].
tez teZy
It is now clear that the map AP(Z,,R") — AP(Z,R"), v > v, is
an isometric isomorphism.
The next result is our main result of this section.

Theorem 4.3. [mposing the assumptions of Theorem 3.2, let v¥® €
AP(Z,, R"). The following statements hold.

(i) There exists a unique x** € AP(Z., R") such that (v, x*P) €
B and, for all (v, x) € B such that v — v € co(Z,, R"),

lim ||x(t) — x*(t)]| = 0. (4.1)
t—o00

Furthermore, for all ¢ > 0, there exists 6 > 0 such that
P(v?®,8) C P(x%, g). In particular, if v® is t-periodic, then
x is t-periodic.
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(ii) The almost periodic extension X of x* to Z is the unique
bounded solution on Z of

7zt = Az + Bf(Cz) + v . (4.2)

Remark 4.4.

(i) Theorem 4.3 shows that, under the assumptions of
Theorem 3.2, asymptotically almost periodic inputs gener-
ate asymptotically almost periodic state trajectories.

(ii) Statements (i) and (ii) remain valid if, in Theorem 4.3, the
assumptions are replaced by the hypotheses of
Corollary 3.6.

(iii) Under the assumptions of Theorem 3.2, it is straightfor-
ward to show, by combining Theorem 3.2, Lemma 4.1 and
Theorem 4.3, that for all R > 0, there exists ¢ € K
such that, for all (v;, x;) € B with v; € AAP(Z,,R") and
%Ol + llvillee <R, i=1,2,

ap ap ap ap
%77 = %5 e < @(llvy — v37 [lee),

where v{* and x;” are the almost periodic parts of v; and x;,
respectively,i =1, 2. s

The proof of Theorem 4.3 is facilitated by a technical lemma,
which we state and prove first. For a function @ : RP — RP and
U C RP, we let ®~'(U) denote the preimage of U under &, and
denote its cardinality by #&~!(U). For £ € RP, we set & 1(£) :=
@~ 1({£}). Finally, we let # denote the constant function on Z,
with value one.

Lemma 4.5. [mposing the assumptions of Theorem 3.2, define
F¢ : RP — RP by
Fe(§) =& — G (1)(f(§) —K§) YEeR.
The following statements hold.
(i) Fy is surjective and #FK’l(é) =1forall ¢ € imC.
(i) For all v™ € R", by letting y*° € F¢ '(C(I — AX)"'v>) and
setting
X% = (1 — A (BU(Y™) — Ky™) + v™),

we have that y*° = (x*° and (v>°0, x*°0) € B.

Proof. Statement (i) is a discrete-time analogue of
[25, Proposition 4.1]. The proof carries over to the discrete-time
case and is therefore omitted. For statement (ii), fix v*° € R" and
let X € R" be as in statement (ii) where, by statement (i), y*°
is the unique element in the singleton F, '(C(I — AX)~1v™>®). We
then see that

¥* = F(y™®) + G (D) (y™) — Ky™)
= C(I — A (B (™) — Ky™) + v™)
= x>,

and thus,
x®° = AKX + B(f(y™®) — Ky™®) + v™° = Ax® + Bf (Cx™®) + v™°.
Consequently, (v>°0, x*°0) € B, establishing statement (ii). O

Proof of Theorem 4.3. We begin by proving statement (i). For
which purpose, we use Lemma 4.5 to yield that, for every v* € R",

there exists (a unique) x* € R" such that (v*6, x*0) € B. Fix such
a pair (v*, x*). Let (v, x) € B and note that, since v is almost
periodic, v® is bounded. Thus there exists R; > 0 such that

IXO) + [0 oo » 1%*1 + [|0*] < Ra. (4.3)

Hence, by Theorem 3.2, there exist e K

(dependent on R;) such that, for all t € N,

€ KL and ¢

IX(0) = X1 < ¥ (1x(0) =1 ) + 1 (sup [u7P(s) — o).

Combining this with (4.3), we conclude that x is bounded. Hence,
there exists R > 0 such that

IXllee + |0 o < R.

Since v is almost periodic, there exists 7, € P(v®P, 1/k) for every
k € N such that tp — oo as k — oc. Inspired by an argument
from the proof of [19, Proposition 4.4], we claim that (A X)ken is
a Cauchy sequence in £*°(Z., R"). To show this, we first invoke
Theorem 3.2 to obtain v € K£ and ¢ € K (dependent on R)
such that, for all (vq, X1), (v2, X2) € B, (3.1) holds, provided that
[1%(0)] 4 |lvillge < R for i = 1, 2. Subsequently, we let k,l € N
be sufficiently large so that

e 1 1 e
2R, %), ¥(2R, 1) < - and -+ - )<=,
VR wpaR <5 and (G4 ) <
and, without loss of generality, assume that 7; > t,. Then, for all
t € Z+,

sup [vP(s +t) — v*P(s+t + 71 — )|l

SE‘L;k
sup [vP(s +t) — v*P(s + t + 1)
SE‘Lk
+sup [vP(s+t+ 1) —vP(s+t+ 1 — w)l
SE‘L;k

1 1
)

IA

<<+

k

Hence,

’

¢(sup [vP(s+t)—vP(s+t+ 7 — Tk)”) <

SeT)

N| ™

which, when combined with (2.3) and (3.1), implies that

I(Ag2)(E) — (Ag2)XE)] = I(AXNTE) — (Arsm—rX)TI
< VUKD =Xt + 7 — )l 7+ 5

sw(zR,rkH%se.

Whence, we have shown that (A X)ken is a Cauchy sequence in
{>*(Z,,R") and so converges to a function x* € £°°(Z,, R"). To
show that (v, x*P) € B, we note that, forallk € Z, and t € Z,,
by (2.3)

(Agx)(t + 1) = A(A7 x)(t) + Bf (C(A7 X)(1)) + (Aq v™P)(E).

Since f is continuous, by using that 7, € P(v®, 1/k) for all k € N
and taking the limit as k — oo, we see that (v, x*P) € B.

To show that x** € AP(Z,,R"), we fix ¢ > 0 and note that,
since ¢(0) = 0 and ¢ is continuous, there exists § > 0 such that

o(s) <e Vsel0,/4] (4.4)
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Let T € P(v®, §). Then, by combining (2.3) with (3.1) and (4.4),
we see that, forall t € Z, and all k € N,
(A7 x)(t) — (A x)(t + T)Il = [(Aex)(Tk) — (A X))

< P(lix(t) —x(t + ), ™) +&. (4.5)
Since (7 )ken converges to oo as k — oo, (4.5) yields that
IxP(t) —xP(t+ )| <e VteZ,,

showing that t € P(x?, ¢). It follows that P(v®, §) C P(x*, ¢).
Since v is almost periodic, it follows that P(x?P, &) is relatively
dense in Z, showing that x*" € AP(Z,, R").

In order to establish (4.1), let (v, x) € B such that v — v €
co(Z4, R"). Obviously, v is bounded, and so an application of
Theorem 3.2 yields the existence of R > 0 such that

Ixllees + l1vllgso » 18P [l + 0% o <R.

Furthermore, Theorem 3.2 guarantees the existence of Ve KL
and ¢ € K such that, for all (v;, x;) € B with [|x;(0)]| + [Jvillee =
R, i = 1,2, (3.1) holds with ¥ and ¢ replaced by v and ¢,
respectively. In particular, setting w := v — v® and using (2.3),
we see that, forall t € N,

[1%(¢) = x*P(ON = 1(Ae/2)%)([£/21) = (A2 X[t /2]l

< ¥ ([|x(Le/2) = x®(Le/2))|)  Te/21)
+( sup [[(Aww)9)]).
er/21

S

By applying (3.1) to the term ||x([t/2])—x*([t/2])| in the above
inequality, we deduce that, for all t € N,

lIx(t) = x*P(O)] < (@(IIX(O) —xP(0)], Lt/2])

+¢( sup lwisl), rr/zw)

selt/2]

+¢>< sup H(Au/zjw)(S)”).
seft/2]

Finally, the right hand side of the above inequality converges

to 0 as t — oo, showing that (4.1) holds. It is easily seen, by

a combination of (4.1) with Lemma 4.2, that x*? is the unique

almost periodic function in (R")%+ satisfying (4.1) and such that

(v, x*) € B, completing the proof of statement (i).

We proceed to prove statement (ii). To this end, note that the
almost periodic extension x2° of x* to Z is bounded. We shall now
show that xZP satisfies (4.2). To this end, note that since Ax2 is
the almost periodic extension of A;x*, we hence see that A;x
is also the almost periodic extension of Ax*" + Bf(Cx*P) + v?P.
Moreover, since x2” is almost periodic and f is (globally) Lipschitz,
f(Cx2P) is almost periodic and, consequently, AxZ® + Bf (Cx2P) + vd?
is also an almost periodic extension of Ax*P+Bf (Cx?P)+v?P. Hence,
by the uniqueness of almost periodic extensions,

AP = AP + Bf(CXP) + 0P,

that is, x2” is a solution of (4.2).

To show that x2P is the unique bounded solution of (4.2) on Z,
let ¥ € (R")? be another bounded solution of (4.2). Let R > 0 be
such that

l%ePlleoe + [IX[leoe + [lvgPllee < R,

and apply Theorem 3.2 to obtain the existence of ¢ € K£ and
¢ € K such that (3.1) holds for all (v, x;) € B with ||x;(0)] +
[lville.o <R, i=1,2.Lete > 0 and t € Z and choose t € Z such
that T <t and

Y(2R, t — 1) <e.

Now, since the restrictions of (A, ve’, A.x2) and (A, v, A.X) to
Zy are in B and satisfy [|(A.xe")(0)]| 4 [|(A:X)(0)] +[| A- ve® [l e <
R, (3.1) guarantees that

lxeP(€) = X(Ol = (A2t — ) + (AX)(t — 7]l

< YlxP(r) —x()ll. t — 1)
< YR, t—1)<e.

Since & was arbitrary, we see that x2°(t) = X(t) and, since t was
also arbitrary, it follows that x2¥ = X, completing the proof. O

From Lemma 4.5 and Theorem 4.3 we obtain the following
corollary which states that, under the assumptions of
Theorem 3.2, the Lur'e system (2.2) has the CICS property.

Corollary 4.6. Imposing the assumptions of Theorem 3.2, let v™° €
R" be given, and let x> be as in statement (ii) of Lemma 4.5.
Then, for all (v,x) € B with lim;_ . v(t) = v*>, it follows that
limg_ o0 x(t) = x*°.

Remark 4.7.

(i) Corollary 4.6 is a discrete-time version of continuous-time
results in [25]. The incremental ISS methodology used here
to obtain Corollary 4.6 is quite different to that invoked
in [25].

(ii) It may appear that x> and y* in Lemma 4.5 depend on the
choice of K. But this is not the case, as follows from Corol-
lary 4.6, or from a purely “algebraic” argument based on
condition (3.2). o

Under the assumptions of Theorem 3.2, consider the (non-
autonomous) system

z(t 4+ 1) = g(t, z(t)), (4.6)

where g(t, £) := A& + Bf(C&) + v(t) for all (t, &) € Z x R™ and
v € AP(Z,R"). For (ty,x°) € Z x R", we denote the solution
to (4.6) with initial state x° at time to by x(- ; to, x°). Theorem 4.3
yields the existence of a unique bounded solution x, € (R")?
of (4.6). If we now apply Theorem 3.2 and use methods similar
to those employed in the proof of statement (ii) of Theorem 4.3,
we obtain that for all R > 0, there exists ¢ € KL such that, for
all (to, x°) € Z x R" with ||x°]] <R,

[1X(t; to, X°) — xp ()| < Y(Ix° — xp(t0)Il, t — to)
VteZ, t>t.

This shows that (4.6) satisfies a semi-global version of the defini-
tion of a uniformly convergent system given in [22].

We conclude this section with a brief comparison of
Theorem 4.3 to related results in the literature. The most relevant
results in this context are [34, Theorem 1] and [35, Theorem 1],
both of which consider continuous-time systems and are re-
stricted to ‘scalar’ nonlinearities, that is, m = p = 1. A state-space
and Lyapunov approach is used in [35], whilst the analysis in [34]
is based on input-output methods. A careful inspection of the
assumptions imposed in [34, Theorem 1] and [35, Theorem 1]
shows that, in each case, they are equivalent to the existence of
a 8 > 0 such that

f(E+8)—f(g)— ksl < (r—8)I§|l V&, ¢ €R, (4.7)

where r = 1/||G¥||y~ and k is a suitable stabilising scalar real
gain. Note that (4.7) is simply the scalar version of (3.5) and
we conclude that the assumptions required in [34, Theorem 1]
and [35, Theorem 1] are considerable more restrictive than those
imposed in Theorem 4.3, cf. statements (iii) and (iv) of
Remark 3.3. Finally, we note that neither [34] nor [35] addresses
the relationship between the almost periods of the almost pe-
riodic forcing v and its corresponding almost periodic state
trajectory x?P.
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5. An example

We consider a simple system for which the hypotheses of
Theorem 3.2 hold, but not the (stronger) assumptions of
[23, Theorem 3.2]. This latter result guarantees exponential in-
cremental input-to-state stability of (2.2).

Example 5.1. Consider the Lur’e system (2.2) with

1/2 10 0
A=-|-1 1 1), B={0
1 0 O 1

and C =(1,0,0), and f : R — R given by

1.
f(§) = ESIgn(E)ln(l +1&]) VEeR.
It is easy to check that A is Schur, that

. 1/4
G(z) = o120

and further, that
IG(z)] =2 =|G(1)]
We hence deduce that
[Gllge~ = 1G(1)] = 2.

Vze{reC:|Al =1}

Moreover, it can easily be verified that (A) holds. Since f'(0) =
1/2, it is also clear that there does not exist § > 0 such that

F(E+ ) —fON=(1/2-6)I§] VE. ¢ €R, (5.1)

that is, f does not satisfy the assumptions of [23, Theorem 3.2].
However, since f is continuously differentiable with

1
f’(0)=5 and f'(§) €(0,1/2) V& e R\{0},

[25, Lemma 4.9] yields that (3.2) holds with K =0 and r = 1/2.
Finally,

1
S 1= (E)l = oo as [§] — o0

and so (3.3) is satisfied with K = 0, r = 1/2 and n = 0. Therefore,
Theorem 3.2 gives that (2.2) is semi-globally incrementally input-
to-state stable. Moreover, Lemma 4.5 yields that (2.2) has the CICS
property and, from Theorem 4.3, we obtain that asymptotically
almost periodic inputs generate asymptotically almost periodic
state trajectories.

We comment that the nonlinearity f is a modification of that
found in [25, Example 4.12], and does not satisfy (5.1) for ¢ = 0
as & — 0. It is easy to find other examples of functions which
instead do not satisfy (5.1) at infinity, that is, there exists ¢ € R,

1 1
E[f(erC)—f({)l — 53 |§] — oo,
but do satisfy (3.2) and (3.3). o
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