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Abstract. We consider forced Lur’e systems in which the linear dynamic component is an infinite-
dimensional well-posed system. Numerous physically motivated delay- and partial-differential equa-
tions are known to belong to this class of infinite-dimensional systems. We present refinements of
recent incremental input-to-state stability results [14] and use them to derive convergence results for
trajectories generated by Stepanov almost periodic inputs. In particular, we show that the incremental
stability conditions guarantee that for every Stepanov almost periodic input there exists a unique pair
of state and output signals which are almost periodic and Stepanov almost periodic, respectively. The
almost periods of the state and output signals are shown to be closely related to the almost periods
of the input, and a natural module containment result is established. All state and output signals
generated by the same Stepanov almost periodic input approach the almost periodic state and the
Stepanov almost periodic output in a suitable sense, respectively, as time goes to infinity. The sufficient
conditions guaranteeing incremental input-to-state stability and the existence of almost periodic state
and Stepanov almost periodic output signals are reminiscent of the conditions featuring in well-known
absolute stability criteria such as the complex Aizerman conjecture and the circle criterion.
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1 Introduction

The analysis of solutions of differential equations the right-hand side of which exhibit almost periodic
time dependence has a long history and the relevant literature is vast, see, for example, [1, 8, 9, 12].
Typical questions arising in this context are: does there exist a unique almost periodic solution, and
if so, are all solutions asymptotically almost periodic with long term behaviour (in forward time)
asymptotically identical to that of the unique almost periodic solution? Whilst the current paper
continues this tradition, we use input-to-state stability ideas from control theory which, to the best of
our knowledge, have not been employed in this context before.

More specifically, we analyze the asymptotic behaviour of a large class of infinite-dimensional Lur’e
systems with Stepanov almost periodic inputs. We remark that the concept of almost periodicity in
the sense of Stepanov generalizes that of Bohr, which, in the following, will be simply referred to as
almost periodicity. Adopting the set-up considered in [14], we study the forced Lur’e system shown in
Figure 1.1, where ¥ is a well-posed? linear infinite-dimensional system and f is a static nonlinearity.
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Note that, in Figure 1.1, the signals v, y and u are given by
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We note that well-posed linear systems allow for considerable unboundedness of the control and
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Figure 1.1: Block diagram of forced Lur’e system: the feedback interconnection of the well-posed
linear system > and the static nonlinearity f.

observation operators and they encompass many of the most commonly studied partial differential
equations with boundary control and observation, and a large class of functional differential equations
of retarded and neutral type with delays in the inputs and outputs. There exists a highly devel-
oped state-space and frequency-domain theory for well-posed infinite-dimensional systems; see, for
example, [22, 23, 31, 32, 33, 34, 36, 37, 38].

Lur’e systems are a common and important class of nonlinear control systems, and the study of
their stability properties is known as absolute stability theory (see, for example, [15, 16, 17, 35, 40]).
Classical absolute stability theory comes in two flavours: in a state-space setting, unforced (v = 0)
finite-dimensional systems are considered and the emphasis is on global asymptotic stability, whilst
the input-output approach (initiated by Sandberg and Zames in the 1960s) focusses on L2-stability
and, to a lesser extent, on L*>-stability, see [11, 35]. A more recent development is the analysis of
state-space systems of Lur’e format in an input-to-state stability (ISS) context, thereby, in a sense,
merging the two strands of the earlier theory [3, 14, 18, 19, 28]. The ISS concept was introduced (for
general nonlinear control systems) in [29] and further developed across a huge range of papers, see,
for example, the survey articles [10, 30].

So far, the ISS approach to Lur’e systems is very much restricted to finite-dimensional systems with
[14] being one of the very few exceptions.! In fact, in [14] a number of incremental ISS results are
derived (the underlying concept inspired by that introduced in [2]) and are then applied to obtain
convergence properties including the converging-input converging output property and the asymptotic
periodicity of the state and output trajectories under periodic forcing. In this paper, we provide a
refinement of the incremental ISS results in [14] and use them to analyze the asymptotic behaviour of
the Lur’e system shown in Figure 1.1 in response to Stepanov almost periodic inputs.

With regards to stability properties, our main result is Theorem 3.4, which is reminiscent of the
complex Aizerman conjecture [16, 17] (familiar from finite-dimensional control theory) and constitutes
a refinement of [14, Theorem 4.1]. The main novelty here is that we obtain an incremental ISS estimate
which is in terms of the Stepanov norm

a+1 1/q
s i=sup ([ I@0@I) L 2<q <.

where Av denotes the difference of two inputs. Our main concern in this paper is to analyse the
behaviour of Lur’e systems subject to Stepanov almost periodic forcing. Based on the incremental
ISS result Theorem 3.4, we show that incremental versions of certain classical sufficient conditions for
absolute stability such as the complex Aizerman conjecture [16, 17|, the small-gain theorem [11, 35]

T See the introduction of [14] for some commentary on the literature on ISS theory for infinite-dimensional systems
(not necessarily of Lur’e form).



and the circle criterion [19, 35] (or variations thereof) guarantee that, for a given Stepanov almost
periodic input v*, there exists a corresponding unique state/output trajectory (z*,y*) with z* almost
periodic and y* Stepanov almost periodic, and, furthermore, for any input/state/output trajectory
(v,z,y) such that v(t) approaches v*(t) as ¢ — oo in a natural sense, the behaviour of (z,y) is
asymptotically identical to that of (z*,y*). The almost periods of z* and y* are shown to be closely
related to the almost periods of v* in the sense that for every € > 0 there exists a § > 0 such that
every d-almost period of v* is an e-almost period of z* and y*. Furthermore, it is established that
the modules generated by the frequency spectra of z* and y* are contained in that generated by the
frequency spectrum of v*. Our main results, Theorems 4.5 and 4.6, provide far-reaching generalizations
of earlier contributions in [6, 14, 24, 25, 26, 27, 39], see the commentary at the end of Section 4 for
more details.

The paper is organized as follows. Section 2 gathers notation and required material from the theory
of well-posed linear systems. In Section 3, we introduce the Lur’e system shown in Figure 1.1 in a
formal way and then develop the key tool for our analysis of almost periodically forced Lur’e systems,
namely a suitably refined version of the incremental ISS result [14, Theorem 4.1]. The main topic
of the paper is addressed in Sections 4: after a discussion of relevant background material from the
theory of almost periodic functions (in the sense of Bohr and its generalization by Stepanov), we state
and prove Theorems 4.5 and 4.6, the main results of this work.

2 Preliminaries

Let Z be the set of integers and set
Zy:={n€Z:n>0} and N:={neZ:n>1}.

For real or complex Hilbert spaces U and Y, let £(U,Y) denote the space of all linear bounded
operators mapping U to Y. As usual, we set L(U) := L(U,U). For Z € L(U,Y) and r > 0, define

B(Z,r)={T e LUY):|T-Z| <r},

the open ball in £(U,Y), with centre Z and radius r.
For a@ € R, set C, := {s € C: Re s > a}. The space of all holomorphic and bounded functions
Co — L(U,Y) is denoted by H°(L(U,Y)). Endowed with the norm

|H| rge := sup [[H(s)]|,
s€Cq

HS(L(U,Y)) is a Banach space. We write H>*(L(U,Y")) for H*(L(U,Y)).

For an arbitrary Banach space W and t > 0, define the projection operator P; : L?

ioc(Rp, W) —
L2(Ry, W) by

{3 31

For a € R and 1 < g < oo, we define the weighted Li-space

LZ(RJM W) = {’UJ € Ly (R+?W) DEXpy, W € Lq(R+¢W)}7

loc

where exp,, : R — R is given by exp,(t) := e¢*. Endowed with the norm

[wllpg, = [l expq wlLa

LL(Ry, W) is a Banach space.



In the following, let R = Ry or R. For 7 € R, the shift operator S; : L2 (R,W) — L% (R, W) is
given by (S;w)(t) = w(t+ 7) for all t € R. For later purposes, we define BC(R, W) and BUC(R, W)
as the spaces of all, respectively, bounded continuous and bounded uniformly continuous functions.
Endowed with the supremum norm, BC(R, W) and BUC(R, W) are Banach spaces. Moreover, we

define the space of uniformly locally g-integrable functions UL{. (R, W) by

loc

a+1
UL&JRJV);“%UGLﬂJRJV)wmp/ﬁ Hw@ﬂﬁﬁ<ﬂm},
acR Ja

where 1 < g < oo. It is straightforward to show that, with the Stepanov norm

a+1 1/q
T pp—— ( / ||w<t>||th) ,

a€ER

UL}

be(R, W) is a Banach space. Furthermore, for every b > 0, the functional

a+b 1/q
2 > sup (/ |w(t)||th)
a€ER a

is a norm on UL{._(R,W) and this norm is equivalent to || - ||sa.

loc

Below we will provide a brief review of some material from the theory of well-posed systems, for more
details we refer the reader to [31, 33, 34, 36, 37, 38]. Throughout, we shall be considering a well-posed
linear system ¥ = (T,®,V,G) with state space X, input space U and output space Y. Here X,
U and Y are separable complex Hilbert spaces, T = (T¢)¢>0 is a strongly continuous semigroup on
X, ® = (®;);>0 is a family of bounded linear operators from L?(Ry,U) to X (input-to-state maps),
U = (U;);>0 is a family of bounded linear operators from X to L*(R.,Y) (state-to-output maps) and
G = (Gy)¢>0 is a family of bounded linear operators from L?(Ry,U) to L?*(Ry,Y) (input-to-output
maps). In order for ¥ to qualify as a well-posed system, these families of operators need to satisfy
certain natural conditions, see [31, 34, 36, 37]. Particular consequences of these conditions are the
following properties:

&Py =&, Py, =Y PG Pi=PGy; =G Vt,7>0.

2 (Ry,U) and there exist operators Vo : X —

(R4,Y) such that

It follows that ®; extends in a natural way to L
L2 (Ry,Y) and Go : L2 (R4, U) — L?

loc loc loc

PV, =V, P,Gyx=G, Vt>0.

The operator G, is right-shift invariant (and hence causal) and is called the input-output operator
of ¥. Given an initial state 2° and an input v € L%OC(R+,U ), the corresponding state and output
trajectories x and y of ¥ are defined by

t) = T2’ + &, P
A S

2.1
Py = \I/t.%'o + G;P;u ( )

respectively.

Let (A, B,C) denote the generating operators of 3. The operator A is the generator of the strongly
continuous semigroup T = (T;);>0 and the operators B € £L(U, X_;) and C € £(X1,Y) are the unique
operators satisfying

t
dpu = / T, Bu(r)dr Yu € L*(Ry,U), Vt>0,
0



and
(Uoo®)(t) = CTa® Va2l € Xy, Vt >0,
where the spaces X; and X_i, respectively, are the usual interpolation and extrapolation spaces

associated with A and X.

The transfer function G of ¥ has the property that G € H°(L(U,Y)) for every a > w(T), where
w(T) denotes the exponential growth constant of T. The relationship between G and the operators
(A, B,C) is expressed by the formula

1

s —Z

(G(s) = G(z)) =—=C(sI —A) "Nzl —A_1)"'B Vs,z€ Cy(rys 8 # 2,

see [31, equation (4.6.9)], where A_; € £(X,X_1) extends A to X and, considered as an unbounded
operator on X_1, generates a semigroup on X_; which extends T to X_;. Furthermore, for g € R,
the operator G, is in E(L%(RJr, U), L%(RJF, Y)) if, and only if, G € H>3(L(U,Y)), in which case

1Goollp = 1Gl ar=s,

where || - ||s denotes the L%—induced operator norm. We remark that § < —w(T) is sufficient for G
to be in E(L%(RJF, U),L%(R+,Y)). We also record that, for every 8 < —w(T), there exist positive
constants ¢ and 1 such that

||€ﬁt‘1’tu|| < QOHPtUHL% Vue L?OC(R"F? U)v Vi>0,

and
H‘I’oofIfOIIL§3 <yl va’eX.

The system (2.1) is said to be optimizable if, for every 2° € X, there exists u € L?(Ry,U), such that
r € L?(Ry, X). Furthermore, we say that (2.1) is estimatable if, the “dual” system is optimizable, that
is, for every 2V € X, there exists v € L?(R,,Y') such that the function ¢ — T} 2%+ ¥jv is in L2(R4, X).
We note that, by [20], optimizability is equivalent to exponential stabilizability and estimatability is
equivalent to exponential detectability (where exponential stabilizability and detectability are under-
stood in the sense of [31]).

An operator K € L(Y,U) is said to be an admissible feedback operator for ¥ (or for G) if there exists
a € Rsuch that I —GK is invertible in H°(L(Y)). If K € L(Y,U) is an admissible feedback operator,
then, for every t > 0, the operator I — G, K is invertible in £L(L?(R,,Y)), and, I — G, K has a causal
inverse (I — G K)™! (mapping L2 .(R4,Y) into itself). Furthermore, if K € £(Y,U) is an admissible
feedback operator for ¥, then there exists a unique well-posed system L5 = (TK &% ¥k GK) such

that
0 0

0 K

(T @ k. (TE o
Et = (\I/t Gt> 5 Et = (\Iltl{ th{ .

The interpretation of (2.2) is that X is the closed-loop system shown in Figure 2.1.

z{(:zt+zt< >z,{< Vit >0, (2.2)

where

5T

Figure 2.1: Block diagram of closed-loop feedback system of ¥ in connection with output feedback K.




We say that an operator K € L(Y,U) stabilizes G (or stabilizes ¥ in the input-output sense) if
(I - GK)™'G € H*(L(U,Y)). The set of all operators stabilizing G is denoted by S(G). Trivially,
every element in S(G) is an admissible feedback operator for G.

The following lemma is a special case of [13, Proposition 5.6].

Lemma 2.1. For K € L(Y,U) andr > 0, B(K,r) C S(G) if, and only if, ||(I - GK)"'G| g~ < 1/r.

In particular, if K € S(G) and ||(I - GK) G| g~ > 0, then p := 1/||(I - GK) G| g is the largest
number such that B(K, p) C S(G).

An immediate consequence of the sufficiency part of Lemma 2.1 is that S(G) is an open subset of
L(Y,U). Note that the sufficiency part is simply a version of the small-gain theorem. The assumption
that the Hilbert spaces U and Y are complex plays an important role in the necessity part which in
general does not hold for real Hilbert spaces.

In the following, we shall adopt the four-block setting for Lur’e systems considered in [14], see Figure
1.1. In particular, we assume that the input and output spaces U and Y are of the form U = U' x U?
and Y =Y x Y2, where U? and Y are complex Hilbert spaces, i = 1,2. It is convenient to introduce

the following maps
1

P.Y Y @2) =yl i=1,2,
and
E1:U1—>U,u»—><g’>, E2:U2—>U,u>—><2).

If y € L2 (R.,Y), then Py is the function in L2 (R,,Y?) given by (P'y)(t) = P'y(t). Similarly,

loc : ) loc : .
for u € L (R4, U?), the symbol E'u denotes the function in L2 (R4, U) given by (E'u)(t) = Elu(t).
The decompositions of the input and output spaces, U = U x U? and Y = Y x Y2, respectively,
induces four well-posed systems, namely,

Y .= (T,®E’, P'W, P'GE’), i,j=1,2.

Obviously, the state, input and output spaces of X% are given by X, U7 and Y?, respectively. For
K9 e L(YI,UY), let K € L(Y,U) be defined by

Ky=E'KVPly YyeVY.

0 K12
k= (0K

3 Incremental stability of infinite-dimensional Lur’e systems

For example, if ¢ = 1 and j = 2, then

We start this section by defining the class of Lur’e systems which we will be considering, thereby
formalizing the arrangement depicted in Figure 1.1. Given an initial state 2° and an input u €
L2 (Ry,U), the corresponding state and output trajectories of ¥ are given by (2.1). Let 4,5 € {1,2}

loc

and let f:YJ — U’ be a nonlinearity. The closed-loop system obtained by applying the feedback
u= E'(foPly)+v, where ve Ll . (Ry,U),

is then given by ‘ '
z(t) = Ty’ + &P (E'(f o Py) +v),
Py = ¥, 2° + G, P, (El(f o Ply) + v) .

6



As an illustration, Figure 1.1 corresponds to the case i = j = 2. Given 2° € X and v € L%OC(RJF, U),
a solution of the Lur’e system (3.1) on [0,0), where 0 < o < oo, is a pair (z,y) € C([0,0),X) x
L% ([0,0),Y) such that fo Piy € L ([0,0),U?) and (3.1) holds for all ¢ € [0,0). Obviously, if (z,y)
is a solution of (3.1), then z(0) = z°.

It can be shown (by invoking Zorn’s lemma) that, for every solution of (3.1) on [0,0), there exists
a mazimally defined solution (3.1) defined on [0,7) with ¢ < 7 < oo which cannot be extended any

further (that is, 7 is maximal).

The set of all triples (v,z,y) in L2 (R4, U) x C(Ry, X) x L2 (R4,Y) such that (3.1) holds with
zY = 2(0) is said to be the behaviour of (3.1) and is denoted by B. Elements of B will sometimes be
referred to as trajectories of (3.1). In particular, if (v, z,y) € B, then (x,y) is a solution of (3.1) which
is defined on Ry and with 2° = 2(0). In an ISS context, we consider external inputs v which belong
to LS (R4, U) C L (Ry,U). More generally, for 2 < g < oo, we may wish to consider inputs v in
Ll (R4,U) C LE (Ry,U). It is therefore convenient to define the following “sub-behaviour” of B:

BY:={(v,z,y) e B:ve Ll (Ry,U)}.

loc

Obviously, we have B2 = B. A key property of the behaviour B9 is its invariance with respect to left
translations, that is,

(v,z,y) e B = (S;v,S;z,S;y) e B! V1 >0.

In this paper, we are mainly concerned with stability and convergence properties of (3.1) and not
with existence and uniqueness questions. However, we state a simple, but important, existence and
uniqueness result from [34].

Proposition 3.1. If f : Y7 — U? is globally Lipschitz with Lipschitz constant A\ > 0 and

Miminf [|[PPGE"||ge < 1,
a—00 @

then, for all z° € X and v € L2 (Ry,U), the Lur’e system (3.1) has a unique solution on R..

loc

For later purposes, we define the bi-lateral behaviour BB of (3.1) as the set of all triples (v, z,y) €
L (R,U) x C(R,X) x L% _(R,Y) such that, for every to € R,

loc

l‘(t) = Tt_tox(to) + q)t—topt—to (EZ(f o PJ'StOy) + Sto’l}) ViS¢
. , = to.
Pi_1,St,y = Vi—t,2(to) + Gi—iy, Pi—yt, (El(f o P'S;y) + Stov)

We refer to the elements of BB as bi-trajectories of (3.1). Obviously, a bi-trajectory restricted to R is
an element in B. Furthermore, the bi-lateral behaviour BB is invariant with respect to all translations,
that is,

(v,z,y) € BB = (S;v,S;x,S;y) € BB V7 eR.

The next lemma (which can be found in [14]) shows that the behaviour B of (3.1) is identical to the
behaviour of the feedback interconnection obtained when the linear system L% is subjected to the
feedback law u = E'f(PJy) — Ky + v, where K € L(Y,U) is an admissible feedback operator for Y.

Lemma 3.2. Let K € L(Y,U) be an admissible feedback operator for ¥ and let (v, z,y) € L2 (R4, U)x
C(R4, X) x L2 (Ry,Y). The triple (v,z,y) is in B if, and only if,

loc

2(t) = T 2(0) + @ P (E'(f o Ply) +v — Ky) Vs 0
Py = U z(0) + GEP(E(f o Ply) + v — Ky) -



A triple (v*%, 2% y*) € U x X x Y is said to be an equilibrium or equilibrium triple of the Lur’e
system (3.1) if the constant trajectory t — (v°%, 24, y°?) belongs to B (in which case it is also a
bi-trajectory). The next result provides formulas relating the components of an equilibrium triple
(’Ueq’ xeq7 yeq) *

Proposition 3.3. Let (v°4,2°%y*1) € U x X x Y, let n € C such that Ren > w(T) and set v :=
Ef(PIy9) +v°4. The triple (v°4, 2%, y°4) is an equilibrium of (3.1) if, and only if,

Az*+ Bu® =0 and y*=C(z* — (nI — A)"'Bu®) + G(n)u.

We refer to [14] for a proof of Proposition 3.3.

Note that the identity Azl + Bu®d = 0 implies that 2°9 — (nI — A)"!Bu®® € X; and thus, the
expression C' (xeq — (nl — A)_lBueq) is well defined. Furthermore, Proposition 3.3 shows that that
the triple (—E"f(0),0,0) is always an equilibrium of (3.1).

Let 2 < ¢ < co. An equilibrium triple (v4, z°9, y°1) of (3.1) is said to be exponentially LI-input-to-state
stable (exponentially L1-1SS) if there exist positive constants I' and v such that
l(t) — 29| < T (e "[|2(0) — 2 + [Pe(v — v*HW)|[za) V>0, ¥ (v,2,y) € B,

where ¥(t) = 1 for all ¢ > 0. Furthermore, (3.1) is said to be exponentially incrementally L-input-
to-state stable (exponentially L1-01SS) if there exist positive constants I' and v > 0 such that, for all
(v1, 21, y1), (v2, 72, y2) € BY,

lz1(t) — 22()[| < T (e [l21(0) — 22(0)| + [Pe(vr — v2)llz) V> 0.

Here v; and y; should not be confused with v* and y¢, s = 1,2, which appear in (1.1) and Figure 1.1.

We introduce a further type of “sub-behaviour” which shall be useful in formulating our stability
results. For a non-empty subset Z C Y7 and 2 < ¢ < oo, we set

By = {(v,z,y) € BY: Piy(t) € Z for a.e t > 0}.

Furthermore, By := B%.

The following theorem, a refinement of [14, Theorem 4.1], is reminiscent of the complex Aizerman
conjecture in finite dimensions (which is known to be true, see [16, 17, 19]): incremental stability
properties of the nonlinear system (3.1) are guaranteed by the assumption that a corresponding linear
feedback system is stable for all linear complex feedback operators belonging to a certain ball, pro-
vided the nonlinearity satisfies, in a suitable and natural sense, an incremental version of the same
boundedness condition. Before we state the results, it is convenient to define

A::{(t,8)€R22t2820}CR3_.

Theorem 3.4. Let ¥ = (T, ®,¥,G) be a well-posed linear system, let i,j € {1,2}, K% € L(Y7, U?),
r>0,2<q<o0,andlet Zy, Zy C Y7 be non-empty subsets. Assume that ¥)* = (T, ®E*, P/U, PIGE")
is optimizable and estimatable and B(K%,r) C S(P/GE?). If f : YI — U’ satisfies
sup 1f(21) = f(22) — K¥ (21 — 2) ||
(21,22)EZ1X Z2, 21#22 ||21 - ZQH

<7, (3.2)

then the following statements hold.
(1) There exist constants 'y > 0 and v > 0 such that, for all (v1,x1,11) € Bqu and all (v, x2,y2) €
BqZQ,
lz1(8) = 22 ()] < Tq(e " 21(t0) — a(to) | + o1 = v2llLagto) ¥ (E,10) € A,
Here I'y depends on q, but v does not.



(2) There exist constants I' > 0 and € > 0 such that, for all (vi,z1,y1) € Bz,, all (v2,x2,y2) € Bz,
and all a € [0,¢],

21 = 22l 22 (to.0) + ly1 — w2ll 22 (t0.1) < T (121 (t0) — z2(to) || + [lvr — v2llr21.0)) ¥ (E t0) € A.

(3) There exist constants fq > 0 and 7 > 0 such that, for all (vi,x1,y1) € BqZI and all (v, x2,y2) €
B}, with vi,ve € UL] (R, U)

loc

l1.(8) = 22(t)]| < Ty (e |l (20) — wato)ll + [1Seo (v1 = v2)ls0) ¥ (t,t0) € A.

(4) There exists a constant T > 0 such that, for all (vy,21,y1) € Bz, and all (va,x2,y2) € Bz, with
V1,02 € UL%OC(RJ,_, U),

1St (21 — 22)lls2 + 1Sty (91 — 92)lls2 < T(llz1(to) — z2(to)l| + [[Seo (v1 — v2)ls2) Vo = 0.

We highlight two important special cases.

Special case 1. Assume that (v°9,2°,y®) € U x X x Y is an equilibrium triple of the Lur’e
system (3.1) and the assumptions of Theorem 3.4 hold with Z; = Y7 and Zo = {P7y*4}. Then the
constant trajectory (v, x°4 y®1) is in B%‘; and statement (1) implies that, for every 2 < ¢ < oo, the
equilibrium (v, 24, y°) is exponentially L?-ISS. Furthermore, statement (3) guarantees that, for any
(v,z,y) € B with v € UL{ (R4,U) and 2 < ¢ < oo, the state z is bounded.

loc

Special case 2. Assume that the hypotheses of Theorem 3.4 hold with Z; = Z = Y7 (and so (3.2)
is equivalent to z > f(z) — K%z being globally Lipschitz with Lipschitz constant smaller than r). In
this case, statement (1) of Theorem 3.4 implies that the Lur’e system (3.1) is exponentially L9-0ISS
for every ¢ such that 2 < ¢ < co. Furthermore, as a consequence of Proposition 3.1 and Lemma 3.2,

for every pair (z°,v) € X x L} (R4, U), there exists a unique triple (v, z,y) € B such that z(0) = 2°.

As compared to [14, Theorem 4.1], the new contribution of Theorem 3.4 are statements (3) and (4)
which provide bounds in terms of the Stepanov norm of St (v; — v2).

Proof of Theorem 3.4. To prove statement (1), let (vi,z1,91) € B} and (v, x2,y2) € BZ, and
note that, for any t9 > 0, (St v1, St,T1, Stoy1) € BqZ1 and (S¢,v2, St,x2, Styy2) € B%z, and thus, by [14,
Theorem 4.1], there exist constants I'; > 0 and v > 0, such that

1(Sto21)(s) — (Stg2) (s)I| < Tg(e7[[(Sto21)(0) — (Sto2)(0)|| + [Ps(Stv1 — Spova)|lra) Vs> 0.
Setting t := s 4+ tg > 0, it follows that
lz1(t) — 22(t)]] < Tg(e™ 77 |lzy (to) — za(to)l| + o1 — v2llLaquoy) Yt > to,

establishing statement (1).
Statement (2) can be derived from [14, Theorem 4.1] in a similar manner.
We proceed to prove statement (3). Let 2 < g < oo, tg > 0, (v1,21,y1) € B%l and (vg,x2,y2) € 8%2

with vy, v € UL?OC(R+, U). Setting = := x1 — x2 and v := v; — v9, we obtain from statement (1) that

lz®)]l < Ty (e ()| + lollagsny) Y (E5) € A (3-3)

Choose 7 > 0 such that I';je™” < 1 and let m be the smallest integer such that m > 7. A straightfor-
ward argument shows that

1ol Lo(aars) < mYSwollse ¥ (a,to) € A.



In particular,

b= sup [|v]lza(tgthrtot(kr1)r) < ml/qHStoUHS%
keZy

and so, by (3.3) with t =t9+ (k+ 1)7 and s = to + kT,
2 (to + (k + 1)7)|| < Tq(e " ||lz(to + k7)|| +b) < O|lx(to + k7)|| +Tgb Yk € Zy,
where 6 :=T'3e™ 7" < 1. Consequently,
k—1

. L'yb
|z (to 4+ k7)|| < 0F||lz(to)|| + FqbZGJ < 0%z (to) || + ] j 7 Vk e N. (3.4)
5=0

Appealing to (3.3) with s =ty + k7 we obtain
[z < Tq(llz(to + k)l + [0l 2o 1arny) V€ [to+krto + (k+1)7], Yk € Zy.
Now [|v]|z2(tg4kre) < b for all t € [to + k7,t0 + (k + 1)7] and all k € Z,, and so, invoking (3.4),
|z(t)|| < Tq(0%|lz(to)|| + (Tg + 1 — 0)b/(1 — 0)) Vit € [to+kT,to + (k+ 1)7], VK € Zy.
Consequently, setting 4 := —(In#)/7 > 0, we have that
()] < Ty (e la(to)ll + 1Swvllse) V¥ (t,t0) € A,

where T, := I'; max(e¥", m"/4(I'y, + 1 — 0)/(1 — 0)), completing the proof of statement (3).

To prove statement (4), let (v1,z1,y1) € Bz, and (va, x2,y2) € Bz, with v, vy € UL%OC(RJF, U). Then,
for every to > 0,
(Stovj7 Stoxja Stoyj) € BZ]-a .7 = 1> 2.

Therefore, setting v := vy — ve,  := 1 — 9 and y := y; — Y2, we obtain from statement (2) that
I1Stoll2(rr41) + 1Ste¥ll 27 r 1) < T([(Sto2) () + 1Se0vl L2 11)) V780 = 0.

The above inequality implies that, for every to > 0,

1Stoll52 + [[Stoylls> < 2F(Sli18 1(Sto) (Tl + IS¢yl 52)-

Now, as (S¢,vj, Sty T, St¥j) € Bz;, j = 1,2, an application of statement (3) yields,
1(Stow)(5)]] < T2 (€77 (St 2) (0| + [ISeovlls2) V5,80 >0,
and thus, for every tg > 0,
IStozlls2 + 1Stoylls> < T(llz(to) | + St vlls2),

where I := 2I'(T'y + 1), completing the proof. O

Assuming that K% € S(P/GE?) and setting r := 1/||(PIGE")X" || oo, it follows from Lemma 2.1
that B(K%,r) C S(P/GE?), and hence, the following small-gain result is an immediate consequence
of Theorem 3.4.

Corollary 3.5. Let X, f, Zy and Zo be as in Theorem 3.4, let i,j € {1,2} and let K“ € S(P/GE?).
Assume that ¥ = (T, ®E', PIW, PIGE") is optimizable and estimatable. If
sup 1f(21) = f(z2) — K7 (21 — 20)|

(PIGEYS || g < 1, (3.5)
(21,22)EZ1X Z2, 21722 ||Z1 - ZQH

then statements (1)—(4) of Theorem 3.4 hold.
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Let H be a complex Hilbert space. We say that H : Co — L(H) is positive real if H is holomorphic
with the exception of isolated singularities and H(s) + H*(s) is positive semi-definite for all s € Cy
which are not singularities of H. In fact, if H is positive real, then H is holomorphic on Cy [13,
Proposition 3.3].

The following result can be considered as an incremental version of the circle criterion.

Corollary 3.6. Let X, f, Zy and Z3 be as in Theorem 3.4, leti,j € {1,2} and let K1, Ko € L(Y7,U").
Assume that 7' = (T, ®E!, PIV, PIGE?) is optimizable and estimatable, K1 is admissible feedback
operator for ¢ and Zo = Y. If (I — KoPIGEY)(I — K1PPGE")~! is positive real and there exists
e > 0 such that

Re (f(z1) — f(22) — K1(21 — 22), f(21) — f(22) — Ka(21 — 22)) < —¢llz1 — 22|]* V(21,22) € Z1 x Y7,

then statements (1)—(4) of Theorem 3.4 hold (with Zy = Y7).

The above corollary can be derived from Theorem 3.4 in the same way as [14, Corollary 4.5] is obtained
from [14, Theorem 4.1] and we do not repeat the details here.

4 Lur’e systems with almost periodic inputs

Before we come to the main result of this paper, we provide some relevant background on almost
periodic functions (in the sense of Bohr and its generalization by Stepanov).

Let R =R or Ry and let W be a Banach space. A set S C R is said to be relatively dense (in R) if
there exists [ > 0 such that
[a,a+1NS#0 VaecR.

For £ > 0, we say that 7 € R is an e-period of v € C(R,W) if
lo(t) —v(t+71)|| <e VteR.

We denote by P(v,e) C R the set of e-periods of v and we say that v € C(R, W) is almost periodic
(in the sense of Bohr) if P(v,e¢) is relatively dense in R for every € > 0. We denote the set of almost
periodic functions v € C(R,W) by AP(R,W) and mention that AP(R,W) is a closed subspace of
BUC(R,W). Obviously, any periodic continuous function is almost periodic.

The straightforward proof of the following lemma is left to the reader.

Lemma 4.1. Ifv € AP(R,W), then, for every 7 € R, sup;>, [[v(t)[| = [|v]|oo-

The above lemma shows that functions in AP(R,W) are completely determined by their “infinite
right tails”: if v,w € AP(R,W) and there exists 7 € R such that v(t) = w(t) for all t > 7, then v = w.

A similar result holds in the context of “infinite left tails” of almost periodic functions defined on R,
but since it is not needed in what follows, we omit the details.

We say that a function v € C(Ry, W) is asymptotically almost periodic if it is of the form v = v*P +w
with v®? € AP(R;, W) and w € Cy(R, W), where Cy(R4, W) is the space of functions u € C'(R4, W)
such that lim; , u(t) = 0. The space of all asymptotically almost periodic functions is denoted by
AAP(R4, W), that is,

AAPR4, W) = AP(R4, W) + Co(R4, W).

Noting that, by Lemma 4.1,
|lv+ w|loo = ||V]|e Vv €EAPRL, W), Vw € Co(Ry, W), (4.1)
it is easy to see that AAP(R4, W) is a closed subspace of BUC (R4, W).

As an immediate consequence of Lemma 4.1, we obtain the following result.

11



Lemma 4.2. Ifv € AAP(Ry, W), then the decomposition v = v*® + w, where v*? € AP(Ry, W) and
w € Co(Ry, W), is unique.

In the following, for v € AAP(R, W), we let v*P denote the unique function in AP(R, W) such that
v—2vP € Co(Ry, W).

It is well-known that v € C(R, W) is almost periodic if, and only if, the set of translates {S;v : 7 € R}
is relatively compact in BC(R, W). Since, for any v € Cyo(Ry, W), the set of left-translates {S-v :
7 € Ry} is relatively compact in BC(R4, W), it is clear that the above characterisation of almost
periodicity on R is not valid for functions in C' (R4, W). Interestingly, the elements of AAP(Ry, W)
are precisely the functions for which the set {S;v : 7 € R} is relatively compact in BUC (R4, W),
see [21]). For more information on and further characterisations of almost periodicity, we refer the
reader to the literature, see, for example, [1, 7, §].

There is a close relationship between the spaces AP(Ry, W) and AP(R, W) which we now briefly
explain. Following an idea in [5, Remark on p. 318], for every v € AP(Ry, W), we define a function
Ve : R = W by

ve(t) := lim v(t+ 1) VteR,

k—o0

where 7, € P(v,1/k) for each k € N and 73, — o0 as k — oo. For given ¢t € R, we have

o+ ) = o(t + 1) < ol +78) = 06+ 7+ )| + ot +70+7) = e+ )| < 7+
for all k,1 € N sufficiently large, and so (v(t + 7)) is a Cauchy sequence. Hence v,(t) is well-defined
for each t € R. It is clear that ve(t) = v(t) for all ¢ > 0, that is, ve extends v to R. Furthermore,
it is not difficult to show that ve is continuous and P(ve,e) = {£7 : 7 € P(v,¢)}. In particular,
ve € AP(R,W). Moreover, there is no other function in AP(R, W) which extends v to R, and Lemma
4.1 guarantees that

sup [|ve(t)[| = sup [lv(t)]-
teR teR4

It is now clear that the map AP(Ry, W) — AP(R,W), v + v, is an isometric isomorphism. We
remark that, by invoking the translation semigroup acting on AP(R, W), [4] provides an alternative
approach to establishing that every element in AP(R, W) has an almost periodic extension to R.

For a function v € AP(R, W), the generalized Fourier coefficients of v are defined by
I
0(A\) := lim / e~ My(t)dt VX eR.
-7

It is well-known that the above limit exists for all A € R and the frequency spectrum
or(v) :=={A € R:0(A) # 0}

of v is countable, see, for example, [1, 8]. The module mod(v) of v € AP(R,W) is the set of all
numbers of the form 3, .y m(A)A, where m : o¢(v) — Z has finite support, that is, m(A) # 0 for
at most finitely many A € o¢(v). It is clear that mod(v) carries the structure of a Z-module and is the
smallest additive subgroup of R containing o¢(v).

We recall another concept of almost periodicity which is weaker than that of Bohr. To this end, let
ve Ll (R,W), where 1 < ¢ < oo, and € > 0. We say that 7 € R is an e-period of v (in the sense of

loc
a+1 1/q
sup (/ lv(s+ 1) — v(5)||qu> <e.

Stepanov) if
a€ER
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The set of e-periods of v (in the sense of Stepanov) is denoted by P,(v,e). We say that v is almost
periodic in the sense of Stepanov if, for every € > 0, the set P, (v, ¢) is relatively dense in R. The set of
all functions in L{ (R, W) which are almost periodic in the sense of Stepanov is denoted by S?(R, W).
It is clear that AP(R, W) C S%(R, W) (where the inclusion is strict), and, for every v € AP(R, W) and
every € > 0, P(v,e) C Py(v,¢). It is a routine exercise to prove that S9(R, W) is a closed subspace of

UL} .(R,W) with respect to the Stepanov norm || - ||sa. Sometimes it will be convenient to associate
with a function v € LL (R, W) another function ¢ : R — L9([0, 1], W) defined by

(0(t))(s) :==wv(t+s) VteR, Vsel0,1],
the so-called Bochner transform of v. Then v € C(R, L1(]0,1],W)), and,

|lv]lse = |7]lc Vv e UL}

loc

(R,W), (4.2)

that is, the Bochner transform restricted to U Liloc(R, W) is an isometry. Furthermore, a function
v e ULL (R,W) is in SY(R,W) if, and only if, o € AP(R,L%([0,1],W)). We remark that the

Bochner transform is not surjective.

The following simple lemma is a consequence of Lemma 4.1 and (4.2).

Lemma 4.3. If v € SY(Ry, W), then, for every 7 € Ry, ||S;v|lse = ||v]|sq-

The space AS?(R, W) of asymptotically almost periodic functions in the sense of Stepanov is defined
as follows

ASI(Ry, W) := SURL, W) + UpLL (R, W),

loc

where UgLl (Ry, W) :={v € ULL (R4, W) : ||Stv|lse — 0 as t — oo}. Obviously, AAP(R, W) C

loc loc

ASY(Ry,W). Noting that

v E UOL?OC(R+,W) <0 e Cy(Ry, LI([0,1],W)) Vwve UL‘IJOC(]RJF, W) (4.3)
and
veASI Ry, W) < ve AAP(Ry, LY([0,1],W)) Vv e UL?OC(R+, W), (4.4)

it follows from (4.1) and (4.2) that

v+ wllge > ||lv]lsa Vve SRy, W), YVw e UpL] (R, W).

loc

It is an easy consequence of this inequality that ASY(Ry, W) is a closed subspace of UL (R, W).

loc

Furthermore, (4.3) and (4.4) together with Lemma 4.2 and (4.2) yield the following result.

Lemma 4.4. If v € ASY (R, W), then the decomposition v = v° + w, where v* € SR, W) and
w € UgLL (Ry, W), is unique.

In the following, for v € ASY (R4, W), we let v° denote the unique function in S9(R, W) such that
v—1v°5 € UpL{ (R, W).

loc
Let v € SRy, W) and let 7, € Py(v,1/k) for all k € N and 7, — oo as kK — oo. Then it can be
shown that, for each 7 > 0, (v(- + Tk))k is a Cauchy sequence in LI([—7, 7|, W) and hence defines
a function ve € L (R, W). A straightforward argument shows that ve|r, = v (i.e., ve extends v

to R), ve € SUR, W), Py(ve,e) = {£7 : 7 € Py(v,¢)} for every € > 0, and the map SI(Ry, W) —
S4(R, W), v+ v, is an isometric isomorphism.

We are now in the position to state and prove the main result of this paper.

T Consider the constant function F € AP(R, L([0,1],W)) given by F(t) = X, where A € LI([0, 1], W) is such that
Mio,1721 = 0 and A|j1/2,1) # 0. Seeking a contradiction, suppose that there exists f € L] _(R,W) with f = F. Then

loc

f(t+s) =0 for every ¢ € R and almost every s € [0,1/2], implying that f = 0, and thus, F = f = 0 which is absurd.
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Theorem 4.5. Let ¥ = (T, ®, ¥, G) be a well-posed linear system, let i,7 € {1,2}, K" € L(Y7, U")
and let v* € S?(Ry,U). Assume that X' = (T,®E*, P/U, PIGE") is optimizable and estimatable and
K ¢ S(PPGEY). If f : Y7 — U' satisfies (3.5) with Z1 = Zy = Y7, then there exists a unique pair
(z*,y*) € AP(Ry, X) x S?2(Ry,Y) such that (v*,x*,y*) € B, for every e > 0, there exists 6 > 0 such
that Py(v*,d) C P(x*,e) N Pa(y*,e) and the following statements hold.

(1) If (v,z,y) € B is such that v € AS*(Ry,U) with v* = v*, then

tli)lglo (z(t) —2*(t)) =0, y e ULE (R4, Y) and [|Se(y —y*)|lsz = 0 ast — o0,
that is, v € AAP(Ry, X) with 2®° = x* and y € AS*(R.,Y) with y° = y*.
If v* is periodic with period T, then (x*,y*) is T-periodic.

loc

)
3) (vi,xk,y) € BB and there is no other pair (2,9) € BC(R, X) x UL (R,Y) such that the triple
e

Note that if v* € AP(R,,U) and v € AAP(R,,U) with v*® = v*, then v* € S?(R,U) and v €
AS?(Ry,U) with v® = v® = v*, and Theorem 4.5 applies. Furthermore, in this case, it can be shown
that o¢(v}) = o¢(v?), and so, statement (4) can be written in the form mod(v}) D mod(z}) Umod(yZ).
Of course, the extra regularity in the forcing provided by assuming that v* € AP(R4,U) and v €
AAP(R4,U) is not sufficient to guarantee that y* € AP(R4,Y) and/or y € AAP(R,,Y).

As regards to statement (1), note that if v — v* € L2(R4,U) or if ||v — v*||fec(1,00) — 0 a8 & — o0,
then v € AS?(R4,U) with v = v*. In statement (2), 7-periodicity of the L2 -function y* means that
y*(t+7) = y*(t) for almost every ¢ > 0. We remark that statement (2) is not new: it was first proved
in [14, Theorem 5.4]. Here we recover it as a special case of the results on almost periodic forcing, see
the proof of Theorem 4.5 given below.

Proof of Theorem 4.5. Let v* € S*(R.,U). It follows from (3.5), Proposition 3.1 and Lemma 3.2
(with K = E*K% P7) that there exists a pair (z,y) € C(Ry, X) x L} (R,Y) such that (v*, z,y) € B.
Setting r := 1/||(P/GE)X"|| gy, it follows from Lemma 2.1 that B(K%,r) C S(P/GE"), and hence,
the hypotheses of Theorem 3.4 are satisfied. Therefore, applying statements (3) and (4) of Theorem
3.4 with (v, z1,y1) = (v*, x,y) and (ve, z2,y2) = (v°U9, 2°U), y°19), where (v°9, 2%, y°1) is an arbitrary
equilibrium triple of (3.1) and ¥ is the constant function ¥(t) = 1, it follows that x is bounded, and
so z € BC(Ry, X), and, furthermore, y € ULZ (R, ,Y). We set

loc
p = 2[|z]|co,
and choose a non-decreasing sequence (7 )gen such that
7 € Po(v*,1/k?) and 7, >k VkeN.

We proceed in several steps.

Step 1: Construction of x*. We are going to show that (S, z); is a Cauchy sequence in BC(R, X).f
To this end, we note that

a+k 1/2 k atj 1/2
(/‘ |w%t+Tw—wﬁ@MFﬁ> 5;22(/1 Hwaf%m)—v%deQ
a j=1 a+j—1
g% Va>0, Vk € N.

T Thereby extending an idea from [2] where a similar argument is used to establish the existence of a periodic solution
of periodically forced finite-dimensional systems.



Consequently,

sup </aa+k v (t + 7%) — v*(t)”2> v < % (4.5)

a>0

Since (S;v*,S;z,Sy) € B for all 7 > 0, it follows from statement (1) of Theorem 3.4 that there exist
constants I'y,y > 0 such that

1(852)(5) — (Ssr) (5)| < T (pe™1C5) 1 Sy — Syl 2(ap) ¥ (5,50) € A, W7 > 0. (46)
Trivially, for k,¢ € N with k > ¢,

(Sr2)(t) = (S7.2)(t) = (S12)(7e) — (Starme—r,) (1), V>0,

and so, setting
I(t; k,f) = Hst’U* — St+7'k*T[U*HL2(T[*E,Tg) Vi 2 0,

and invoking (4.6) with s = 7y, so =70 — ¢, 0 =t and 7 = 73, — 74, wWe arrive at
1(Sr@)(t) — (Srpx) ()| < To(pe " + I(t;k,0)) Yt>0, Vk,£ENst. k> L (4.7)

Now

I(t; k. €) < [[Sev™ = Siqr ™| 2(rp—t,7y) + 1St 0™ = Stapre—r 0 | L2(ry 07
and so, changing variables in the two terms on the right-hand side, we obtain that, for all ¢t > 0 and
all k,¢ € N such that k > ¢,

I(t;k, 0) < [|v* — STkU*HLQ(t‘FTng,t‘FTg) + [|Srv* — U*||L2(t+7'kff,t+‘rk)

<" = STk”*”L2(t+7-g—€,t+n—é+k) + HSUU* - U*HL2(t+Tk—z,t+Tk)-

Consequently, by (4.5),

1
Itk 0) < ¢ +5 Vt20, Ve (ENst k24,

| =

and it follows from (4.7) that

1(S7,2)(t) = (Spa)(B)]| < Tape +1/k+1/6) ¥Vt >0, Vk (e Nst. k> L.

*

This shows that (S; ) is a Cauchy sequence in BC(R,, X), the limit of which we denote by z*.
To show that 2* € AP(R,, X), let € > 0, choose k. € N such that pe~7*= < ¢/(2I'y) and set

€
T ok Ty
Let 7 € Py(v*,n:). We will show that P»(v*,n.) C P(z*,¢). Obviously,
(Sr,z)(t+7) — (Sr.2)(t) = (Strx) (k) — (Sezx) (1) V>0, Vk €N,
and so, by (4.6) with s = 73, 0 =t and sg = 7, — k¢,

1(Sr)(t +7) = (Sra) (Ol < To(pe™ ™ + 80" = Sart*lapny k7)) VE 20, Vi > k.

Now

* * * * €
1S:v" = St4rv" | L2 (ke im) = 10" = Sev™ | L2(t4m, ke pmy) < Kenle = T, Vt>0, Vk > ke,

15



and thus,

[Snz)(t +7) = (Spz)®) < 5 +5=¢ VE=0, Vi >ke.

Do ™
DO | ™

Letting & — 0o, we obtain
|lz*(t+71)—2z*(t)]| <e Vt>0,

establishing that Ps(v*,n.) C P(xz*,e). The set Py(v*,n.) is relatively dense in Ry, and, a fortiori,
P(z*,¢) is also relatively dense in Ry. Since € was arbitrary, we conclude that z* € AP(Ry, X).

Step 2: Construction of y*. By statement (4) of Theorem 3.4 there exists a constant I > 0 such that
ISt4r,y = Sryllsz < T(I1(St4m2)(0) = (S7,2) (0)]| + [[Ser,v* = Spv*llg2) VE>0, VE, £ €N. (4.8)

Obviously, S,,v* — v* in S?(Ry,U) and (S,,x)(0) — 2*(0) as k — oo, and so it follows from (4.8)
with ¢ = 0 that (S,,y)x is a Cauchy sequence in ULZ (R4,Y), the limit of which we denote by y*.
Letting k — oo and ¢ — oo in (4.8) we arrive at

ISty —y*lls2 < T(I(Sea*)(0) = 2* ()| + |Sev™ = v*[lg2) V=0 (4.9)

Now let € > 0, set & := ¢/(2T") and
58 = min{n&‘vnéaé}a

and let 7 € Py(v*,0:). Then, 7 € Py(v*,nz), and consequently, by what we proved in Step 1, 7 €
P(x*,€). An application of (4.9) with ¢ = 7 yields

IS+y* — y*|ls2 < f‘(é—{—éa) <e.

Hence, P5(v*,0.) C Py(y*,e). Therefore, the relative denseness of P»(v*,d.) implies that of Py(y*,¢),
showing that y* € S?(R,,Y). By the definition of &, we have that Py(v*,d.) C Pa(v*,n.), and so, by
Step 1, Py(v*,0.) C P(z*,e). Consequently, Py(v*,d.) C P(z*,e) N Py(y*, ).

Step 3: (v*,z*,y*) € B and uniqueness of (z*,y*) within AP(Ry,X) x S?(R,,Y). Since the triple
(Sr.v*, Sy 2,87, y)isin Bforall k € N, ||S; v* —v*||g2 = 0, [|Sr,y —y*||s2 — 0 and ||S;, .2 —2*||cc — 0
as k — oo, it follows from (3.1), the continuity properties of well-posed linear systems and the global
Lipschitz property of f that (v*,z*,y*) € B.

To prove uniqueness of (z*, y*), assume that (zf,3*) € AP(R,, X)xS?(R,Y) is such that (v*, 2%, y¥) €
B. Then, appealing to statement (1) of Theorem 3.4, we see that x*(t) — 2%(t) — 0 as t — co. But the
function z* — 2f is in AP(R,, X), and so, invoking Lemma 4.1, we conclude that 2* = z¥. Statement
(2) of Theorem 3.4 now implies that y* = yt.

Step 4: Proof of statements (1) and (2). Let (v,x,y) € B be such that v € AS%*(R,,U) with v* = v*.
An application of statement (3) of Theorem 3.4 shows that there exists I'y > 0 and 4 > 0 such that

lz(t) = 2™ ()] < T2 (77" [l (to) — 27 (to) | + St (v — v")ls2) ¥ (t,t0) € A.

In particular, x — 2* is bounded, and so u := sup;>¢ [|z(t) — 2*(t)|| < co. Let £ > 0. Since [|S;(v —
v*)||g2 = 0 as t — oo, there exists o > 0 such that ||S, (v — v*)||g2 < &/(2I'3). Choosing 7 > 0 such
that e~ 77 < ¢/(2ul3), it follows from the above inequality with ty = o that ||z(t) — z*(t)|| < e for all
t > o + 7, showing that (x(t) — 2*(t)) — 0 as t — oo. Furthermore, statement (4) of Theorem 3.4
shows that y € UL? (R,,Y) and

loc
ISe(y —y*)lls2 < T(llz(t) —2* (O] + [ISe(v — v*)lls2) V= 0.

Letting ¢t — oo, we see that [|S¢(y — y*)|g2 — 0, completing the proof of statement (1).

To prove statement (2), assume that v* is 7-periodic for some 7 > 0. Then 7 € Py(v*,d) for every
0 >0 and so, T € P(x*,e) N Pa(y*, ) for every € > 0, implying that z* and y* are 7-periodic.
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Step 5: Proof of statement (3). To show that (v}, z},y%) € BB, we choose d; > 0 such that
Py(v*,6;) C P(z*,1/k)N Py(y*,1/k) VkeN.

The existence of such numbers Jj, is guaranteed by Steps 1 and 2. Setting 7y := min(dg, 1/k), we have
that ny — 0 as £ — oo and

Py(v*,mi) C P(z*,1/k) N Pa(y*,1/k) Vke€N.

Let tg € R and 1, € Py(v*,n;) such that 7, > max(0,—tg) for all & € N. The latter ensures that
to + 7 > 0 for all £ € N. Noting that

LI?Z(t + Tk) = x:(t —to+ 7+ to) = a:*(t —to+ 11+ to) = (Sto-&-‘rkx*)(t — to) Vit >tg, VEEN,
we conclude that
(L‘:(t + Tk) = (St0+7km*)(t — to) = ']I‘t_tO(St0+Tkx*)(0) + (I)t—tOPt—t()Sto-‘erU* Vit >tg, VEEN, (410)

where u* := E'(f o P/y*) + v*. Since v* € S?(Ry,U), y* € S?(R.,Y) and f is globally Lipschitz, it
follows that v* € S?(Ry,U). Trivially, by (4.10),

l':(t + Tk) = Tt_t()a?:(t() + Tk) -+ (I)t—toPt—t()Sto—‘eruZ Yt > t(), VEeN. (411)
Obviously, u} = E*(f o Piy}) +v}. As 11, € Po(v},mp) C P(xf,1/k) N Pa(y,1/k), we have
IS+ vs —villsz = 0, [|[Srz; —ziloo = 0 and ||Srys —vyillsz = 0 as k — oo, (4.12)

which in turn implies that
|Sr us —ulllsz =0 as k — oo. (4.13)

Therefore, letting £ — oo in (4.11), we arrive at

.’E*(t) = ']I‘t,tox: (to) + (I)tftOPtfto Stou: Vit > ty. (414)

[$]
Furthermore, on Ry, Sy 47, vl = Sto4r, u*, Stotr, T8 = Sto4r, @™ and Syoy7, Yo = Sio4r,y", and thus, as
* * *
Pi 4,Sto1nY" = Wity (St 27)(0) + Gyt Py, Sto1r ™ Vit > to,

we obtain
Pt—to STk Sto y: = \I/t—to (STk Sto x: ) (0) + Gt—to Pt—to STk Sto u: Vit >t. (4 15)

By (4.12) and (4.13),
1S+, Stous — Stouellsz = 0, ||Sr,Stozs — StoZalloc = 0 and  [|S;, Stoys — Stovsllsz — 0 as k — oo,
and thus, letting k£ — oo in (4.15) leads to

Pi_1,St,vs = Visoxi(to) + Gito Pt Seous YVt > to. (4.16)

Since tg € R was arbitrary and Sy u’ = E*(f o P7S;,yl) + S, v, it follows from (4.14) and (4.16) that
(vi,xk,ys) € BB.

To show that (z%,y?) is the unique pair in BC(R, X) x UL (R,Y) satisfying (v}, 2%, y?) € BB, let
(2,9) € BC(R,X) x UL (R,Y) be such that (v}, #,9) € BB. We have to show that (2,9) = (27, y}).
To this end, note that, for any o € R, the restrictions of (S,vy, Sexk, Soyl) and (S,vf, SeZ,Ssy) to
R, are in B. Hence, by statement (1) of Theorem 3.4, there exist I'y > 0 and v > 0 such that

1(Sa2)(s) = (Sod)(s)]| < Tae ™ [a3(0) — #(0)]| Vs >0, Vo €R, (4.17)
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Let t € R and € > 0. Choose o < t such that
Doe =) z* — 3|0 <e.
An application of (4.17) wit s =t — o yields
|72 () = ()] = [(Sewd)(t — ) = (So)(t — 0)|| < T2 7" [af — 2| <.

Now t € R and € > 0 were arbitrary, and consequently, z = z*. An application of statement (4)
of Theorem 3.4 (with tp = 0) to the restrictions of (S,v¥,Ssxk, SyyZ) and (S,vi, Sexk, S,y) to Ry,
where o € R, shows that (S,9)(t) = (Ssy2)(t) for almost every ¢t > 0. Therefore, §(t) = yi(t) for
almost every t > 0. Letting 0 — —oo yields that § = y?.

Step 6: Proof of statement (4). Let (o%)r be a sequence in R such that (S, vF)p converges in

Ok “e
AP(R, L*([0,1),U)). By [1, Statement X on p. 34], it is sufficient to prove that the sequences (Sy, %)k
and (Sy, y*)x converge in AP(R, X) and AP(R, L'([0,1),Y)), respectively. To this end, let £ > 0 and
set 1= 2[|x}||oc = 2||2*||oo. Obviously, for each k € N, the restriction of (S, 05, Ss, 2%, Soys) to Ry

is in B. Consequently, by statements (3) and (4) of Theorem 3.4,
(S0, 5)(8) = (Sopze) ()] < Ta(e™ ' + [[So vl — So,vills2) V>0, (4.18)

and
1S0¥a — Soptiallsz < T([(S,25)(0) = (So,w5) (0) || + [|Sey, v — Sopvills2), (4.19)

where T'y, T' and 4 are positive constants. Since (S,,v¢)x converges in AP(R,L([0,1),0)), it is
clear that (S, v7)x is a Cauchy sequence in S%(R,U). Consequently, there exists N € N such that
I2)|Ss,v8 — So,vi]|s2 < €/2 for all k,£ > N. Choosing 7 > 0 such that [ore 77 < £/2, it follows from
(4.18) that

1(Soze)(t) = (Soze)()| <& VE=7, VK, L= N.
The function S, z} — Sy, 2% is in AP(R, X), and thus, invoking Lemma 4.1,

ISo, 25 — So,xi||lc0 <€ Vk,£> N.

This shows that (S, 2%)k is a Cauchy sequence in AP(R, X') and thus converges in AP(R, X).

Finally, since (Sy,z7) and (S,,v})x are Cauchy sequences in AP(R, X) and S?(R,U ), respectively,
it follows from (4.19) that (S, y)x is a Cauchy sequences in S?(R,Y’), and hence (S, y)x converges
in AP(R, L'([0,1],Y)), completing the proof. O

We continue by stating a circle-criterion version of Theorem 4.5.

Theorem 4.6. Let . = (T, ®, ¥, G) be a well-posed linear system, leti,j € {1,2}, K1, Ky € L(Y7,U?)
and let v* € S?(Ry,U). Assume that X' = (T,®E*, P/, PIGE") is optimizable and estimatable and
K1 € S(PIGE?Y) is an admissible feedback operator for X7, If (I — K9P'GE)(I — K1P/GEY)~! is
positive real and there exists € > 0 such that f : Y7 — U’ satisfies

Re (f(21) = f(22) = Ki(z1 — 22), f(21) — f(22) — Ka(21 — 22)) < —¢lz1 — 22]|* V¥ (21,22) € Y/ x V7,

then there exists a unique pair (z*,y*) € AP(Ry, X) x S2(R4,Y) such that (v*,x*,y*) € B, for every
e > 0, there exists 6 > 0 such that Pa(v*,0) C P(x*,e) N Pa(y*,e) and statements (1)- (4) of Theorem
4.5 hold.

Proof. Let v* € S?(R,,U). Combining the methods used in the proof of [14, Corollary 4.5] with
Lemma 3.2 and Proposition 3.1 shows that there exists a pair (z,y) € C(Ry, X) x L2 (R,,Y) such

loc

that (v*,z,y) € B. Invoking Corollary 3.6, it is clear that statements (1)-(4) of Theorem 3.4 hold.
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These formed the basis for the proof of Theorem 4.5, and the conclusions of Theorem 4.6 can now be
derived by arguments identical to those used in the proof of Theorem 4.5. (Il

We conclude this section with a brief comparison of Theorems 4.5 and 4.6 to related results in the
literature. As for the case of periodic forcing, the most relevant results in this context are [24, Theorem
4] and the first part of [39, Theorem 1], both of which are special cases of [14, Corollary 5.6] (which in
turn is essentially identical to statement (2) of Theorem 4.5). Earlier contributions to the analysis of
the asymptotic behaviour of Lur’e systems with almost periodic forcing can be found in [6, 26, 27, 39].
The papers [6, 26, 27] adopt an input-output approach, whilst a standard finite-dimensional state space
setting is used in [39]. All of these contributions consider input signals which are almost periodic in the
sense of Bohr, but do not cover the more general case of Stepanov almost periodic forcing functions.
The structure of the feedback systems and the classes of underlying linear systems considered in
[6, 26, 27, 39] are considerably less general than those studied in this paper (in particular, [6, 27, 39]
are restricted to the single-input single-output case, that is U and Y are one-dimensional and f is a
“scalar” nonlinearity). Theorems 4.5 and 4.6 can be considered as far reaching generalizations and
refinements of the relevant results in [6, 26, 27, 39].
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