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Abstract. We consider forced Lur’e systems in which the linear dynamic component is an infinite-
dimensional well-posed system. Numerous physically motivated delay- and partial-differential equa-
tions are known to belong to this class of infinite-dimensional systems. We present refinements of
recent incremental input-to-state stability results [14] and use them to derive convergence results for
trajectories generated by Stepanov almost periodic inputs. In particular, we show that the incremental
stability conditions guarantee that for every Stepanov almost periodic input there exists a unique pair
of state and output signals which are almost periodic and Stepanov almost periodic, respectively. The
almost periods of the state and output signals are shown to be closely related to the almost periods
of the input, and a natural module containment result is established. All state and output signals
generated by the same Stepanov almost periodic input approach the almost periodic state and the
Stepanov almost periodic output in a suitable sense, respectively, as time goes to infinity. The sufficient
conditions guaranteeing incremental input-to-state stability and the existence of almost periodic state
and Stepanov almost periodic output signals are reminiscent of the conditions featuring in well-known
absolute stability criteria such as the complex Aizerman conjecture and the circle criterion.
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1 Introduction

The analysis of solutions of differential equations the right-hand side of which exhibit almost periodic
time dependence has a long history and the relevant literature is vast, see, for example, [1, 8, 9, 12].
Typical questions arising in this context are: does there exist a unique almost periodic solution, and
if so, are all solutions asymptotically almost periodic with long term behaviour (in forward time)
asymptotically identical to that of the unique almost periodic solution? Whilst the current paper
continues this tradition, we use input-to-state stability ideas from control theory which, to the best of
our knowledge, have not been employed in this context before.

More specifically, we analyze the asymptotic behaviour of a large class of infinite-dimensional Lur’e
systems with Stepanov almost periodic inputs. We remark that the concept of almost periodicity in
the sense of Stepanov generalizes that of Bohr, which, in the following, will be simply referred to as
almost periodicity. Adopting the set-up considered in [14], we study the forced Lur’e system shown in
Figure 1.1, where Σ is a well-posed‡ linear infinite-dimensional system and f is a static nonlinearity.

∗Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK, email:
m.e.gilmore@bath.ac.uk, c.guiver@bath.ac.uk and h.logemann@bath.ac.uk
†Corresponding author
‡ Throughout the paper, “well-posedness” refers to well-posedness in the L2 sense, which is the natural setting, as

frequency-domain methods, familiar from classical absolute stability theory, generalize nicely in this infinite-dimensional
framework.
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Note that, in Figure 1.1, the signals v, y and u are given by

v =

(
v1

v2

)
, y =

(
y1

y2

)
, u =

(
v1

f(y2) + v2

)
. (1.1)

We note that well-posed linear systems allow for considerable unboundedness of the control and

Σu yv

y1

y2
v1

v2

f

+

Figure 1.1: Block diagram of forced Lur’e system: the feedback interconnection of the well-posed
linear system Σ and the static nonlinearity f .

observation operators and they encompass many of the most commonly studied partial differential
equations with boundary control and observation, and a large class of functional differential equations
of retarded and neutral type with delays in the inputs and outputs. There exists a highly devel-
oped state-space and frequency-domain theory for well-posed infinite-dimensional systems; see, for
example, [22, 23, 31, 32, 33, 34, 36, 37, 38].

Lur’e systems are a common and important class of nonlinear control systems, and the study of
their stability properties is known as absolute stability theory (see, for example, [15, 16, 17, 35, 40]).
Classical absolute stability theory comes in two flavours: in a state-space setting, unforced (v = 0)
finite-dimensional systems are considered and the emphasis is on global asymptotic stability, whilst
the input-output approach (initiated by Sandberg and Zames in the 1960s) focusses on L2-stability
and, to a lesser extent, on L∞-stability, see [11, 35]. A more recent development is the analysis of
state-space systems of Lur’e format in an input-to-state stability (ISS) context, thereby, in a sense,
merging the two strands of the earlier theory [3, 14, 18, 19, 28]. The ISS concept was introduced (for
general nonlinear control systems) in [29] and further developed across a huge range of papers, see,
for example, the survey articles [10, 30].

So far, the ISS approach to Lur’e systems is very much restricted to finite-dimensional systems with
[14] being one of the very few exceptions.† In fact, in [14] a number of incremental ISS results are
derived (the underlying concept inspired by that introduced in [2]) and are then applied to obtain
convergence properties including the converging-input converging output property and the asymptotic
periodicity of the state and output trajectories under periodic forcing. In this paper, we provide a
refinement of the incremental ISS results in [14] and use them to analyze the asymptotic behaviour of
the Lur’e system shown in Figure 1.1 in response to Stepanov almost periodic inputs.

With regards to stability properties, our main result is Theorem 3.4, which is reminiscent of the
complex Aizerman conjecture [16, 17] (familiar from finite-dimensional control theory) and constitutes
a refinement of [14, Theorem 4.1]. The main novelty here is that we obtain an incremental ISS estimate
which is in terms of the Stepanov norm

‖∆v‖Sq := sup
a≥0

(∫ a+1

a
‖(∆v)(t)‖qdt

)1/q

, 2 ≤ q <∞,

where ∆v denotes the difference of two inputs. Our main concern in this paper is to analyse the
behaviour of Lur’e systems subject to Stepanov almost periodic forcing. Based on the incremental
ISS result Theorem 3.4, we show that incremental versions of certain classical sufficient conditions for
absolute stability such as the complex Aizerman conjecture [16, 17], the small-gain theorem [11, 35]

† See the introduction of [14] for some commentary on the literature on ISS theory for infinite-dimensional systems
(not necessarily of Lur’e form).
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and the circle criterion [19, 35] (or variations thereof) guarantee that, for a given Stepanov almost
periodic input v∗, there exists a corresponding unique state/output trajectory (x∗, y∗) with x∗ almost
periodic and y∗ Stepanov almost periodic, and, furthermore, for any input/state/output trajectory
(v, x, y) such that v(t) approaches v∗(t) as t → ∞ in a natural sense, the behaviour of (x, y) is
asymptotically identical to that of (x∗, y∗). The almost periods of x∗ and y∗ are shown to be closely
related to the almost periods of v∗ in the sense that for every ε > 0 there exists a δ > 0 such that
every δ-almost period of v∗ is an ε-almost period of x∗ and y∗. Furthermore, it is established that
the modules generated by the frequency spectra of x∗ and y∗ are contained in that generated by the
frequency spectrum of v∗. Our main results, Theorems 4.5 and 4.6, provide far-reaching generalizations
of earlier contributions in [6, 14, 24, 25, 26, 27, 39], see the commentary at the end of Section 4 for
more details.

The paper is organized as follows. Section 2 gathers notation and required material from the theory
of well-posed linear systems. In Section 3, we introduce the Lur’e system shown in Figure 1.1 in a
formal way and then develop the key tool for our analysis of almost periodically forced Lur’e systems,
namely a suitably refined version of the incremental ISS result [14, Theorem 4.1]. The main topic
of the paper is addressed in Sections 4: after a discussion of relevant background material from the
theory of almost periodic functions (in the sense of Bohr and its generalization by Stepanov), we state
and prove Theorems 4.5 and 4.6, the main results of this work.

2 Preliminaries

Let Z be the set of integers and set

Z+ := {n ∈ Z : n ≥ 0} and N := {n ∈ Z : n ≥ 1}.

For real or complex Hilbert spaces U and Y , let L(U, Y ) denote the space of all linear bounded
operators mapping U to Y . As usual, we set L(U) := L(U,U). For Z ∈ L(U, Y ) and r > 0, define

B(Z, r) := {T ∈ L(U, Y ) : ‖T − Z‖ < r} ,

the open ball in L(U, Y ), with centre Z and radius r.

For α ∈ R, set Cα := {s ∈ C : Re s > α}. The space of all holomorphic and bounded functions
Cα → L(U, Y ) is denoted by H∞α (L(U, Y )). Endowed with the norm

‖H‖H∞α := sup
s∈Cα

‖H(s)‖ ,

H∞α (L(U, Y )) is a Banach space. We write H∞(L(U, Y )) for H∞0 (L(U, Y )).

For an arbitrary Banach space W and t ≥ 0, define the projection operator Pt : L2
loc(R+,W ) →

L2(R+,W ) by

(Ptw)(τ) =

{
w(τ), ∀ τ ∈ [0, t]
0, ∀ τ > t.

For α ∈ R and 1 ≤ q ≤ ∞, we define the weighted Lq-space

Lqα(R+,W ) := {w ∈ Lqloc(R+,W ) : expαw ∈ Lq(R+,W )},

where expα : R→ R is given by expα(t) := eαt. Endowed with the norm

‖w‖Lqα = ‖ expαw‖Lq ,

Lqα(R+,W ) is a Banach space.
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In the following, let R = R+ or R. For τ ∈ R, the shift operator Sτ : L2
loc(R,W ) → L2

loc(R,W ) is
given by (Sτw)(t) = w(t+ τ) for all t ∈ R. For later purposes, we define BC(R,W ) and BUC(R,W )
as the spaces of all, respectively, bounded continuous and bounded uniformly continuous functions.
Endowed with the supremum norm, BC(R,W ) and BUC(R,W ) are Banach spaces. Moreover, we
define the space of uniformly locally q-integrable functions ULqloc(R,W ) by

ULqloc(R,W ) :=

{
w ∈ Lqloc(R,W ) : sup

a∈R

∫ a+1

a
‖w(t)‖qdt <∞

}
,

where 1 ≤ q <∞. It is straightforward to show that, with the Stepanov norm

‖w‖Sq := sup
a∈R

(∫ a+1

a
‖w(t)‖qdt

)1/q

,

ULqloc(R,W ) is a Banach space. Furthermore, for every b > 0, the functional

w 7→ sup
a∈R

(∫ a+b

a
‖w(t)‖qdt

)1/q

is a norm on ULqloc(R,W ) and this norm is equivalent to ‖ · ‖Sq .
Below we will provide a brief review of some material from the theory of well-posed systems, for more
details we refer the reader to [31, 33, 34, 36, 37, 38]. Throughout, we shall be considering a well-posed
linear system Σ = (T,Φ,Ψ,G) with state space X, input space U and output space Y . Here X,
U and Y are separable complex Hilbert spaces, T = (Tt)t≥0 is a strongly continuous semigroup on
X, Φ = (Φt)t≥0 is a family of bounded linear operators from L2(R+, U) to X (input-to-state maps),
Ψ = (Ψt)t≥0 is a family of bounded linear operators from X to L2(R+, Y ) (state-to-output maps) and
G = (Gt)t≥0 is a family of bounded linear operators from L2(R+, U) to L2(R+, Y ) (input-to-output
maps). In order for Σ to qualify as a well-posed system, these families of operators need to satisfy
certain natural conditions, see [31, 34, 36, 37]. Particular consequences of these conditions are the
following properties:

ΦtPt = Φt, PtΨt+τ = Ψt, PtGt+τPt = PtGt+τ = Gt ∀ t, τ ≥ 0 .

It follows that Φt extends in a natural way to L2
loc(R+, U) and there exist operators Ψ∞ : X →

L2
loc(R+, Y ) and G∞ : L2

loc(R+, U)→ L2
loc(R+, Y ) such that

PtΨ∞ = Ψt, PtG∞ = Gt ∀ t ≥ 0 .

The operator G∞ is right-shift invariant (and hence causal) and is called the input-output operator
of Σ. Given an initial state x0 and an input u ∈ L2

loc(R+, U), the corresponding state and output
trajectories x and y of Σ are defined by

x(t) = Ttx0 + ΦtPtu

Pty = Ψtx
0 + GtPtu

}
∀ t ≥ 0 , (2.1)

respectively.

Let (A,B,C) denote the generating operators of Σ. The operator A is the generator of the strongly
continuous semigroup T = (Tt)t≥0 and the operators B ∈ L(U,X−1) and C ∈ L(X1, Y ) are the unique
operators satisfying

Φtu =

∫ t

0
Tt−τBu(τ)dτ ∀u ∈ L2(R+, U), ∀ t ≥ 0 ,
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and
(Ψ∞x

0)(t) = CTtx0 ∀x0 ∈ X1, ∀ t ≥ 0,

where the spaces X1 and X−1, respectively, are the usual interpolation and extrapolation spaces
associated with A and X.

The transfer function G of Σ has the property that G ∈ H∞α (L(U, Y )) for every α > ω(T), where
ω(T) denotes the exponential growth constant of T. The relationship between G and the operators
(A,B,C) is expressed by the formula

1

s− z
(
G(s)−G(z)

)
= −C(sI −A)−1(zI −A−1)−1B ∀ s, z ∈ Cω(T), s 6= z,

see [31, equation (4.6.9)], where A−1 ∈ L(X,X−1) extends A to X and, considered as an unbounded
operator on X−1, generates a semigroup on X−1 which extends T to X−1. Furthermore, for β ∈ R,
the operator G∞ is in L(L2

β(R+, U), L2
β(R+, Y )) if, and only if, G ∈ H∞−β(L(U, Y )), in which case

‖G∞‖β = ‖G‖H∞−β ,

where ‖ · ‖β denotes the L2
β-induced operator norm. We remark that β < −ω(T) is sufficient for G∞

to be in L(L2
β(R+, U), L2

β(R+, Y )). We also record that, for every β < −ω(T), there exist positive
constants ϕ and ψ such that

‖eβtΦtu‖ ≤ ϕ‖Ptu‖L2
β
∀u ∈ L2

loc(R+, U), ∀ t ≥ 0 ,

and
‖Ψ∞x0‖L2

β
≤ ψ‖x0‖ ∀x0 ∈ X .

The system (2.1) is said to be optimizable if, for every x0 ∈ X, there exists u ∈ L2(R+, U), such that
x ∈ L2(R+, X). Furthermore, we say that (2.1) is estimatable if, the “dual” system is optimizable, that
is, for every z0 ∈ X, there exists v ∈ L2(R+, Y ) such that the function t 7→ T∗t z0+Ψ∗t v is in L2(R+, X).
We note that, by [20], optimizability is equivalent to exponential stabilizability and estimatability is
equivalent to exponential detectability (where exponential stabilizability and detectability are under-
stood in the sense of [31]).

An operator K ∈ L(Y,U) is said to be an admissible feedback operator for Σ (or for G) if there exists
α ∈ R such that I−GK is invertible in H∞α (L(Y )). If K ∈ L(Y,U) is an admissible feedback operator,
then, for every t ≥ 0, the operator I −GtK is invertible in L(L2(R+, Y )), and, I −G∞K has a causal
inverse (I−G∞K)−1 (mapping L2

loc(R+, Y ) into itself). Furthermore, if K ∈ L(Y,U) is an admissible
feedback operator for Σ, then there exists a unique well-posed system ΣK = (TK ,ΦK ,ΨK ,GK) such
that

ΣK
t = Σt + Σt

(
0 0
0 K

)
ΣK
t ∀ t ≥ 0, (2.2)

where

Σt :=

(
Tt Φt

Ψt Gt

)
, ΣK

t :=

(
TKt ΦK

t

ΨK
t GK

t

)
.

The interpretation of (2.2) is that ΣK is the closed-loop system shown in Figure 2.1.

Σ

K

u y

−

Figure 2.1: Block diagram of closed-loop feedback system of Σ in connection with output feedback K.
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We say that an operator K ∈ L(Y,U) stabilizes G (or stabilizes Σ in the input-output sense) if
(I −GK)−1G ∈ H∞(L(U, Y )). The set of all operators stabilizing G is denoted by S(G). Trivially,
every element in S(G) is an admissible feedback operator for G.

The following lemma is a special case of [13, Proposition 5.6].

Lemma 2.1. For K ∈ L(Y,U) and r > 0, B(K, r) ⊂ S(G) if, and only if, ‖(I−GK)−1G‖H∞ ≤ 1/r.

In particular, if K ∈ S(G) and ‖(I−GK)−1G‖H∞ > 0, then ρ := 1/‖(I−GK)−1G‖H∞ is the largest
number such that B(K, ρ) ⊂ S(G).

An immediate consequence of the sufficiency part of Lemma 2.1 is that S(G) is an open subset of
L(Y, U). Note that the sufficiency part is simply a version of the small-gain theorem. The assumption
that the Hilbert spaces U and Y are complex plays an important role in the necessity part which in
general does not hold for real Hilbert spaces.

In the following, we shall adopt the four-block setting for Lur’e systems considered in [14], see Figure
1.1. In particular, we assume that the input and output spaces U and Y are of the form U = U1×U2

and Y = Y 1×Y 2, where U i and Y i are complex Hilbert spaces, i = 1, 2. It is convenient to introduce
the following maps

P i : Y → Y i,

(
y1

y2

)
7→ yi, i = 1, 2 ,

and

E1 : U1 → U, u 7→
(
u
0

)
, E2 : U2 → U, u 7→

(
0
u

)
.

If y ∈ L2
loc(R+, Y ), then P iy is the function in L2

loc(R+, Y
i) given by (P iy)(t) = P iy(t). Similarly,

for u ∈ L2
loc(R+, U

i), the symbol Eiu denotes the function in L2
loc(R+, U) given by (Eiu)(t) = Eiu(t).

The decompositions of the input and output spaces, U = U1 × U2 and Y = Y 1 × Y 2, respectively,
induces four well-posed systems, namely,

Σij := (T,ΦEj , P iΨ, P iGEj), i, j = 1, 2 .

Obviously, the state, input and output spaces of Σij are given by X, U j and Y i, respectively. For
Kij ∈ L(Y j , U i), let K ∈ L(Y,U) be defined by

Ky = EiKijP jy ∀ y ∈ Y .

For example, if i = 1 and j = 2, then

K =

(
0 K12

0 0

)
.

3 Incremental stability of infinite-dimensional Lur’e systems

We start this section by defining the class of Lur’e systems which we will be considering, thereby
formalizing the arrangement depicted in Figure 1.1. Given an initial state x0 and an input u ∈
L2
loc(R+, U), the corresponding state and output trajectories of Σ are given by (2.1). Let i, j ∈ {1, 2}

and let f : Y j → U i be a nonlinearity. The closed-loop system obtained by applying the feedback

u = Ei(f ◦ P jy) + v, where v ∈ L2
loc(R+, U) ,

is then given by
x(t) = Ttx0 + ΦtPt

(
Ei(f ◦ P jy) + v

)
,

Pty = Ψtx
0 + GtPt

(
Ei(f ◦ P jy) + v

)
.

}
(3.1)
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As an illustration, Figure 1.1 corresponds to the case i = j = 2. Given x0 ∈ X and v ∈ L2
loc(R+, U),

a solution of the Lur’e system (3.1) on [0, σ), where 0 < σ ≤ ∞, is a pair (x, y) ∈ C([0, σ), X) ×
L2
loc([0, σ), Y ) such that f ◦ P jy ∈ L2

loc([0, σ), U i) and (3.1) holds for all t ∈ [0, σ). Obviously, if (x, y)
is a solution of (3.1), then x(0) = x0.

It can be shown (by invoking Zorn’s lemma) that, for every solution of (3.1) on [0, σ), there exists
a maximally defined solution (3.1) defined on [0, τ) with σ ≤ τ ≤ ∞ which cannot be extended any
further (that is, τ is maximal).

The set of all triples (v, x, y) in L2
loc(R+, U) × C(R+, X) × L2

loc(R+, Y ) such that (3.1) holds with
x0 = x(0) is said to be the behaviour of (3.1) and is denoted by B. Elements of B will sometimes be
referred to as trajectories of (3.1). In particular, if (v, x, y) ∈ B, then (x, y) is a solution of (3.1) which
is defined on R+ and with x0 = x(0). In an ISS context, we consider external inputs v which belong
to L∞loc(R+, U) ⊂ L2

loc(R+, U). More generally, for 2 ≤ q ≤ ∞, we may wish to consider inputs v in
Lqloc(R+, U) ⊂ L2

loc(R+, U). It is therefore convenient to define the following “sub-behaviour” of B:

Bq := {(v, x, y) ∈ B : v ∈ Lqloc(R+, U)} .

Obviously, we have B2 = B. A key property of the behaviour Bq is its invariance with respect to left
translations, that is,

(v, x, y) ∈ Bq =⇒ (Sτv,Sτx,Sτy) ∈ Bq ∀ τ ≥ 0.

In this paper, we are mainly concerned with stability and convergence properties of (3.1) and not
with existence and uniqueness questions. However, we state a simple, but important, existence and
uniqueness result from [34].

Proposition 3.1. If f : Y j → U i is globally Lipschitz with Lipschitz constant λ ≥ 0 and

λ lim inf
α→∞

‖P jGEi‖H∞α < 1 ,

then, for all x0 ∈ X and v ∈ L2
loc(R+, U), the Lur’e system (3.1) has a unique solution on R+.

For later purposes, we define the bi-lateral behaviour BB of (3.1) as the set of all triples (v, x, y) ∈
L2
loc(R, U)× C(R, X)× L2

loc(R, Y ) such that, for every t0 ∈ R,

x(t) = Tt−t0x(t0) + Φt−t0Pt−t0
(
Ei(f ◦ P jSt0y) + St0v

)
Pt−t0St0y = Ψt−t0x(t0) + Gt−t0Pt−t0

(
Ei(f ◦ P jSt0y) + St0v

)} ∀ t ≥ t0.

We refer to the elements of BB as bi-trajectories of (3.1). Obviously, a bi-trajectory restricted to R+ is
an element in B. Furthermore, the bi-lateral behaviour BB is invariant with respect to all translations,
that is,

(v, x, y) ∈ BB =⇒ (Sτv,Sτx,Sτy) ∈ BB ∀ τ ∈ R.

The next lemma (which can be found in [14]) shows that the behaviour B of (3.1) is identical to the
behaviour of the feedback interconnection obtained when the linear system ΣK is subjected to the
feedback law u = Eif(P jy)−Ky + v, where K ∈ L(Y, U) is an admissible feedback operator for Σ.

Lemma 3.2. Let K ∈ L(Y,U) be an admissible feedback operator for Σ and let (v, x, y) ∈ L2
loc(R+, U)×

C(R+, X)× L2
loc(R+, Y ). The triple (v, x, y) is in B if, and only if,

x(t) = TKt x(0) + ΦK
t Pt

(
Ei(f ◦ P jy) + v −Ky

)
Pty = ΨK

t x(0) + GK
t Pt

(
Ei(f ◦ P jy) + v −Ky

)} ∀ t ≥ 0 .
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A triple (veq, xeq, yeq) ∈ U × X × Y is said to be an equilibrium or equilibrium triple of the Lur’e
system (3.1) if the constant trajectory t 7→ (veq, xeq, yeq) belongs to B (in which case it is also a
bi-trajectory). The next result provides formulas relating the components of an equilibrium triple
(veq, xeq, yeq).

Proposition 3.3. Let (veq, xeq, yeq) ∈ U × X × Y , let η ∈ C such that Re η > ω(T) and set ueq :=
Eif(P jyeq) + veq. The triple (veq, xeq, yeq) is an equilibrium of (3.1) if, and only if,

Axeq +Bueq = 0 and yeq = C
(
xeq − (ηI −A)−1Bueq

)
+ G(η)ueq .

We refer to [14] for a proof of Proposition 3.3.

Note that the identity Axeq + Bueq = 0 implies that xeq − (ηI − A)−1Bueq ∈ X1 and thus, the
expression C

(
xeq − (ηI − A)−1Bueq

)
is well defined. Furthermore, Proposition 3.3 shows that that

the triple (−Eif(0), 0, 0) is always an equilibrium of (3.1).

Let 2 ≤ q ≤ ∞. An equilibrium triple (veq, xeq, yeq) of (3.1) is said to be exponentially Lq-input-to-state
stable (exponentially Lq-ISS ) if there exist positive constants Γ and γ such that

‖x(t)− xeq‖ ≤ Γ
(
e−γt‖x(0)− xeq‖+ ‖Pt(v − veqϑ)‖Lq

)
∀ t ≥ 0, ∀ (v, x, y) ∈ Bq ,

where ϑ(t) = 1 for all t ≥ 0. Furthermore, (3.1) is said to be exponentially incrementally Lq-input-
to-state stable (exponentially Lq-δISS ) if there exist positive constants Γ and γ > 0 such that, for all
(v1, x1, y1), (v2, x2, y2) ∈ Bq,

‖x1(t)− x2(t)‖ ≤ Γ
(
e−γt‖x1(0)− x2(0)‖+ ‖Pt(v1 − v2)‖L∞

)
∀ t ≥ 0.

Here vi and yi should not be confused with vi and yi, i = 1, 2, which appear in (1.1) and Figure 1.1.

We introduce a further type of “sub-behaviour” which shall be useful in formulating our stability
results. For a non-empty subset Z ⊂ Y j and 2 ≤ q ≤ ∞, we set

BqZ := {(v, x, y) ∈ Bq : P jy(t) ∈ Z for a.e t ≥ 0} .

Furthermore, BZ := B2Z .

The following theorem, a refinement of [14, Theorem 4.1], is reminiscent of the complex Aizerman
conjecture in finite dimensions (which is known to be true, see [16, 17, 19]): incremental stability
properties of the nonlinear system (3.1) are guaranteed by the assumption that a corresponding linear
feedback system is stable for all linear complex feedback operators belonging to a certain ball, pro-
vided the nonlinearity satisfies, in a suitable and natural sense, an incremental version of the same
boundedness condition. Before we state the results, it is convenient to define

∆ := {(t, s) ∈ R2 : t ≥ s ≥ 0} ⊂ R2
+.

Theorem 3.4. Let Σ = (T,Φ,Ψ,G) be a well-posed linear system, let i, j ∈ {1, 2}, Kij ∈ L(Y j , U i),
r > 0, 2 ≤ q ≤ ∞, and let Z1, Z2 ⊂ Y j be non-empty subsets. Assume that Σji = (T,ΦEi, P jΨ, P jGEi)
is optimizable and estimatable and B(Kij , r) ⊂ S(P jGEi). If f : Y j → U i satisfies

sup
(z1,z2)∈Z1×Z2, z1 6=z2

‖f(z1)− f(z2)−Kij(z1 − z2)‖
‖z1 − z2‖

< r, (3.2)

then the following statements hold.

(1) There exist constants Γq > 0 and γ > 0 such that, for all (v1, x1, y1) ∈ BqZ1
and all (v2, x2, y2) ∈

BqZ2
,

‖x1(t)− x2(t)‖ ≤ Γq
(
e−γ(t−t0)‖x1(t0)− x2(t0)‖+ ‖v1 − v2‖Lq(t0,t)

)
∀ (t, t0) ∈ ∆.

Here Γq depends on q, but γ does not.
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(2) There exist constants Γ > 0 and ε > 0 such that, for all (v1, x1, y1) ∈ BZ1, all (v2, x2, y2) ∈ BZ2

and all α ∈ [0, ε],

‖x1 − x2‖L2
α(t0,t)

+ ‖y1 − y2‖L2
α(t0,t)

≤ Γ
(
‖x1(t0)− x2(t0)‖+ ‖v1 − v2‖L2

α(t0,t)

)
∀ (t, t0) ∈ ∆.

(3) There exist constants Γ̃q > 0 and γ̃ > 0 such that, for all (v1, x1, y1) ∈ BqZ1
and all (v2, x2, y2) ∈

BqZ2
with v1, v2 ∈ ULqloc(R+, U)

‖x1(t)− x2(t)‖ ≤ Γ̃q
(
e−γ̃(t−t0)‖x1(t0)− x2(t0)‖+ ‖St0(v1 − v2)‖Sq

)
∀ (t, t0) ∈ ∆.

(4) There exists a constant Γ̃ > 0 such that, for all (v1, x1, y1) ∈ BZ1 and all (v2, x2, y2) ∈ BZ2 with
v1, v2 ∈ UL2

loc(R+, U),

‖St0(x1 − x2)‖S2 + ‖St0(y1 − y2)‖S2 ≤ Γ̃
(
‖x1(t0)− x2(t0)‖+ ‖St0(v1 − v2)‖S2

)
∀ t0 ≥ 0.

We highlight two important special cases.

Special case 1. Assume that (veq, xeq, yeq) ∈ U × X × Y is an equilibrium triple of the Lur’e
system (3.1) and the assumptions of Theorem 3.4 hold with Z1 = Y j and Z2 = {P jyeq}. Then the
constant trajectory (veq, xeq, yeq) is in B∞Z2

and statement (1) implies that, for every 2 ≤ q ≤ ∞, the
equilibrium (veq, xeq, yeq) is exponentially Lq-ISS. Furthermore, statement (3) guarantees that, for any
(v, x, y) ∈ Bq with v ∈ ULqloc(R+, U) and 2 ≤ q <∞, the state x is bounded.

Special case 2. Assume that the hypotheses of Theorem 3.4 hold with Z1 = Z2 = Y j (and so (3.2)
is equivalent to z 7→ f(z)−Kijz being globally Lipschitz with Lipschitz constant smaller than r). In
this case, statement (1) of Theorem 3.4 implies that the Lur’e system (3.1) is exponentially Lq-δISS
for every q such that 2 ≤ q ≤ ∞. Furthermore, as a consequence of Proposition 3.1 and Lemma 3.2,
for every pair (x0, v) ∈ X ×L2

loc(R+, U), there exists a unique triple (v, x, y) ∈ B such that x(0) = x0.

As compared to [14, Theorem 4.1], the new contribution of Theorem 3.4 are statements (3) and (4)
which provide bounds in terms of the Stepanov norm of St0(v1 − v2).
Proof of Theorem 3.4. To prove statement (1), let (v1, x1, y1) ∈ BqZ1

and (v2, x2, y2) ∈ BqZ2
and

note that, for any t0 ≥ 0, (St0v1,St0x1,St0y1) ∈ B
q
Z1

and (St0v2,St0x2,St0y2) ∈ B
q
Z2

, and thus, by [14,
Theorem 4.1], there exist constants Γq > 0 and γ > 0, such that

‖(St0x1)(s)− (St0x2)(s)‖ ≤ Γq
(
e−γs‖(St0x1)(0)− (St0x2)(0)‖+ ‖Ps(St0v1 − St0v2)‖Lq

)
∀ s ≥ 0.

Setting t := s+ t0 ≥ 0, it follows that

‖x1(t)− x2(t)‖ ≤ Γq
(
e−γ(t−t0)‖x1(t0)− x2(t0)‖+ ‖v1 − v2‖Lq(t0,t)

)
∀ t ≥ t0,

establishing statement (1).

Statement (2) can be derived from [14, Theorem 4.1] in a similar manner.

We proceed to prove statement (3). Let 2 ≤ q < ∞, t0 ≥ 0, (v1, x1, y1) ∈ BqZ1
and (v2, x2, y2) ∈ BqZ2

with v1, v2 ∈ ULqloc(R+, U). Setting x := x1 − x2 and v := v1 − v2, we obtain from statement (1) that

‖x(t)‖ ≤ Γq
(
e−γ(t−s)‖x(s)‖+ ‖v‖Lq(s,t)

)
∀ (t, s) ∈ ∆. (3.3)

Choose τ > 0 such that Γqe
−γτ < 1 and let m be the smallest integer such that m ≥ τ . A straightfor-

ward argument shows that

‖v‖Lq(a,a+τ) ≤ m1/q‖St0v‖Sq ∀ (a, t0) ∈ ∆.
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In particular,
b := sup

k∈Z+

‖v‖Lq(t0+kτ,t0+(k+1)τ) ≤ m1/q‖St0v‖Sq ,

and so, by (3.3) with t = t0 + (k + 1)τ and s = t0 + kτ ,

‖x(t0 + (k + 1)τ)‖ ≤ Γq
(
e−γτ‖x(t0 + kτ)‖+ b

)
≤ θ‖x(t0 + kτ)‖+ Γqb ∀ k ∈ Z+,

where θ := Γqe
−γτ < 1. Consequently,

‖x(t0 + kτ)‖ ≤ θk‖x(t0)‖+ Γqb
k−1∑
j=0

θj ≤ θk‖x(t0)‖+
Γqb

1− θ
∀ k ∈ N. (3.4)

Appealing to (3.3) with s = t0 + kτ we obtain

‖x(t)‖ ≤ Γq
(
‖x(t0 + kτ)‖+ ‖v‖L2(t0+kτ,t)

)
∀ t ∈ [t0 + kτ, t0 + (k + 1)τ ], ∀ k ∈ Z+.

Now ‖v‖L2(t0+kτ,t) ≤ b for all t ∈ [t0 + kτ, t0 + (k + 1)τ ] and all k ∈ Z+, and so, invoking (3.4),

‖x(t)‖ ≤ Γq
(
θk‖x(t0)‖+ (Γq + 1− θ)b/(1− θ)

)
∀ t ∈ [t0 + kτ, t0 + (k + 1)τ ], ∀ k ∈ Z+.

Consequently, setting γ̃ := −(ln θ)/τ > 0, we have that

‖x(t)‖ ≤ Γ̃q
(
e−γ̃(t−t0)‖x(t0)‖+ ‖St0v‖Sq

)
∀ (t, t0) ∈ ∆,

where Γ̃q := Γq max(eγ̃τ ,m1/q(Γq + 1− θ)/(1− θ)), completing the proof of statement (3).

To prove statement (4), let (v1, x1, y1) ∈ BZ1 and (v2, x2, y2) ∈ BZ2 with v1, v2 ∈ UL2
loc(R+, U). Then,

for every t0 ≥ 0,
(St0vj ,St0xj ,St0yj) ∈ BZj , j = 1, 2.

Therefore, setting v := v1 − v2, x := x1 − x2 and y := y1 − y2, we obtain from statement (2) that

‖St0x‖L2(τ,τ+1) + ‖St0y‖L2(τ,τ+1) ≤ Γ
(
‖(St0x)(τ)‖+ ‖St0v‖L2(τ,τ+1)

)
∀ τ, t0 ≥ 0.

The above inequality implies that, for every t0 ≥ 0,

‖St0x‖S2 + ‖St0y‖S2 ≤ 2Γ
(

sup
τ≥0
‖(St0x)(τ)‖+ ‖St0v‖S2

)
.

Now, as (St0vj ,St0xj ,St0yj) ∈ BZj , j = 1, 2, an application of statement (3) yields,

‖(St0x)(s)‖ ≤ Γ̃2

(
e−γ̃s‖(St0x)(0)‖+ ‖St0v‖S2

)
∀ s, t0 ≥ 0,

and thus, for every t0 ≥ 0,

‖St0x‖S2 + ‖St0y‖S2 ≤ Γ̃(‖x(t0)‖+ ‖St0v‖S2

)
,

where Γ̃ := 2Γ(Γ̃2 + 1), completing the proof. �

Assuming that Kij ∈ S(P jGEi) and setting r := 1/‖(P jGEi)Kij‖H∞ , it follows from Lemma 2.1
that B(Kij , r) ⊂ S(P jGEi), and hence, the following small-gain result is an immediate consequence
of Theorem 3.4.

Corollary 3.5. Let Σ, f , Z1 and Z2 be as in Theorem 3.4, let i, j ∈ {1, 2} and let Kij ∈ S(P jGEi).
Assume that Σji = (T,ΦEi, P jΨ, P jGEi) is optimizable and estimatable. If

sup
(z1,z2)∈Z1×Z2, z1 6=z2

‖f(z1)− f(z2)−Kij(z1 − z2)‖
‖z1 − z2‖

· ‖(P jGEi)Kij‖H∞ < 1, (3.5)

then statements (1)–(4) of Theorem 3.4 hold.
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Let H be a complex Hilbert space. We say that H : C0 → L(H) is positive real if H is holomorphic
with the exception of isolated singularities and H(s) + H∗(s) is positive semi-definite for all s ∈ C0

which are not singularities of H. In fact, if H is positive real, then H is holomorphic on C0 [13,
Proposition 3.3].

The following result can be considered as an incremental version of the circle criterion.

Corollary 3.6. Let Σ, f , Z1 and Z2 be as in Theorem 3.4, let i, j ∈ {1, 2} and let K1,K2 ∈ L(Y j , U i).
Assume that Σji = (T,ΦEi, P jΨ, P jGEi) is optimizable and estimatable, K1 is admissible feedback
operator for Σji and Z2 = Y j. If (I −K2P

jGEi)(I −K1P
jGEi)−1 is positive real and there exists

ε > 0 such that

Re 〈f(z1)− f(z2)−K1(z1 − z2), f(z1)− f(z2)−K2(z1 − z2)〉 ≤ −ε‖z1 − z2‖2 ∀ (z1, z2) ∈ Z1 × Y j ,

then statements (1)–(4) of Theorem 3.4 hold (with Z2 = Y j).

The above corollary can be derived from Theorem 3.4 in the same way as [14, Corollary 4.5] is obtained
from [14, Theorem 4.1] and we do not repeat the details here.

4 Lur’e systems with almost periodic inputs

Before we come to the main result of this paper, we provide some relevant background on almost
periodic functions (in the sense of Bohr and its generalization by Stepanov).

Let R = R or R+ and let W be a Banach space. A set S ⊆ R is said to be relatively dense (in R) if
there exists l > 0 such that

[a, a+ l] ∩ S 6= ∅ ∀ a ∈ R.
For ε > 0, we say that τ ∈ R is an ε-period of v ∈ C(R,W ) if

‖v(t)− v(t+ τ)‖ ≤ ε ∀ t ∈ R.

We denote by P (v, ε) ⊆ R the set of ε-periods of v and we say that v ∈ C(R,W ) is almost periodic
(in the sense of Bohr) if P (v, ε) is relatively dense in R for every ε > 0. We denote the set of almost
periodic functions v ∈ C(R,W ) by AP (R,W ) and mention that AP (R,W ) is a closed subspace of
BUC(R,W ). Obviously, any periodic continuous function is almost periodic.

The straightforward proof of the following lemma is left to the reader.

Lemma 4.1. If v ∈ AP (R,W ), then, for every τ ∈ R, supt≥τ ‖v(t)‖ = ‖v‖∞.

The above lemma shows that functions in AP (R,W ) are completely determined by their “infinite
right tails”: if v, w ∈ AP (R,W ) and there exists τ ∈ R such that v(t) = w(t) for all t ≥ τ , then v = w.
A similar result holds in the context of “infinite left tails” of almost periodic functions defined on R,
but since it is not needed in what follows, we omit the details.

We say that a function v ∈ C(R+,W ) is asymptotically almost periodic if it is of the form v = vap +w
with vap ∈ AP (R+,W ) and w ∈ C0(R+,W ), where C0(R+,W ) is the space of functions u ∈ C(R+,W )
such that limt→∞ u(t) = 0. The space of all asymptotically almost periodic functions is denoted by
AAP (R+,W ), that is,

AAP (R+,W ) = AP (R+,W ) + C0(R+,W ).

Noting that, by Lemma 4.1,

‖v + w‖∞ ≥ ‖v‖∞ ∀ v ∈ AP (R+,W ), ∀w ∈ C0(R+,W ), (4.1)

it is easy to see that AAP (R+,W ) is a closed subspace of BUC(R+,W ).

As an immediate consequence of Lemma 4.1, we obtain the following result.
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Lemma 4.2. If v ∈ AAP (R+,W ), then the decomposition v = vap +w, where vap ∈ AP (R+,W ) and
w ∈ C0(R+,W ), is unique.

In the following, for v ∈ AAP (R+,W ), we let vap denote the unique function in AP (R+,W ) such that
v − vap ∈ C0(R+,W ).

It is well-known that v ∈ C(R,W ) is almost periodic if, and only if, the set of translates {Sτv : τ ∈ R}
is relatively compact in BC(R,W ). Since, for any v ∈ C0(R+,W ), the set of left-translates {Sτv :
τ ∈ R+} is relatively compact in BC(R+,W ), it is clear that the above characterisation of almost
periodicity on R is not valid for functions in C(R+,W ). Interestingly, the elements of AAP (R+,W )
are precisely the functions for which the set {Sτv : τ ∈ R+} is relatively compact in BUC(R+,W ),
see [21]). For more information on and further characterisations of almost periodicity, we refer the
reader to the literature, see, for example, [1, 7, 8].

There is a close relationship between the spaces AP (R+,W ) and AP (R,W ) which we now briefly
explain. Following an idea in [5, Remark on p. 318], for every v ∈ AP (R+,W ), we define a function
ve : R→W by

ve(t) := lim
k→∞

v(t+ τk) ∀ t ∈ R,

where τk ∈ P (v, 1/k) for each k ∈ N and τk →∞ as k →∞. For given t ∈ R, we have

‖v(t+ τk)− v(t+ τl)‖ ≤ ‖v(t+ τk)− v(t+ τk + τl)‖+ ‖v(t+ τk + τl)− v(t+ τl)‖ ≤
1

l
+

1

k
,

for all k, l ∈ N sufficiently large, and so (v(t+ τk))k is a Cauchy sequence. Hence ve(t) is well-defined
for each t ∈ R. It is clear that ve(t) = v(t) for all t ≥ 0, that is, ve extends v to R. Furthermore,
it is not difficult to show that ve is continuous and P (ve, ε) = {±τ : τ ∈ P (v, ε)}. In particular,
ve ∈ AP (R,W ). Moreover, there is no other function in AP (R,W ) which extends v to R, and Lemma
4.1 guarantees that

sup
t∈R
‖ve(t)‖ = sup

t∈R+

‖v(t)‖.

It is now clear that the map AP (R+,W ) → AP (R,W ), v 7→ ve is an isometric isomorphism. We
remark that, by invoking the translation semigroup acting on AP (R+,W ), [4] provides an alternative
approach to establishing that every element in AP (R+,W ) has an almost periodic extension to R.

For a function v ∈ AP (R,W ), the generalized Fourier coefficients of v are defined by

v̂(λ) := lim
T→∞

1

2T

∫ T

−T
e−iλtv(t)dt ∀λ ∈ R.

It is well-known that the above limit exists for all λ ∈ R and the frequency spectrum

σf(v) := {λ ∈ R : v̂(λ) 6= 0}

of v is countable, see, for example, [1, 8]. The module mod(v) of v ∈ AP (R,W ) is the set of all
numbers of the form

∑
λ∈σf(v)m(λ)λ, where m : σf(v) → Z has finite support, that is, m(λ) 6= 0 for

at most finitely many λ ∈ σf(v). It is clear that mod(v) carries the structure of a Z-module and is the
smallest additive subgroup of R containing σf(v).

We recall another concept of almost periodicity which is weaker than that of Bohr. To this end, let
v ∈ Lqloc(R,W ), where 1 ≤ q < ∞, and ε > 0. We say that τ ∈ R is an ε-period of v (in the sense of
Stepanov) if

sup
a∈R

(∫ a+1

a
‖v(s+ τ)− v(s)‖qds

)1/q

≤ ε.
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The set of ε-periods of v (in the sense of Stepanov) is denoted by Pq(v, ε). We say that v is almost
periodic in the sense of Stepanov if, for every ε > 0, the set Pq(v, ε) is relatively dense in R. The set of
all functions in Lqloc(R,W ) which are almost periodic in the sense of Stepanov is denoted by Sq(R,W ).
It is clear that AP (R,W ) ⊂ Sq(R,W ) (where the inclusion is strict), and, for every v ∈ AP (R,W ) and
every ε > 0, P (v, ε) ⊂ Pq(v, ε). It is a routine exercise to prove that Sq(R,W ) is a closed subspace of
UL1

loc(R,W ) with respect to the Stepanov norm ‖ · ‖Sq . Sometimes it will be convenient to associate
with a function v ∈ Lqloc(R,W ) another function ṽ : R→ Lq([0, 1],W ) defined by(

ṽ(t)
)
(s) := v(t+ s) ∀ t ∈ R, ∀ s ∈ [0, 1],

the so-called Bochner transform of v. Then ṽ ∈ C(R,Lq([0, 1],W )), and,

‖v‖Sq = ‖ṽ‖∞ ∀ v ∈ ULqloc(R,W ), (4.2)

that is, the Bochner transform restricted to ULqloc(R,W ) is an isometry. Furthermore, a function
v ∈ ULqloc(R,W ) is in Sq(R,W ) if, and only if, ṽ ∈ AP (R,Lq([0, 1],W )). We remark that the
Bochner transform is not surjective.†

The following simple lemma is a consequence of Lemma 4.1 and (4.2).

Lemma 4.3. If v ∈ Sq(R+,W ), then, for every τ ∈ R+, ‖Sτv‖Sq = ‖v‖Sq .

The space ASq(R+,W ) of asymptotically almost periodic functions in the sense of Stepanov is defined
as follows

ASq(R+,W ) := Sq(R+,W ) + U0L
q
loc(R+,W ),

where U0L
q
loc(R+,W ) := {v ∈ ULqloc(R+,W ) : ‖Stv‖Sq → 0 as t→∞}. Obviously, AAP (R+,W ) ⊂

ASq(R+,W ). Noting that

v ∈ U0L
q
loc(R+,W )⇔ ṽ ∈ C0(R+, L

q([0, 1],W )) ∀ v ∈ ULqloc(R+,W ) (4.3)

and
v ∈ ASq(R+,W )⇔ ṽ ∈ AAP (R+, L

q([0, 1],W )) ∀ v ∈ ULqloc(R+,W ), (4.4)

it follows from (4.1) and (4.2) that

‖v + w‖Sq ≥ ‖v‖Sq ∀ v ∈ Sq(R+,W ), ∀w ∈ U0L
q
loc(R+,W ).

It is an easy consequence of this inequality that ASq(R+,W ) is a closed subspace of ULqloc(R+,W ).
Furthermore, (4.3) and (4.4) together with Lemma 4.2 and (4.2) yield the following result.

Lemma 4.4. If v ∈ ASq(R+,W ), then the decomposition v = vs + w, where vs ∈ Sq(R+,W ) and
w ∈ U0L

q
loc(R+,W ), is unique.

In the following, for v ∈ ASq(R+,W ), we let vs denote the unique function in Sq(R+,W ) such that
v − vs ∈ U0L

q
loc(R+,W ).

Let v ∈ Sq(R+,W ) and let τk ∈ Pq(v, 1/k) for all k ∈ N and τk → ∞ as k → ∞. Then it can be
shown that, for each τ > 0,

(
v(· + τk)

)
k

is a Cauchy sequence in Lq([−τ, τ ],W ) and hence defines
a function ve ∈ Lqloc(R,W ). A straightforward argument shows that ve|R+ = v (i.e., ve extends v
to R), ve ∈ Sq(R,W ), Pq(ve, ε) = {±τ : τ ∈ Pq(v, ε)} for every ε > 0, and the map Sq(R+,W ) 7→
Sq(R,W ), v 7→ ve is an isometric isomorphism.

We are now in the position to state and prove the main result of this paper.

† Consider the constant function F ∈ AP (R,Lq([0, 1],W )) given by F (t) = λ, where λ ∈ Lq([0, 1],W ) is such that
λ|[0,1/2] = 0 and λ|[1/2,1] 6= 0. Seeking a contradiction, suppose that there exists f ∈ Lqloc(R,W ) with f̃ = F . Then

f(t+ s) = 0 for every t ∈ R and almost every s ∈ [0, 1/2], implying that f = 0, and thus, F = f̃ = 0 which is absurd.
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Theorem 4.5. Let Σ = (T,Φ,Ψ,G) be a well-posed linear system, let i, j ∈ {1, 2}, Kij ∈ L(Y j , U i)
and let v∗ ∈ S2(R+, U). Assume that Σji = (T,ΦEi, P jΨ, P jGEi) is optimizable and estimatable and
Kij ∈ S(P jGEi). If f : Y j → U i satisfies (3.5) with Z1 = Z2 = Y j, then there exists a unique pair
(x∗, y∗) ∈ AP (R+, X)× S2(R+, Y ) such that (v∗, x∗, y∗) ∈ B, for every ε > 0, there exists δ > 0 such
that P2(v

∗, δ) ⊂ P (x∗, ε) ∩ P2(y
∗, ε) and the following statements hold.

(1) If (v, x, y) ∈ B is such that v ∈ AS2(R+, U) with vs = v∗, then

lim
t→∞

(
x(t)− x∗(t)

)
= 0, y ∈ UL2

loc(R+, Y ) and ‖St(y − y∗)‖S2 → 0 as t→∞,

that is, x ∈ AAP (R+, X) with xap = x∗ and y ∈ AS2(R+, Y ) with ys = y∗.

(2) If v∗ is periodic with period τ , then (x∗, y∗) is τ -periodic.

(3) (v∗e , x
∗
e , y
∗
e ) ∈ BB and there is no other pair (x̂, ŷ) ∈ BC(R, X)×UL2

loc(R, Y ) such that the triple
(v∗e , x̂, ŷ) is in BB.

(4) mod(ṽ∗e ) ⊃ mod(x∗e) ∪mod(ỹ∗e ).

Note that if v∗ ∈ AP (R+, U) and v ∈ AAP (R+, U) with vap = v∗, then v∗ ∈ S2(R+, U) and v ∈
AS2(R+, U) with vs = vap = v∗, and Theorem 4.5 applies. Furthermore, in this case, it can be shown
that σf(v

∗
e ) = σf(ṽ∗e ), and so, statement (4) can be written in the form mod(v∗e ) ⊃ mod(x∗e)∪mod(ỹ∗e ).

Of course, the extra regularity in the forcing provided by assuming that v∗ ∈ AP (R+, U) and v ∈
AAP (R+, U) is not sufficient to guarantee that y∗ ∈ AP (R+, Y ) and/or y ∈ AAP (R+, Y ).

As regards to statement (1), note that if v − v∗ ∈ L2(R+, U) or if ‖v − v∗‖L∞(t,∞) → 0 as t → ∞,
then v ∈ AS2(R+, U) with vs = v∗. In statement (2), τ -periodicity of the L2

loc-function y∗ means that
y∗(t+ τ) = y∗(t) for almost every t ≥ 0. We remark that statement (2) is not new: it was first proved
in [14, Theorem 5.4]. Here we recover it as a special case of the results on almost periodic forcing, see
the proof of Theorem 4.5 given below.

Proof of Theorem 4.5. Let v∗ ∈ S2(R+, U). It follows from (3.5), Proposition 3.1 and Lemma 3.2
(with K = EiKijP j) that there exists a pair (x, y) ∈ C(R+, X)×L2

loc(R+, Y ) such that (v∗, x, y) ∈ B.

Setting r := 1/‖(P jGEi)Kij‖H∞ , it follows from Lemma 2.1 that B(Kij , r) ⊂ S(P jGEi), and hence,
the hypotheses of Theorem 3.4 are satisfied. Therefore, applying statements (3) and (4) of Theorem
3.4 with (v1, x1, y1) = (v∗, x, y) and (v2, x2, y2) = (veqϑ, xeqϑ, yeqϑ), where (veq, xeq, yeq) is an arbitrary
equilibrium triple of (3.1) and ϑ is the constant function ϑ(t) ≡ 1, it follows that x is bounded, and
so x ∈ BC(R+, X), and, furthermore, y ∈ UL2

loc(R+, Y ). We set

ρ := 2‖x‖∞,

and choose a non-decreasing sequence (τk)k∈N such that

τk ∈ P2(v
∗, 1/k2) and τk > k ∀ k ∈ N.

We proceed in several steps.

Step 1: Construction of x∗. We are going to show that (Sτkx)k is a Cauchy sequence in BC(R+, X).†

To this end, we note that(∫ a+k

a
‖v∗(t+ τk)− v∗(t)‖2dt

)1/2

≤
k∑
j=1

(∫ a+j

a+j−1
‖v∗(t+ τk)− v∗(t)‖2dt

)1/2

≤ 1

k
∀ a ≥ 0, ∀ k ∈ N.

† Thereby extending an idea from [2] where a similar argument is used to establish the existence of a periodic solution
of periodically forced finite-dimensional systems.
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Consequently,

sup
a≥0

(∫ a+k

a
‖v∗(t+ τk)− v∗(t)‖2

)1/2

≤ 1

k
. (4.5)

Since (Sτv
∗,Sτx,Sτy) ∈ B for all τ ≥ 0, it follows from statement (1) of Theorem 3.4 that there exist

constants Γ2, γ > 0 such that

‖(Sσx)(s)− (Sσ+τx)(s)‖ ≤ Γ2

(
ρe−γ(s−s0) + ‖Sσv∗−Sσ+τv

∗‖L2(s0,s)

)
∀ (s, s0) ∈ ∆, ∀σ, τ ≥ 0. (4.6)

Trivially, for k, ` ∈ N with k ≥ `,

(Sτ`x)(t)− (Sτkx)(t) = (Stx)(τ`)− (St+τk−τ`x)(τ`), ∀ t ≥ 0,

and so, setting
I(t; k, `) := ‖Stv∗ − St+τk−τ`v

∗‖L2(τ`−`,τ`) ∀ t ≥ 0,

and invoking (4.6) with s = τ`, s0 = τ` − `, σ = t and τ = τk − τ`, we arrive at

‖(Sτ`x)(t)− (Sτkx)(t)‖ ≤ Γ2

(
ρe−γ` + I(t; k, `)

)
∀ t ≥ 0, ∀ k, ` ∈ N s.t. k ≥ `. (4.7)

Now
I(t; k, `) ≤ ‖Stv∗ − St+τkv

∗‖L2(τ`−`,τ`) + ‖St+τkv
∗ − St+τk−τ`v

∗‖L2(τ`−`,τ`),

and so, changing variables in the two terms on the right-hand side, we obtain that, for all t ≥ 0 and
all k, ` ∈ N such that k ≥ `,

I(t; k, `) ≤ ‖v∗ − Sτkv
∗‖L2(t+τ`−`,t+τ`) + ‖Sτ`v

∗ − v∗‖L2(t+τk−`,t+τk)

≤ ‖v∗ − Sτkv
∗‖L2(t+τ`−`,t+τ`−`+k) + ‖Sτ`v

∗ − v∗‖L2(t+τk−`,t+τk).

Consequently, by (4.5),

I(t; k, `) ≤ 1

k
+

1

`
∀ t ≥ 0, ∀ k, ` ∈ N s.t. k ≥ `,

and it follows from (4.7) that

‖(Sτ`x)(t)− (Sτkx)(t)‖ ≤ Γ2

(
ρe−γ` + 1/k + 1/`

)
∀ t ≥ 0, ∀ k, ` ∈ N s.t. k ≥ `.

This shows that (Sτkx)k is a Cauchy sequence in BC(R+, X), the limit of which we denote by x∗.

To show that x∗ ∈ AP (R+, X), let ε > 0, choose kε ∈ N such that ρe−γkε ≤ ε/(2Γ2) and set

ηε :=
ε

2kεΓ2
.

Let τ ∈ P2(v
∗, ηε). We will show that P2(v

∗, ηε) ⊂ P (x∗, ε). Obviously,

(Sτkx)(t+ τ)− (Sτkx)(t) = (St+τx)(τk)− (Stx)(τk) ∀t ≥ 0, ∀ k ∈ N,

and so, by (4.6) with s = τk, σ = t and s0 = τk − kε,

‖(Sτkx)(t+ τ)− (Sτkx)(t)‖ ≤ Γ2

(
ρe−γkε + ‖Stv∗ − St+τv

∗‖L2(τk−kε,τk)
)
∀ t ≥ 0, ∀ k ≥ kε.

Now

‖Stv∗ − St+τv
∗‖L2(τk−kε,τk) = ‖v∗ − Sτv

∗‖L2(t+τk−kε,t+τk) ≤ kεηε =
ε

2Γ2
∀ t ≥ 0, ∀ k ≥ kε,
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and thus,

‖(Sτkx)(t+ τ)− (Sτkx)(t)‖ ≤ ε

2
+
ε

2
= ε ∀ t ≥ 0, ∀ k ≥ kε.

Letting k →∞, we obtain
‖x∗(t+ τ)− x∗(t)‖ ≤ ε ∀ t ≥ 0,

establishing that P2(v
∗, ηε) ⊂ P (x∗, ε). The set P2(v

∗, ηε) is relatively dense in R+, and, a fortiori,
P (x∗, ε) is also relatively dense in R+. Since ε was arbitrary, we conclude that x∗ ∈ AP (R+, X).

Step 2: Construction of y∗. By statement (4) of Theorem 3.4 there exists a constant Γ̃ > 0 such that

‖St+τky − Sτ`y‖S2 ≤ Γ̃
(
‖(St+τkx)(0)− (Sτ`x)(0)‖+ ‖St+τkv

∗ − Sτ`v
∗‖S2

)
∀ t ≥ 0, ∀ k, ` ∈ N. (4.8)

Obviously, Sτkv
∗ → v∗ in S2(R+, U) and (Sτkx)(0) → x∗(0) as k → ∞, and so it follows from (4.8)

with t = 0 that (Sτky)k is a Cauchy sequence in UL2
loc(R+, Y ), the limit of which we denote by y∗.

Letting k →∞ and `→∞ in (4.8) we arrive at

‖Sty∗ − y∗‖S2 ≤ Γ̃
(
‖(Stx∗)(0)− x∗(0)‖+ ‖Stv∗ − v∗‖S2

)
∀ t ≥ 0. (4.9)

Now let ε > 0, set ε̃ := ε/(2Γ̃) and
δε := min{ηε, ηε̃, ε̃},

and let τ ∈ P2(v
∗, δε). Then, τ ∈ P2(v

∗, ηε̃), and consequently, by what we proved in Step 1, τ ∈
P (x∗, ε̃). An application of (4.9) with t = τ yields

‖Sτy∗ − y∗‖S2 ≤ Γ̃
(
ε̃+ δε

)
≤ ε.

Hence, P2(v
∗, δε) ⊂ P2(y

∗, ε). Therefore, the relative denseness of P2(v
∗, δε) implies that of P2(y

∗, ε),
showing that y∗ ∈ S2(R+, Y ). By the definition of δε, we have that P2(v

∗, δε) ⊂ P2(v
∗, ηε), and so, by

Step 1, P2(v
∗, δε) ⊂ P (x∗, ε). Consequently, P2(v

∗, δε) ⊂ P (x∗, ε) ∩ P2(y
∗, ε).

Step 3: (v∗, x∗, y∗) ∈ B and uniqueness of (x∗, y∗) within AP (R+, X) × S2(R+, Y ). Since the triple
(Sτkv

∗,Sτkx,Sτky) is in B for all k ∈ N, ‖Sτkv∗−v∗‖S2 → 0, ‖Sτky−y∗‖S2 → 0 and ‖Sτkx−x∗‖∞ → 0
as k →∞, it follows from (3.1), the continuity properties of well-posed linear systems and the global
Lipschitz property of f that (v∗, x∗, y∗) ∈ B.

To prove uniqueness of (x∗, y∗), assume that (x], y]) ∈ AP (R+, X)×S2(R+, Y ) is such that (v∗, x], y]) ∈
B. Then, appealing to statement (1) of Theorem 3.4, we see that x∗(t)−x](t)→ 0 as t→∞. But the
function x∗ − x] is in AP (R+, X), and so, invoking Lemma 4.1, we conclude that x∗ = x]. Statement
(2) of Theorem 3.4 now implies that y∗ = y].

Step 4: Proof of statements (1) and (2). Let (v, x, y) ∈ B be such that v ∈ AS2(R+, U) with vs = v∗.
An application of statement (3) of Theorem 3.4 shows that there exists Γ̃2 > 0 and γ̃ > 0 such that

‖x(t)− x∗(t)‖ ≤ Γ̃2

(
e−γ̃(t−t0)‖x(t0)− x∗(t0)‖+ ‖St0(v − v∗)‖S2

)
∀ (t, t0) ∈ ∆.

In particular, x − x∗ is bounded, and so µ := supt≥0 ‖x(t) − x∗(t)‖ < ∞. Let ε > 0. Since ‖St(v −
v∗)‖S2 → 0 as t → ∞, there exists σ ≥ 0 such that ‖Sσ(v − v∗)‖S2 ≤ ε/(2Γ̃2). Choosing τ ≥ 0 such
that e−γ̃τ ≤ ε/(2µΓ̃2), it follows from the above inequality with t0 = σ that ‖x(t)− x∗(t)‖ ≤ ε for all
t ≥ σ + τ , showing that (x(t) − x∗(t)) → 0 as t → ∞. Furthermore, statement (4) of Theorem 3.4
shows that y ∈ UL2

loc(R+, Y ) and

‖St(y − y∗)‖S2 ≤ Γ̃
(
‖x(t)− x∗(t)‖+ ‖St(v − v∗)‖S2

)
∀ t ≥ 0.

Letting t→∞, we see that ‖St(y − y∗)‖S2 → 0, completing the proof of statement (1).

To prove statement (2), assume that v∗ is τ -periodic for some τ > 0. Then τ ∈ P2(v
∗, δ) for every

δ > 0 and so, τ ∈ P (x∗, ε) ∩ P2(y
∗, ε) for every ε > 0, implying that x∗ and y∗ are τ -periodic.
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Step 5: Proof of statement (3). To show that (v∗e , x
∗
e , y
∗
e ) ∈ BB, we choose δk > 0 such that

P2(v
∗, δk) ⊂ P (x∗, 1/k) ∩ P2(y

∗, 1/k) ∀ k ∈ N.

The existence of such numbers δk is guaranteed by Steps 1 and 2. Setting ηk := min(δk, 1/k), we have
that ηk → 0 as k →∞ and

P2(v
∗, ηk) ⊂ P (x∗, 1/k) ∩ P2(y

∗, 1/k) ∀ k ∈ N.

Let t0 ∈ R and τk ∈ P2(v
∗, ηk) such that τk ≥ max(0,−t0) for all k ∈ N. The latter ensures that

t0 + τk ≥ 0 for all k ∈ N. Noting that

x∗e(t+ τk) = x∗e(t− t0 + τk + t0) = x∗(t− t0 + τk + t0) = (St0+τkx
∗)(t− t0) ∀ t ≥ t0, ∀ k ∈ N,

we conclude that

x∗e(t+ τk) = (St0+τkx
∗)(t− t0) = Tt−t0(St0+τkx

∗)(0) + Φt−t0Pt−t0St0+τku
∗ ∀ t ≥ t0, ∀ k ∈ N, (4.10)

where u∗ := Ei(f ◦ P jy∗) + v∗. Since v∗ ∈ S2(R+, U), y∗ ∈ S2(R+, Y ) and f is globally Lipschitz, it
follows that u∗ ∈ S2(R+, U). Trivially, by (4.10),

x∗e(t+ τk) = Tt−t0x∗e(t0 + τk) + Φt−t0Pt−t0St0+τku
∗
e ∀ t ≥ t0, ∀ k ∈ N. (4.11)

Obviously, u∗e = Ei(f ◦ P jy∗e ) + v∗e . As τk ∈ P2(v
∗
e , ηk) ⊂ P (x∗e , 1/k) ∩ P2(y

∗
e , 1/k), we have

‖Sτkv
∗
e − v∗e‖S2 → 0, ‖Sτkx

∗
e − x∗e‖∞ → 0 and ‖Sτky

∗
e − y∗e‖S2 → 0 as k →∞, (4.12)

which in turn implies that
‖Sτku

∗
e − u∗e‖S2 → 0 as k →∞. (4.13)

Therefore, letting k →∞ in (4.11), we arrive at

x∗e(t) = Tt−t0x∗e(t0) + Φt−t0Pt−t0St0u
∗
e ∀ t ≥ t0. (4.14)

Furthermore, on R+, St0+τku
∗
e = St0+τku

∗, St0+τkx
∗
e = St0+τkx

∗ and St0+τky
∗
e = St0+τky

∗, and thus, as

Pt−t0St0+τky
∗ = Ψt−t0(St0+τkx

∗)(0) + Gt−t0Pt−t0St0+τku
∗ ∀ t ≥ t0,

we obtain
Pt−t0SτkSt0y

∗
e = Ψt−t0(SτkSt0x

∗
e)(0) + Gt−t0Pt−t0SτkSt0u

∗
e ∀ t ≥ t0. (4.15)

By (4.12) and (4.13),

‖SτkSt0u
∗
e − St0u

∗
e‖S2 → 0, ‖SτkSt0x

∗
e − St0x

∗
e‖∞ → 0 and ‖SτkSt0y

∗
e − St0y

∗
e‖S2 → 0 as k →∞,

and thus, letting k →∞ in (4.15) leads to

Pt−t0St0y
∗
e = Ψt−t0x

∗
e(t0) + Gt−t0Pt−t0St0u

∗
e ∀ t ≥ t0. (4.16)

Since t0 ∈ R was arbitrary and St0u
∗
e = Ei(f ◦P jSt0y∗e ) +St0v

∗
e , it follows from (4.14) and (4.16) that

(v∗e , x
∗
e , y
∗
e ) ∈ BB.

To show that (x∗e , y
∗
e ) is the unique pair in BC(R, X) × UL2

loc(R, Y ) satisfying (v∗e , x
∗
e , y
∗
e ) ∈ BB, let

(x̂, ŷ) ∈ BC(R, X)×UL2
loc(R, Y ) be such that (v∗e , x̂, ŷ) ∈ BB. We have to show that (x̂, ŷ) = (x∗e , y

∗
e ).

To this end, note that, for any σ ∈ R, the restrictions of (Sσv
∗
e ,Sσx

∗
e ,Sσy

∗
e ) and (Sσv

∗
e ,Sσx̂,Sσŷ) to

R+ are in B. Hence, by statement (1) of Theorem 3.4, there exist Γ2 > 0 and γ > 0 such that

‖(Sσx∗e)(s)− (Sσx̂)(s)‖ ≤ Γ2e
−γs‖x∗e(σ)− x̂(σ)‖ ∀ s ≥ 0, ∀σ ∈ R. (4.17)
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Let t ∈ R and ε > 0. Choose σ ≤ t such that

Γ2e
−γ(t−σ)‖x∗e − x̂‖∞ ≤ ε.

An application of (4.17) wit s = t− σ yields

‖x∗e(t)− x̂(t)‖ = ‖(Sσx∗e)(t− σ)− (Sσx̂)(t− σ)‖ ≤ Γ2e
−γ(t−σ)‖x∗e − x̂‖∞ ≤ ε.

Now t ∈ R and ε > 0 were arbitrary, and consequently, x̂ = x∗e . An application of statement (4)
of Theorem 3.4 (with t0 = 0) to the restrictions of (Sσv

∗
e ,Sσx

∗
e ,Sσy

∗
e ) and (Sσv

∗
e ,Sσx

∗
e ,Sσŷ) to R+,

where σ ∈ R, shows that (Sσŷ)(t) = (Sσy
∗
e )(t) for almost every t ≥ 0. Therefore, ŷ(t) = y∗e (t) for

almost every t ≥ σ. Letting σ → −∞ yields that ŷ = y∗e .

Step 6: Proof of statement (4). Let (σk)k be a sequence in R such that (Sσk ṽ
∗
e )k converges in

AP (R, L1([0, 1), U)). By [1, Statement X on p. 34], it is sufficient to prove that the sequences (Sσkx
∗
e)k

and (Sσk ỹ
∗
e )k converge in AP (R, X) and AP (R, L1([0, 1), Y )), respectively. To this end, let ε > 0 and

set r := 2‖x∗e‖∞ = 2‖x∗‖∞. Obviously, for each k ∈ N, the restriction of (Sσkv
∗
e ,Sσkx

∗
e ,Sσky

∗
e ) to R+

is in B. Consequently, by statements (3) and (4) of Theorem 3.4,

‖(Sσkx
∗
e)(t)− (Sσ`x

∗
e)(t)‖ ≤ Γ̃2

(
e−γ̃tr + ‖Sσkv

∗
e − Sσ`v

∗
e‖S2

)
∀ t ≥ 0, (4.18)

and
‖Sσky

∗
e − Sσ`y

∗
e‖S2 ≤ Γ̃

(
‖(Sσkx

∗
e)(0)− (Sσ`x

∗
e)(0)‖+ ‖Sσkv

∗
e − Sσ`v

∗
e‖S2

)
, (4.19)

where Γ̃2, Γ̃ and γ̃ are positive constants. Since (Sσk ṽ
∗
e )k converges in AP (R, L1([0, 1), U)), it is

clear that (Sσkv
∗
e )k is a Cauchy sequence in S2(R, U). Consequently, there exists N ∈ N such that

Γ̃2‖Sσkv∗e − Sσ`v
∗
e‖S2 ≤ ε/2 for all k, ` ≥ N . Choosing τ ≥ 0 such that Γ̃2re

−γ̃τ ≤ ε/2, it follows from
(4.18) that

‖(Sσkx
∗
e)(t)− (Sσ`x

∗
e)(t)‖ ≤ ε ∀ t ≥ τ, ∀k, ` ≥ N.

The function Sσkx
∗
e − Sσ`x

∗
e is in AP (R, X), and thus, invoking Lemma 4.1,

‖Sσkx
∗
e − Sσ`x

∗
e‖∞ ≤ ε ∀k, ` ≥ N.

This shows that (Sσkx
∗
e)k is a Cauchy sequence in AP (R, X) and thus converges in AP (R, X).

Finally, since (Sσkx
∗
e)k and (Sσkv

∗
e )k are Cauchy sequences in AP (R, X) and S2(R, U), respectively,

it follows from (4.19) that (Sσky
∗
e )k is a Cauchy sequences in S2(R, Y ), and hence (Sσk ỹ

∗
e )k converges

in AP (R, L1([0, 1], Y )), completing the proof. �

We continue by stating a circle-criterion version of Theorem 4.5.

Theorem 4.6. Let Σ = (T,Φ,Ψ,G) be a well-posed linear system, let i, j ∈ {1, 2}, K1,K2 ∈ L(Y j , U i)
and let v∗ ∈ S2(R+, U). Assume that Σji = (T,ΦEi, P jΨ, P jGEi) is optimizable and estimatable and
K1 ∈ S(P jGEi) is an admissible feedback operator for Σji. If (I −K2P

jGEi)(I −K1P
jGEi)−1 is

positive real and there exists ε > 0 such that f : Y j → U i satisfies

Re 〈f(z1)− f(z2)−K1(z1 − z2), f(z1)− f(z2)−K2(z1 − z2)〉 ≤ −ε‖z1 − z2‖2 ∀ (z1, z2) ∈ Y j × Y j ,

then there exists a unique pair (x∗, y∗) ∈ AP (R+, X)×S2(R+, Y ) such that (v∗, x∗, y∗) ∈ B, for every
ε > 0, there exists δ > 0 such that P2(v

∗, δ) ⊂ P (x∗, ε)∩P2(y
∗, ε) and statements (1)- (4) of Theorem

4.5 hold.

Proof. Let v∗ ∈ S2(R+, U). Combining the methods used in the proof of [14, Corollary 4.5] with
Lemma 3.2 and Proposition 3.1 shows that there exists a pair (x, y) ∈ C(R+, X) × L2

loc(R+, Y ) such
that (v∗, x, y) ∈ B. Invoking Corollary 3.6, it is clear that statements (1)–(4) of Theorem 3.4 hold.

18



These formed the basis for the proof of Theorem 4.5, and the conclusions of Theorem 4.6 can now be
derived by arguments identical to those used in the proof of Theorem 4.5. �

We conclude this section with a brief comparison of Theorems 4.5 and 4.6 to related results in the
literature. As for the case of periodic forcing, the most relevant results in this context are [24, Theorem
4] and the first part of [39, Theorem 1], both of which are special cases of [14, Corollary 5.6] (which in
turn is essentially identical to statement (2) of Theorem 4.5). Earlier contributions to the analysis of
the asymptotic behaviour of Lur’e systems with almost periodic forcing can be found in [6, 26, 27, 39].
The papers [6, 26, 27] adopt an input-output approach, whilst a standard finite-dimensional state space
setting is used in [39]. All of these contributions consider input signals which are almost periodic in the
sense of Bohr, but do not cover the more general case of Stepanov almost periodic forcing functions.
The structure of the feedback systems and the classes of underlying linear systems considered in
[6, 26, 27, 39] are considerably less general than those studied in this paper (in particular, [6, 27, 39]
are restricted to the single-input single-output case, that is U and Y are one-dimensional and f is a
“scalar” nonlinearity). Theorems 4.5 and 4.6 can be considered as far reaching generalizations and
refinements of the relevant results in [6, 26, 27, 39].
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