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Abstract: Persistency, stability and convergence properties are considered for a class of nonlinear,
forced, positive, scalar higher-order difference equations. Sufficient conditions for these properties
to hold are derived, broadly in terms of the interplay of the linear and nonlinear components of the
difference equations. Convergence properties of solutions include to almost periodic functions when
subject to asymptotically almost periodic forcing terms. The equations under consideration arise
in a number of ecological and biological contexts, with the Allen-Clark population model appearing
as a special case. We illustrate our results by several examples from population dynamics.
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1 Introduction

We consider the following class of scalar, forced, higher-order initial-value problems:

k k
x(t+1):Zajx(t_j)+Bf(u(t)727jx(t_j)> + (1), x(_j):xij €R, (1.1)
=0 =0 .

7=0,...,k, teN,

where k is a nonnegative integer. The details of (1.1) are given in Section 2, although we note here
that f is a nonlinearity, a;;, 8 and +; are real parameters, and the terms u and v are exogenous
forcing terms, and could model control actions or disturbances, depending on the context. We
study a suite of relevant dynamical properties of (1.1), namely, boundedness, persistence, stability
and convergence, in the situation wherein system (1.1) is positive, and provide sufficient conditions
for these properties to hold.

Positive dynamical systems are dynamical systems with the defining property that they leave some
positive cone invariant. They are well-studied objects, evidenced by a vast literature with texts
including [3, 4, 29, 36, 37]. Their interest is not only mathematical, but also practical as they
arise in myriad application areas where state variables are constrained to lie in some positive cone
to be meaningful, such as the nonnegative orthant in Fuclidean space for necessarily nonnegative
quantities.
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One motivation for studying (1.1) is its occurrence in models in theoretical ecology, as the higher-
order nature of (1.1) may be interpreted as a delay structure. Time delays are an important feature
in this setting, for instance, a known plant survival strategy is to delay the germination of dormant
seeds post dispersal [17, Section 1.2]. Similarly, system (1.1) is a forced generalisation of

z(t+1)=ax(t)+ Bf(x(t—k)) teNp, (1.2)

known as the Allen-Clark, or Clark, model (after Allen [1] and Clark [10]), see also the biblio-
graphical notes in [7] for other early contributors. In population modelling, (1.2) is a parsimo-
nious extension of uncontrolled standard first-order difference equations (discussed in a number
of monographs, such as [9, Chapter 1] or [48, Chapter 2]) to include age-structure, particularly
delayed reproductive maturity. There has been much subsequent interest in the role of delay-until-
reproductive-maturation in age-structured population models, dating back to at least [40], and
further studied and generalised across, for example, [2, 20, 64, 67]. Roughly speaking, these works
generalise the Allen-Clark model to include explicit age-structure within a single population model.
The model (1.2) is known to admit a unique positive equilibrium under mild assumptions on f, «
and (. Stability and attractivity properties of the nonzero equilibrium have been studied in several
papers, including [18, 19, 33, 43].

The study of dynamical systems which interact with their wider environment via the inclusion of in-
put (control, forcing) and output (measurement) variables, and their feedback connections, is at the
heart of control theory; see, for example [61]. The inclusion of forcing terms in dynamical systems
is essential in applied settings. Indeed, forcing terms may represent control actions/interventions,
(possibly unwanted or uncertain) variation in the underlying model, and otherwise unmodelled
terms which may be significant. When considering the effects of forcing terms, typically one of two
perspectives is adopted: their use as controls to establish or maintain desirable dynamic behaviour,
or, the robustness of desirable properties of the model with respect to unwanted forcing terms.
A strand of control theory associates input and output variables to positive dynamical systems,
leading to so-called positive control systems, with recent review paper [49]. The model (1.1) with
appropriate nonnegativity assumptions is an instance of a positive control system. Again, in a
population dynamics context, the forcing function v in (1.1) may model immigration, and u may
capture environmental variation or harvesting (anthropogenic or otherwise).

To connect to another body of literature, equation (1.1) is an instance of a forced (positive, in this
case) Lur’e difference equation, or simply Lur’e system, in control-theoretic terminology; see, for
example [65]. There are numerous studies of positive Lur’e systems in state-space form, including [5,
15, 16, 22, 23, 24, 25, 58], broadly motivated by their interesting dynamical behaviour and relevance
in theoretical ecology, dating back to [50, 63] where ‘trichotomies of stability’ were established for
such systems.

Boundedness of solutions is an innate requirement for positive difference equations motivated by
real-world applications of size- or quantity-limited variables. Persistence concepts, broadly referring
to the property that certain internal variables (for example, the state or certain linear combinations
of state components) are ultimately bounded away from zero, are highly relevant as well. This is
particularly the case when f(w,0) = 0 for all w, so that zero is an equilibrium of system (1.1) when
unforced (meaning u equal to a constant nominal value, and v = 0). Persistence in dynamical
systems is a well-established concept with a number of variations including those presented in [21,
22, 23, 24, 55, 59, 66]. The persistence properties we consider are ultimate in that they only apply
after some fixed number of time-steps, and are uniform with respect to certain initial conditions and
forcing functions as we shall describe. We contend that this concept of persistence is suitable for
all practical purposes. Moreover, mild assumptions on the model data ensure that there is a unique
positive equilibrium, denoted z,, at a constant forcing pair (ue,ve.). The stability properties we
consider relate to e, and account for the fact that (1.1) is inhomogeneous by appealing to the input-
to-state stability (ISS) framework from nonlinear control theory; see [45] for a recent monograph.
Roughly speaking, ISS ensures that ||x(f) — .|| is bounded in terms of (nonlinear functions of) the



difference of the initial state to x, which decays to 0 over time, as well contributions from u — ue
and v — ve. Here, we provide a range of boundedness, persistence, and stability properties for
system (1.1), presented as Proposition 3.3, and Theorems 3.5 and 4.2, respectively.

As a consequence of our stability results we show that, under suitable assumptions, the following
convergence property holds: for all constant forcing pairs (ue,ve), there is a unique constant z,
such that, for all © and v converging to ue and ve, respectively, and all non-zero initial conditions,
the corresponding solution z(t) of (1.1) converges to x. as t — oo, see Corollary 4.4 for a precise
statement. Finally, the stability properties we derive are sufficiently strong to ensure that (1.1)
admits a rather general entrainment-type property (see, for example [34, Chapter 7] for a classical
treatment of entrainment), specifically here that for almost periodic forcing terms v = vy, (in
the sense of Bohr): (i) there is a unique almost periodic solution z,, of (1.1), and, (ii) all other
solutions x of (1.1) converge to z,,, when subject to v converging to v,p. Moreover, the sets of
almost periods of v,, and x,, are closely related, see Theorem 5.1 for a precise statement. The
development of the theoretical results is mostly based on a blend of techniques from control theory
and positive systems. We highlight that the boundedness and persistence properties are key for our
stability arguments. Further, our results apply to general f specified in terms of qualitative and
quantitative properties which, in particular, do not necessitate that f is monotone or unimodal. In
particular, system (1.1) need not be a monotone control system when unforced, as in [30, 57].

In terms of novelty and contribution, whilst the persistence and stability results from [22, 23] play
a pivotal role in establishing the corresponding properties for (1.1), here we are able to formulate
conditions directly in terms of the model data in (1.1); moreover, the convergence results in Sec-
tions 4 and 5 are new. Paper [24] considers related dynamic properties for a class of positive vector
Lur’e systems with unit delay in the nonlinear term and highlights a number of surprising discrep-
ancies as compared to the continuous-time (delay-differential equation) case analysed in [21]. The
overlap with the present work is minimal, however. We comment that our inclusion and treatment
of forcing terms, and consequent stability and convergence properties, separates our work from
much of the literature in this area.

The remainder of the paper is organized as follows. Section 2 contains preliminary material.
Our main results appear in Sections 3, 4 and 5, which focus on boundedness and persistence,
stability and convergence properties, and the response to almost periodic additive forcing terms,
respectively. Four examples are presented in Section 6. In particular, we demonstrate how the
results in Sections 3-5 apply to forced versions of the Allen-Clark model (1.2). Section 7 contains
a discussion of our results. An ancillary technical theorem appears in the Appendix.

Notation. We set Ry := [0,00), N := {1,2,...}, Ny := NU {0} and Z stands for the set of all
integers. For n € N, let R denote the space of column vectors with n real components. We define
R’ to be the subset of R" consisting of all vectors in R with non-negative components. For { € R",
we write £ > 0if £ € R, £ > 0if § > 0 and £ # 0, and £ > 0 if all components of § are positive.
If £ > 0, then we also say that & is strictly positive. Furthermore, let £, € R™. If £ — ( > 0,
E—(C>00r &—(¢ >0, then we write £ > (, £ > ( or £ > (, respectively. Similar conventions
apply to real matrices.

We will make use of the following classes of comparison functions:
K:={¢:Ry = Ry :¢(0) =0, ¢ is continuous and strictly increasing}

and Koo := {¢ € K : lims_,o ¢(5) = oo}. Furthermore, we denote by KL the set of all functions ¢ :
Ry x Ng — R, with the following properties: for each fixed ¢ € Ny, the function ¢(-,t) is in X,
and for each fixed s € Ry, the function ¢(s, -) is non-increasing and ¢(s,t) — 0 as t — co. The
reader is referred to [35] for more details on comparison functions.

Finally, for a function y : Ny — R” and 6 € Ny, we denote the 8-left translate by g, that is,

yo(t) :==y(t+0) VieN. (1.3)



2 A class of nonlinear higher-order difference equations

Consider (1.1) where, throughout, z°,...,27% > 0, and aj, v; and 3 satisfy the following positivity
condition.

(P1) aj, >0forj=0,....k, 8>0, Y5 7 >0 and o+ >0

The functions u and v are assumed to take values in non-empty compact sets U C R™ and V C Ry,
respectively, where V' is such that 0 € V. It is always assumed that the nonlinearity f : U x Ry —
R is continuous. For convenience, we set

k k
« :Zaj and -~y —Z’y]
j=0 7=0
Furthermore, we impose the following stability assumption.
(S) The polynomial
k
a(¢) == ¢M = a;ch (2.1)

=0
is Schur, that is, if a(¢) = 0, then |(] < 1.

Obviously, (S) is equivalent to the 0-equilibrium of the linear difference equation

z(t+1) = a;x(t — j)

<.
I Mw
o

being asymptotically stable. As a consequence, we have that

k
a=> a;<L (2.2)
j=0

The initial-value problem (1.1) has a unique solution x : {—k,...,—1}UNy — R. As the coefficients
and initial data are non-negative, it is clear that the solution of (1.1) has values in Ry. As is usual
in control theory, the difference equation in (1.1) is referred to as a Lur’e system (see, for example,
[65]), more specifically, (1.1) is an instance of a forced, positive, higher-order Lur’e system in
discrete time. It can be thought of as the interconnection of the linear controlled and observed

System
k

k
p(t+1) =Y aga(t —j) + Buw(t) + v(t), y(t) =Y vt —j) (2.3)
j=0 Jj=0

and the nonlinearity f via the feedback law w(t) = f(u(t),y(t)), see Figure 2.1. Note that in (2.3),
v and w are inputs, controls or forcing functions, where w is available for feedback, whereas y is
the measurement, observation or output.

Associated with (2.3) is the rational function G defined by
koo ko k=i
B> =076 B2 =07 _ Be(¢)

G(() = = _
(©) =Sk ga¢i =k jaycks al()

k
, where ¢(¢) =Y v¢", (24)
j=0

and ( is a complex variable. If z(—j) = 0 for j = 0,...,k and v = 0, then application of the
Z-transform Z to (2.3) yields that

(2y)(¢) = G(O)(Zw)(C)-



Linear system (2.3)
L y
w

fofe—

Figure 2.1: Application of the feedback law w = f(u,y) to system (2.3).

The above identity shows that if z(—j) = 0 for j = 0,...,k (zero initial conditions) and v = 0,
then the effect of the input w on the output y of system (2.3) is described in the frequency domain
by the product of G and the Z-transform of w. Therefore, G is called the transfer function of (2.3)
with v = 0.

Assuming that (S) holds, we set

|Gz = sup [G(¢)] = sup |G(C)] < o0,
¢l1 cl=1

where H* refers to the space of all bounded holomorphic functions defined on the complement
of the closed unit disc. If z(—j) = 0 for j = 0,...,k and v = 0 in (2.3), then the associated
output y = y,, depends only on w, and

sup{[[ywlle « [[wlle =1} = [|Gllae,  where [w]p :=

The above identity provides an appealing interpretation of |G| g in time-domain terms.

For ¢ € C such that |¢| =1, we have

k
‘52%‘ij

7=0

<pfvy and Ja({)|>1—a>0,

where the last inequality follows from (S) and (2.2). Consequently,

G(1) < Gllu~ < 2L —G(),
l1-—a
showing that
IG [~ = G(1).
We define ) )
pi= = , where p:=o0 if G(1) = ||G||g~ = 0.
G1) Gl

Note that G(1) > 0 if (P1) is satisfied. Setting Z(t) := (z(t), ... ,:E(t—k‘))T and defining b, c € RF+1
and A € Rk+1)x(k+1) by

Gy O] Og—1 O
g 10 10 0 0
1
b= .|, e=| .|, A=]0 1 - 0 01, (2.5)
0 Tk 0 0 1 0
equation (1.1) can be expressed in the form
F(t+1) = Az(t) + bf (u(t),c' #(t)) +0(t), t € Ng, #(0)=(2°,...,27%)T = z°, (2.6)



where ¥(t) := (v(t),0,...,0)T € R*. We note that b > 0, ¢ > 0, and A is a companion matrix,
see, for example, [31, Section 3.3 and Problem 3.3 P11]. As det(¢I —A) = a((), all eigenvalues of A
have modulus smaller than 1, that is, the matrix A is asymptotically stable. It is straightforward
to show that

G(() =c'(¢I—A)7"D.

Throughout, let J be the set of positive integers defined by
J:.= {’L S {1,...,]{7—#1}:0@_14—’%_1 >0} = {’L S {1,,k+1} fay_1 + B > 0}

If (P1) is satisfied, then k + 1 € J. The greatest common divisor of the elements of J is denoted
by gedJ. In the following proposition we explore certain positivity properties of the linear part of
system (2.6) which are essential for the developments in Sections 3-5.

Proposition 2.1. Assume that (P1) holds and let A, b and ¢ as in (2.5). The following statements
hold.

1) The matriz A+ be' is primitive if, and only if, gedJ = 1.

2) There exists T € Ny such that ¢" (A +be")™ > 0 if, and only if, gcdJ = 1.

3) If gedd =1, then (A +be")2tDE=l > 0, where | :== min{j : aj +v; # 0}.

(1)
(2)
(3)
(4) If ag +70 > 0, then ¢ (A+bc" )™ > 0, where m := min{j : v; # 0}.

We remark that for the ultimate c-persistency result in Section 3, see Theorem 3.5, the strict
positivity of ¢ (A+bcT)T for some 7 € Ny plays a key role: the smallest 7 such that ¢ (A+bc™)™ > 0
is the time at which c-persistency ‘kicks in’. Trivially, if (A +bc™)™ > 0, then ¢’ (A+bc")™ > 0.
The converse implication is obviously not true. In particular, (A+bc' )™ may not be strictly positive
for the minimal 7 such that ¢' (A 4 bc™)™ > 0.

The proof of the implication ¢ (A+bc"™)™ > 0 = gedJ = 1 claimed in statement (2) is facilitated
by the following lemma.

Lemma 2.2. Let r:= (ro,71,...,7%) " € Riﬂ and let ey, ..., epp1 be the canonical basis of RFFL,
Assume that (P1) holds, d := gedJ > 1 and there exists ig € {0,...,d—1} such that rle;=1i_1=0
foralli € {1,...,k+1} such thati # i mod d. Thenr' (A+bc')e; =0 forallic {1,...,k+1}
such that i # (ip — 1) mod d.

Proof. Note that

rT(A+be") = (rolan+B0) + 71, rolan +By1) + 72, - . ro(ag—1+ BYk—1) + 7, To(ek + B7x)) - (2.7)
We distinguish between the cases 79 > 0 and ry = 0.

Case 1: 79 > 0. In this case, it follows from the hypothesis on r that 1 = iy mod d, implying
that ig0 = 1. As ax + By, > 0, we have that k+ 1 € J, and thus, k+1 =0 mod d. Since ig = 1,
the condition k + 1 # (ip — 1) mod d is not satisfied (we note in passing, that nevertheless,
rT(A+bc")errr =0). Let i € {1,...,k} be such that i # (ip — 1) mod d, or equivalently

i+1#1 mod d. (2.8)

Invoking again the hypothesis on r, we have that r; = 0. Furthermore, (2.8) is equivalent to i Z 0
mod d, showing that i ¢ J, whence a;—1 + fvi—1 = 0. It now follows from (2.7) that

r (A4 be e = rolei1 + Byio1) + i = 0.

Case 2: 1o = 0. Invoking (2.7), we see that 77 (A + bc')err1 = ro(ay + By) = 0. Let now i €
{1,...,k} be such that i + 1 # ip mod d. Then, by hypothesis, r; = 0, and thus,

T‘T(A + bcT)ei = ro(ai—1 + Bvi—1) +1i =0,

completing the proof. O



We continue with the proof of Proposition 2.1.

Proof of Proposition 2.1. (1) Note that A and A +bc', as companion matrices, have the structure
of a Leslie matrix familiar from stage-structured population models. Thus, irreducibility and prim-
itivity results for Leslie matrices (see, for example [62]) can be applied to A+bc'. As ag +y; > 0,
[62, Theorem 6] yields that primitivity of A + bc' is equivalent to gcdJ = 1.

(2) If gedJ = 1, then, by statement (1), A + bc' is primitive, whence ¢’ (A + be')™ > 0 for
some 7 € Np.

We prove the converse by contraposition. To this end assume that gcdJ = d > 1 and define ¢, =
(CT,(),...,CT’]C)T € Rl_frl by ¢! := ¢ (A4 bc")T for every 7 € Ny. It is sufficient to show that,
for every 7 € Ny, there exists i, € {0,...,d — 1} such that ¢;;_1 = 0 for all i € {1,...,k + 1}
satisfying ¢ # ¢; mod d. We do this by induction on 7. We have that cy;—1 = ;-1 = 0 for all ¢ €
{1,...,k + 1} such that i # 0 mod d and the claim holds for 7 = 0 with iy := 0. Let now 7 € Ny
and assume that there exists i, € {0,...,d — 1} such that ¢,;—; = 0 for all ¢ € {1,...,k + 1}
satisfying 7 # i, mod d. Then

Crili—1 = C;r+1€i = CI(A + bcT)ei Vi€ {1, o k+ 1}.

Setting
, ir—1, ifi; #0
Try1 i=
T d =1, i, =0,
we have that i1 € {0,...,d—1}, and an application of Lemma 2.2 with r = ¢, shows that ¢; 11,1 =

0 forallie{1,...,k+ 1} such that i # i;41 mod d, completing the proof.

(3) Assume that gcdJ = 1. By statement (1), A+ bc' is primitive. It follows from [31, Theorem
8.5.7] that (A+bc " )(EF+D+k=1) 5 0, where £ is the length of the shortest cycle in the directed graph
associated with A+bc'. Exploiting the companion matrix structure of A+bc', it is straightforward
to show that £ = [ 4 1. Consequently, (k+1)+£(k—1) = (2+1)k —1, and so, (A+bc")HDr=l > 0,
establishing the claim.

(4) As ap+10 > 0, we have that 1 € J, implying that gcdJ = 1. Hence, by statement (3) with [ = 0,
we obtain that ¢’ (A + bc')%* > 0. To show that ¢! (A + be")¥+™ > 0, we proceed in two steps.
Step 1. Set ¢ := (70,0,...,0,7%) ", ém :== (0,...,0,%m,0,...,0)T (where 7, is in position m + 1),
and

ag 0 0 ag
1 0 0 0
A=10 1 0 0 | ¢ gEFDx(k+1),
0 0 1 0
We claim that X
ey (A+be)FHm s 0. (2.9)
Noting that
ao+Bv% 0 0 ag+ By + 0 --- 0 +
1 0o --- 0 0 £ 0 --- 0 0
A+be’ = 0 r -0 0 =10 + -+ 0 0 ¢gRrEHDxED
0 0 1 0 0 0 --- + 0

where here, and in the following, 4+ denotes a positive entry, the value of which is immaterial. It
is routine to check that, for every j =0,...,m,

ey (A+be") > (0,...,0,4,0,...,0), where + is in position m + 1 — j.



Furthermore, for every j = 1,...,k, we have that

é:—n(fl—l—bé—r)m‘” > (+,0,...,0,+,...,4), where + is in the positions 1 and
k+1—iforalli=0,...,5—1.

In particular,
e (A4 beN)H ™ = (4 4+,...,4) >0,

establishing (2.9).
Step 2. As ¢ > ¢é,ém and A > A, we have that A +be! > A+ bé'. Consequently,

cT(A+be"Y >él (A+beT)Y VjeN,

and it follows from (2.9) that ¢' (A + be' )™ > 0. O

3 Boundedness and persistence

In this section, we explore boundedness and persistence properties of the Lur’e system (1.1). For
which purpose, we require the following, not very restrictive, assumption on the linear part of
system (1.1).

(L) At least one of the following two conditions holds:

(i) E\llq IG(Q)] < |Gl Hee, (ii) a and c are coprime,

where the polynomials a and c are defined in (2.1) and (2.4), respectively.

The above coprimeness condition can be characterized in terms of the linear observed system
2t +1) = Az(t), y(t) = cTa(d), (3.1)

where A and ¢ are given by (2.5). Recall that system (3.1) (or the pair (¢, A)) is said to be
observable if the following implication holds:

(CTAta:O =0 Vte NO) = (aco = ()).
It is well known that (3.1) is observable if, and only if, the so-called observability matriz
T
O(cT, A) = ¢ 'A c RUHDx(k+1)
cl Ak
is invertible, see, for example, [38, Corollary 18.2] or [52, Theorem 25.12].

Lemma 3.1. The polynomials a and c are coprime if, and only if, the pair (c',A) is observable.

Proof. Invoking the so-called Hautus criterion for observability (see [42, Theorem 3.21] or [52,
Theorem 13.15]), we need to show the equivalence of the coprimeness of a and ¢ and the following
full rank condition

rank (CIC; A) =k+1 V(eC. (3.2)



We prove the contrapositive, that is, we show that the existence of a common root of a and c is
equivalent to the failure of the rank condition (3.2). We start by assuming that (3.2) does not hold.
Then there exists A € C such that
I-A
rank (A T ) <k+1.

Consequently, for suitable, a := (ag, ...,a;)" € CFT! a #0,
(M —A)a=0 and c¢'a=0. (3.3)
Thus, by the first of the above two identities,
ag = Aay, a1 = Aag, ... ,Ap_1 = A\ay,

and so, a; # 0 and a; = Ne=iqy for j = 0,...,k. Using the first identity in (3.3) once more, we
obtain

k
a(Nag = ()\kH - Zaj)\kfj)ak =0.
j=0
Hence, a(A\) = 0. The second identity in (3.3) yields

k k
c(Nag = (Z'yj)\k_j)ak = Z%-aj =cla=0,
§=0 §=0

showing that c(\) = 0. We conclude that a and ¢ are not coprime.

Conversely, assume that a and ¢ are not coprime. Then a and ¢ have a common root A. Setting a :=
ag ()\k, N1 l)T for arbitrary ax # 0, the above steps can be reversed to arrive at (3.3) which
in turn implies that (3.2) does not hold. O

Remark 3.2. It follows from Lemma 3.1 and basic linear control theory (see, for example, [38, 52])
that, if the stability assumption (S) holds, then (L) is equivalent to [22, Assumption (A4)] and (L)
is also equivalent to [53, Assumption (A)]. These equivalences allow us to apply certain results
in [22, 53] in the current setting. In this paper, we prefer (L) to [22, Assumption (A4)] because, in
contrast to the latter, (L) is formulated more directly in terms of the coefficients appearing in the
higher-order system (1.1) and avoids control theoretic concepts. O

We introduce the following assumptions on the nonlinearity f.
(N1) f(w,z)>0forall we U and z > 0 and

le)rgo (pz — glglz}(f(w, z)) = 0.

(N2) (N1) holds, p < co and

lim inf (min f(w, Z)> >Dp. (3.4)

2,0 wel z
A sufficient (but not necessary) condition for (N1) to hold is given by

(N1) f(w,z) >0 for all w e U and z > 0 and

fw, 2)

) <». (3.5)

lim sup ( max
2—00 welU z



Certain versions of assumptions (N1) and (N2) were employed in [22] (in a somewhat different
setting), and, with (N1) replaced by (N1’), they also appear in [21, 23, 63]. The interested reader
can find a biological interpretation of (3.4) and (3.5) in [23, Remark 4.2].

The following proposition provides a sufficient condition for the solutions of (1.1) to be bounded.

Proposition 3.3. Assume that (P1), (S), (L) and (N1) hold, and let T' C RTFI be compact. Then
there exists p > 0 such that the solution x of (1.1) satisfies

lz(t)| < p VteNy
for allu:Nog — U, v:Ng — V and all initial conditions (2°,z=' ..., 27T €T.

Proof. Define a set-valued function F' by F(z) := {f(w,z) : w € U} for all z € Ry and note
that if 2 is a solution of (1.1), then & given by Z(t) := (x(t),z(t — 1),...,z(t — k))T satisfies the
difference inclusion

E(t+1) — Az(t) — o(t) € bF(c"&(t)) Vit e Ny, (3.6)

where 0(t) := (v(t), 0,... ,O)T. Invoking (N1), we conclude that there exists zp > 0 and 6 € K
such that
max F'(z) = ma()ch(w,z) <pz—0(z) Vz>z.

we
Therefore, invoking Remark 3.2, it follows from the inclusion version of [53, Corollary 17]! that,
for compact I' C Rl_frl, there exists p > 0 such that the solution Z of (3.6) satisfies

[z <p VieNo
for all initial conditions #(0) € I and all v : Ny — V/, establishing the claim. O

Next we introduce a persistency concept which will play a key role in this paper.

Definition 3.4. Let d = (dy,...,d;)" € RFfL. We say that (1.1) is ultimately semi-globally d-
persistent if, for every compact subset I' C ]Ri“, 0 € I, there exist 7 € Ny and 1 > 0 such that the
solution x of (1.1) satisfies

M=

diz(t+7—j)>n VteN (3.7)
=0

for all u: Ng — U, v: Ng — V and all initial conditions (z°,z~!..., 27" T € T. O

If (1.1) is ultimately semi-globally d-persistent for some d > 0, then (1.1) is ultimately semi-
globally d-persistent for every d > 0, and we simply say that (1.1) is ultimately semi-globally
persistent. In particular, if (1.1) is ultimately semi-globally persistent, then, for every compact
subset I' C R]_frl, 0 ¢ I, there exist 7 € Ny and 1 > 0 such that

|(@(t+7),at+7—1),..a(t+7—k) |1 >n VteN, (3.8)

where || - |1 denotes the 1-norm on R¥*1. Obviously, ultimate semi-global d-persistency for some d >
0 implies ultimate semi-global persistency, but the converse is not true in general. Furthermore,
if (3.7) or (3.8) hold for 7 = 0, then we drop the word ‘ultimately’ and say that (1.1) is semi-
globally d-persistent or semi-globally persistent, repectively.

It is clear that the persistency concept in Definition 3.4 depends on the compact sets U and V. How-
ever, as it is assumed that, in a given context, U and V are fixed, and in order to avoid lengthy and

'"Whilst [53, Corollary 17] applies to difference equations, an inspection of the proof of [53, Corollary 17] shows
that it extends in straightforward way to set-valued nonlinearities.
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awkward terminology, we do not make the dependency on U and V explicit. Finally, it is straight-
forward to show that if z — f(w, z) is non-decreasing for every w € U, then (1.1) is ultimately semi-
globally d-persistent if, for every compact subset I' C lel, 0 €T, there exist 7 € Ng and n > 0
such that the solution z of (1.1) satisfies (3.7) for all initial conditions (z°,z7'...,27%)T € T,
all u: Ng — U and v(t) = 0.

To investigate persistency properties of (1.1), we shall apply ideas from [23] for undelayed difference
equations to the augmented system (2.6). To this end, we introduce the following condition.

(P2) (P1) holds and gedJ = 1.

By Proposition 2.1, if (P2) is satisfied, then there exists 7 € Ny such that ¢' (A +be")™ > 0.

Theorem 3.5. Assume that (S), (L), (N2) and (P2) hold. Then system (1.1) is semi-globally
persistent and ultimately semi-globally c-persistent, where ¢ is given by (2.5). In particular, if T €
No is such that ¢T (A+bc")™ > 0, then, for every compact subset T' C Rﬁ“ not containing 0, there
exists 1 > 0 such that the solution x of (1.1) satisfies

k
Z’ij(t—l—T—j) >n VteN
§=0
for allu:Ng — U, v:Ng — V and all initial conditions (2°,z=1... 27 %)T e T.

Proof. Let I' C Rl_frl be compact and such that 0 ¢ I'. It follows from Proposition 3.3 that
there exists p > 0 such that the solution z of (1.1) satisfies sup,e, [2(t)| < p for all u : Ng — U,
v : Ng — V and all initial conditions (xo,xfl...,x*k)T € I'. Moreover, by Proposition 2.1,
assumption (P2) implies that ¢ (A +bc’)™ > 0 for some 7 € Ny. Therefore, the arguments in the
proof of [23, Theorem 4.4]2 can be applied to establish that the augmented system (2.6) is semi-
globally persistent and ultimately semi-globally c-persistent in the sense of [23], implying that (1.1)
is semi-globally persistent and ultimately semi-globally c-persistent in the above sense. O

4 Stability and convergence

In the following, under suitable assumptions on the nonlinearity f, we are going to explore certain
stability and convergence properties of the forced system (1.1). To this end, we introduce, for
each w € U, the function

Fy Ry = R, z»%z—G(l)f(w,z):z—lﬁ_ia (w, z)

and investigate some of its properties. Of course, for F, to be meaningful, 1 should not be a pole
of G. The latter is guaranteed by hypothesis (S).

Lemma 4.1. Assume that (P1), (S) and (N2) are satisfied. For every w € U, the following
statements hold.

(1) There exists a unique z, € F,;1(0) such that z, > 0 and F,(z) <0 for all z € (0, 2y)-

(2) Ry C Fy([zw,0)), or, equivalently, F; (2) N [2y,00) # O for all z € Ry

2Here it is important to recall that (N1) forms part of the condition (N2). Whilst in [23, Theorem 4.4] it is
imposed that (N1’) holds (an assumption more restrictive than (N1)), in the proof of [23, Theorem 4.4] condition
(3.5) is used to establish uniform boundedness of the state trajectories generated by initial conditions in I" and forcing
functions u : Ng — U and v : Ng — V. As we have seen, in the current setting, this uniform boundedness property
is guaranteed by Proposition 3.3 which only assumes that (N1) holds.
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(3) E 1(0)\{0} C [zw,0) and F;'(z) C (2y,00) for all z > 0.
(4) Let £ €V and zye € Fy'(v¢/(1 — @)). Then @ye = zy e/ satisfies
Twg = ATy e + Bf (W, YTy e) +E. (4.1)
Furthermore, pzy ¢ — /8 = f(w, 2p¢).
(5) Let € €V and 2 € F (v6/(1 — @))\{O}. If
|f(w,2) = f(w,zwe)l <plz—zwel V2>0,2# zug (4.2)

then Fyl(v¢/(1—a)\{0} = {zwe}. In particular, if (4.2) holds with & =0, then zy o = 2.
Proof. Let w € U. As p:=1/G(1), the function F,, can be expressed as

bz — f(w,z)

Fy(z) = ’

Vze R+. (43)

(1) It follows from (4.3) and (N2) that there exist z— > 0 and zy > z_ such that F,(z) < 0 for
all z € (0,z_) and F,,(2) > 0 for all z € (z1,00). The intermediate-value theorem for continuous
functions guarantees the existence of z,, > 0 with the stated properties.

(2) By (4.3) and (N2), F,(2) — oo as z — 00. As Fy,(zy) = 0, it follows from the intermediate-value
theorem for continuous functions that Ry C Fy([zy, 00)).

(3) By statement (1), F,,(z) < 0 for all z € (0, z,). Hence, F;1(0)\{0} C [24,0) and F,!(z) C
(2, 00) for all z > 0.

(4) Let £ € V and zy¢ € F ' (v€/(1 — @)). Then

v

1-—a’

By
Zwg = 7 f (W zwg) =

and thus,
(1 = a)zwe — Bf(w, 2uwe) =&,
from which (4.1) follows. Moreover, multiplying (4.4) by p = (1 — «)/(B7) leads to pz, ¢ — §/8 =
f(w, Zwvﬁ)'
(5) Let £ € V and zy¢,y € Fyl(v¢/(1 — @))\{0}. By statement (4),

flw, zwe) = pzwe — &/ and  f(w,y) =py —&/B,

and so, |f(w, zwe) — f(w,y)| = plzw,e — y|- It follows from (4.2) that y = 2,¢. O

In the following, for given u, € U and v, € V, we shall identify equilibria of the difference equation

k

ajx(t — ) + Bf (ue, Y vja(t — 5)) + ve, (4.5)

Jj=0

z(t+1) =

<.
o

that is, of system (1.1) with u(t) = ue and v(t) = ve, and investigate the stability properties of
these equilibria. As (1.1) is a forced system, this will require results from the so-called input-to-
state stability theory of nonlinear control theory which provides an extension of Lyapunov theory
to forced systems [14, 45, 60].

It follows from statement (4) of Lemma 4.1 that, for ze(te, ve) € quel (’yve/(l —a)) and Te(Ue, Ve) 1=
Ze(Ue, Ve ) /7y, we have that

Te(Ue, Ve) = e (Ue, Vo) + B[ (e, Ve (Ue, Vo) Ve and  pze(te, ve) —ve/B = [ (e, ze(Ue, ve)). (4.6)
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In particular, ze(ue, ve) is an equilibrium of system (4.5). Moreover, by statement (5) of Lemma 4.1,
if

| f(te, 2) — f(Ue, Ze(Ue, Ve))| < plz — ze(Ue,Ve)| V2 >0, 2 # 2e(Ue, Ve), (4.7)
then xe(ue, ve) is the unique positive equilibrium of (4.5).

The following hypothesis (cf. [23, hypothesis (N3)]) will play a key role in the context of the stability
and convergence theory to be developed.

(N3) Hypothesis (N2) and inequality (4.7) hold.

The inequality (4.7) is a so-called sector condition. Appealing to (4.6), we see that the graphical
interpretation of (4.7) is as follows: the graph of z — f(z,u,) is strictly ‘sandwiched’ between the
straight lines z — pz — ve/B and z — —pz + 2z¢(Ue, Ve) — ve/ 3, with the three graphs intersecting
at the point (ze(ue, Ve), Pze(te, Vo) — ve/3). A number of sufficient conditions on the nonlinearity f
for (N3) to hold and classes of examples satisfying (N3) can be found in [21, 23, 22], see, for
example, [22, Lemma 5.4 and Table 5.1].

Statement (1) of the following theorem, provides a stability result which is very much in the spirit of
the input-to-state stability from nonlinear control theory, see the survey articles [14, 60], the book
section [42, Section 5.8] and the recent monograph [45]. Statement (2) is reminiscent of control
theoretic convergent-input convergent-state results [6].

Theorem 4.2. Let ue € U, ve € V and ze(te,ve) € F (yve/(1 — a))\{0} and set z¢(ue,ve) :=
Ze(Ue,Ve) /. If (P1), (S), (L) and (N3) hold and (1.1) is ultimately semi-globally c-persistent, then
the following statements hold.

(1) For every compact set I' C ]Rffrl such that 0 € T', there exist ¥ € KL, ¢ € K and r > 0 such
that, for all initial conditions (z°, 2=, ...,2™™)T €T, allu: Ng — U and all v: Ng — V, the
solution = of (1.1) satisfies

k

(1) — e (ue, ve)| < ¢(Z 277 _$e(ue7ve)‘vt) +¢(||U — Vel|g=o 0,8) + ||5rou||£°°(0,t)) Vit € N,
j=0
(4.8)
where [|v — vellgoo (0 4) := max{||v(s) — vl : s =0,1,...,t} and
Br(w) := max |f(ue,2) — f(w,z)] YweU. (4.9)

0<z<r

(2) For all (2%,271,..., 27T ¢ Rﬁfl, all u: Ng — U, all v: Ng — V such that Z?:o I 4
|v][gee > 0, u(t) = ue and v(t) — ve as t — oo, the solution x of (1.1) has the convergence
property x(t) — Te(Ue,Ve) as t — 00.

We remark that if (N1) is replaced by the stronger condition (N1’) and the additional assumption

i |f(uev z) — f(te, Ze(“m“tﬁ))‘
im sup

2—2e (Ue,Ve ) ‘Z — %e (Uea ,Ue)‘

<p (4.10)

is satisfied, then ¢» and ¢ are of the form 1 (s,t) = Ax's and ¢(s) = vs, where \,v > 0 and k €
(0,1), as follows from arguments similar to those used in the proof of [23, Theorem 5.2]. The
condition (4.10) means that the graph of z — f(ue, z) is not tangential to the lines z — pz — ve/f
and z — —pz + 22¢(Ue, Vo) — Ve /5 at 2 = ze(Ue, Ve)-

If, in Theorem 4.2, the nonlinearity f is globally Lipschitz in its first variable, that is, there
exists A > 0 such that

|f(wy,2) — f(we, 2)] < MJwp —wz|| VzeRy, Ywi,ws € U, (4.11)
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then the constant r becomes redundant and (4.8) simplifies to

k
[2(t) = Teltte, ve) | < (D177 = we(tte, ve)l 1) + (1l = Velloo) + Allve — ullew(oy) ¥t € No.
j=0
The global Lipschitz property (4.11) is, for example, satisfied for the following nonlinearities.

(a) Beverton-Holt nonlinearity:

alz

flw,2) =

, 220, weU:=|ug,ui], wherea; >0,as>0and0<ug<u. (4.12)
ag + wz

(b) Ricker nonlinearity [51]:
flw,z):=ze" P 2>0, weU:=ug,u], wherep>0and0<uy<u.
Proof of Theorem 4.2. Throughout the proof, we shall write ze and xe for ze(ue, ve) and xe(ue, ve),

respectively, and make use of the notation for left translates defined in (1.3).

(1) Tt follows from Proposition 3.3 and Theorem 3.5 that there exist 7 > 0, a compact set I' ¢ RF*1,
7 € Ng and 7 € (0, 2) such that, for all (z°,27!,...,27%)T € T, all u: Ng — U and all v: Ng — V,
the solution = of (1.1) satisfies

k k

Z'ij(t—j) <r, (2(t)—Te,...,x(t—k)—xe) €' and Z’ijT(t—j) >n ViteNp.
j=0 j=0
Defining

f(ue,Z+Ze) - f(ueaze)a 22 —2+n
f(uevn) - f(ueaze)v z < —Ze + 77

and invoking (4.6), we see that x satisfies

fiR—R, zr—>{ (4.13)

k k
2r(t+1)—ze = > aj(w,(t—j)—xe)+Bf (Z’yj(xT(t—j)—xe)>+vT(t)—ve+qT(t) Vit e Ny, (4.14)
j=0

§=0
where
k k
a(t) = f (), Y et = 5)) = £ (e, Yo (e = 5). (4.15)
j=0 Jj=0
We note that
la(t)] < Br(u(t)) = (Brou)(t) Vit e No. (4.16)

Noting that
If(z) <plz| VzeR, z#0 and (plz| — \f(z)]) — 00 as |z| = oo,
we conclude that there exists p € K, such that
[f)I < plzl = p(l2]) VzeR. (4.17)

An application of Theorem AA.l in the context of (4.14), with initial-value set given by I, shows
that there exist ¢ € XL and ¢ € X such that

k
27(t) = el SD( D lor(=5) = welst) + d(llvr = velleony + larllewon) VEE N (4.18)
j=0
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As every solution z of (1.1) satisfies

k
o(t+1) — 26 = Zaj z(t — 7) —xe)+ﬁf<27j(x(t—j)—xe)>—I—U(t)—ve+q(t) vt e Ny,
§=0

where
f(uea z+ Ze) - f(uea Ze)a Z > —Ze
f(ue,O) - f(ue,ze), z < —RZe

it follows from the linear boundedness of f3 that there exist x, A > 0 such that

f:]R—HR, zn—>{

() = we| < &Y Ja(=) = zel + A0 = vellme(0) + ldlle(0,) V€ {0,1....,7}.

Combining this with (4.18), we conclude that there exist ¢p € KL, ¢ € X and r > 0 such that,
for all initial conditions (2%, 2 %,...,27")T €T, all u: Ny — U and all v: Ng — V, the solution
of (1.1) satisfies

k
[2(t) = 7o, ve)| < B( D177 = welst) + 6(Ilv = vellew o) + lallewon) V€ No.
§=0
This, together with (4.16), yields (4.8).

(2) Let (20,271, ...,27%)T € R¥™ 4: Ny — U and v: Ng — V be such that Z?:o 274 ||v)| e > 0,
u(t) — ue and v(t) — ve as t — oo, and let = be the corresponding solution of (1.1). We claim
that there exist 7 € Ny and 1 > 0 such that

Z’WT (t—j)>n VteN,. (4.19)

If Z?:o 79 > 0, then this is an immediate consequence of Theorem 3.5. Let us now consider the
case wherein Z?:o 277 = 0. Then ||v|[s > 0, and so there exists o € Ng such that x(c) > 0. As z,

solves (1.1) with u and v replaced by u, and v,, respectively, and (xa (0),z5(—1),... ,a:o-(—k:))T # 0,
Theorem 3.5 guarantees the existence of ¢ € Ny and 1 > 0 such that

k

Z’yjmg(t—}—&—j) >n VteNy.
=0

Consequently, (4.19) holds with 7 = o + 4.
Combining (4.19) with the fact that = is bounded (as follows from Proposition 3.3), we see that

X := closure{(z,(t), z(t —1),..., 2. (t — k)| :t € Ng} C R’fﬁl
is compact and 0 ¢ X. Invoking statement (1) with I' = X, shows that there exist ¢ € KL, ¢ € K

and r > 0 such that, for every 6 > 7,

!
|26 (t) — we| < ¢<Z [z0(—7) — $e|,t> + &(l[ve — vellewe (0.0 + 18- © uglleo(0)) Vit €No, (4.20)

3Whilst the definition of f is identical to that of f with n = 0, we remark that in the case wherein ve = 0
and f(ue,0) = 0, we have that f(ue,z.) = pze, and thus |f(ue,—ze)| = p| — z¢|]. Consequently, there does not
exist p € Koo such that (4.17) holds with f replaced by f
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where f3, is defined by (4.9). Let £ > 0 be given. As u(t) — ue and v(t) — ve as t — o0, there
exists 0y > 7 such that

¢(||"U90 - UeHEOO(O,t) + |8y 0 U00||eoo(o7t)) < % VvVt e Ny
Finally, choosing 6; € Ny such that
. ‘ €
w(ga:%(—y)—xer,t) <S vizo,

it follows from (4.20) (with 6 = 6p) that |xg,(t) — xe| < € for all t > ;. Hence, |z(t) — ze| < € for
all t > 6y + 61, completing the proof. O

The following corollary is an immediate consequence of Theorems 3.5 and 4.2.

Corollary 4.3. Let u® € U, v° € V and ze(ue,ve) € F, ' (ye/(1 — @) and set e(ue,ve) =
Ze(Ue,Ve) /. If (S), (L), (P2) and (N3) are satisfied, then statements (1) and (2) of Theorem 4.2
hold.

The final result in this section provides a sufficient condition for the convergence property in
statement (2) of Theorem 4.2 to hold for every v, € V.

Corollary 4.4. Assume that (S), (L), (P2) and (N2) are satisfied and let ue € U be fived, but
arbitrary. Then there ezists zy, = ze(ue,0) € F, 1(0) such that z,, > 0 and (0, z,,) N F . (0) = 0.

If
Flter2) - g“‘e@ <p V(26) € (0,00) X [z, ), 2 £ &, (4.21)
then, for all (20,27 %,...,27%)T ¢ Riﬂ, all ve € V, all u: Ng — U, all v: Ng — V such

that Z?:o 277+ ||v]jge > 0, u(t) = ue and v(t) — ve as t — oo, the solution x of (1.1) has the
convergence property x(t) — Te(Ue, Ve) ast — 00, where xe(Ue, Ve) = ze(Ue, Ve) /v and {ze(te,ve)} =
F,(yve/ (1 = a)).

Proof. The existence of z,, € F, '(0) such that z,, > 0 and (0, z,,) N F,.*(0) = 0 is a consequence
of statement (1) of Lemma 4.1.

To prove the convergence property, assume that (4.21) holds and let v, € V. By statement (2) of
Lemma 4.1,

Fu_e1 ('yve/(l — a)) N [zy,,00) # 0.

For ze(ue,ve) € Fi' (yve/(1 — @)) N [2z4,,00), condition (4.21) guarantees that (4.7), and hence,
(N3) is satisfied. The claim now follows from statement (2) of Theorem 4.2. O

In the following, we identify classes of nonlinearities which satisfy the relevant assumptions in
Corollary 4.4. The next two lemmas are straightforward consequences of [6, Lemma 6.8] and 6,
Lemma 6.9], respectively.

Lemma 4.5. Assume that f : UxR4 — Ry is continuous, where U C R™ is compact, and let p > 0.
Let ue € U and assume that z — f(ue, z) is continuously differentiable, f(ue,0) =0, f'(ue,z) >0
for all z > 0, f'(ue,0) > p, z — f'(ue,2) is non-increasing and lim,_,o0 f'(ue, z) < p, where f’
denotes the derivative of f with respect to the second argument z. Then there exists z,, > 0 such
that f(ue, 2y, ) = pzu, and (4.21) holds.

As a specific example, consider the Beverton-Holt nonlinearity given by (4.12): for p > 0 and u, €
U = [ug,u1], the conditions in Lemma 4.5 are satisfied, provided that p < aj/ag. The latter
condition is also sufficient for (N2) to hold for the Beverton-Holt nonlinearity.

The next lemma considers a class of Ricker nonlinearities.
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Lemma 4.6. Let U := [ug, u1], where 0 < ug < uy and let f : U x Ry — Ry be given by
fw,2) =277 VY (w,2) e U x Ry,
where p is a positive parameter. Assume that
e 2<p<l. (4.22)

Then (N2) is satisfied, and, for given ue € U, the number z,, := —(Inp)/(pue) > 0 is the unique
positive solution of the equation f(ue,z) = pz and (4.21) holds.

A further class of nonlinearities satisfying (4.21) is provided in Lemma 5.3, at the end of the next
section.

5 Response to almost periodic additive forcing

In this section, we will investigate the response of system (1.1) to non-negative almost periodic
additive forcing functions v under the assumption that u(t) — ue as t — oo. The theory of almost
periodic functions defined on Z parallels that of functions defined on R (see, for example, [11] as a
general reference on almost periodicity). The basic theory of almost periodic functions defined on Z
was developed in [54], and further details can be found, for example, in [11, Section 1.6] and [28,
Appendix B].

We begin by presenting some relevant background material on almost periodic functions defined
on the discrete-time domain Z. A set Z C Z is called relatively dense (in Z) if there exists s € N
such that

{t,...,.t+s}NZ#D Vtel.

For € > 0, we say that ¢ty € Z is an e-period of w : Z — R™ if ||w(t) — w(t + to)|| < e for all ¢t € Z.
We denote by P(w,e) C Z the set of e-periods of w and we say that w : Z — R™ is almost
periodic if P(w,¢) is relatively dense in Z for every € > 0. We denote the set of almost periodic
functions w : Z — W C R™ by AP(Z,W). The functions in AP(Z,W) are bounded, and, if W
is a linear subspace of R™, then AP(Z,W) is a closed subspace of ¢*°(Z,W). It is convenient to
set AP(Z) := AP(Z,R). Trivially, a periodic function is almost periodic. An example of a function
which is almost periodic, but not periodic, is w : Z — R defined by w(t) := sin(7v/2t) for t € Z.

The theorem below is the main result of this section.
Theorem 5.1. Assume that (S), (P2), (L) and (N2) are satisfied, let ue € U be fized and let v*P €
AP(Z,V). If
f(ue’ Z) — f(ue7§)
z—¢
then the following statements hold.

’ <p Y(z,€) € (0,00) x (0,00), z #E&, (5.1)

(1) There exists x*® € AP(Z,Ry) satisfying the bilateral equation

k k
p(t+1) = aja(t —j)+ ﬁf(ue, S et - j)) Fo(t) VieZ, (5.2)
7=0

j=0

and x® is the unique bounded (on Z) solution of (5.2). Furthermore,
k
: Y
inf (]z;'w (t-7) >0, (5-3)

and, for every € > 0, there exists § > 0 such that P(v®,0) C P(x®P,¢). In particular, if v®P
18 to-periodic for some tg € N, then x®P is tg-periodic.
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(2) Let u and v be functions from Ng to U and V' respectively, and let x : {—k,...,—1}UNg be a
solution of the initial-value problem (1.1). Iflimy_oo u(t) = u® and limy_oo (v(t)—v?P(t)) =0,
then limy_,oo (x(t) — 2°P(t)) = 0 and

vyt —j)) = inf (iijap(t - j)) > 0. (5.4)

k
lim inf (
=0 =0

t—o0

We remark that, by (N2), there exists z, > 0 such that f(ue, z) > pzforall z € (0, ze) and f(ue, z0) =
pZe. On the other hand, (5.1) implies | f(ue,0) — f(ue, 2)| < pz for all z > 0. Consequently, if (N2)
and (5.1) hold, then f(ue,0) > 0. Note the difference between conditions (4.21) and (5.1): the
range of £ for which the inequality is required to hold is [ze,00) in (4.21) as compared to (0, 00)
in (5.1).

Almost periodicity can also be defined for functions with domain Ny by simply replacing Z with Ny
in the above definitions of relative denseness, e-period and almost periodicity. Letting AP (Np, R™)
denote space of almost periodic functions Ny — R™, then, as explained in [26], the restriction
map AP(Z,R™) — AP(Nop,R™), w — w|y, is bijective. In particular, in Theorem 5.1, we could
let v*P be an almost periodic function defined on Ny, provided that, in (5.2), v®P is replaced by its
unique bilateral extension to Z.

The following simple lemma will be used in the proof of Theorem 5.1.

Lemma 5.2. Let w € AP(Z,R™). If limy_o inf{[|w(t) — || : £ € R} =0, then w(t) € RY for
allt € Z.

The proof of the contrapositive statement is straightforward, using only the definition of almost
periodicity. For the sake of brevity, we leave the details to the reader.

Proof of Theorem 5.1. The key idea is to apply [26, Theorem 4.3]. To this end, we need to rewrite
the higher-order system in first-order form and, in a second step, ‘transform’ the nonlinearity in a
suitable way, as the theory in [26] is developed for general (not necessarily non-negative) state-space
systems.

Let u and v be functions from Ny to U and V such that u(t) — ue and v(t) — v*P(t) — 0 as t — oo,
and let x be the solution of the initial-value problem (1.1). By (N2) and (5.1) there exists a unique
positive solution z, to the equation pz = f(ue, z). We claim that there exist o € Ny and n € (0, z)
such that

k
cEt+o)=) yalt+o—j)=n VteN,, (5.5)
=0
where Z(t) := (z(t),z(t—1),... ,:U(t—k))T. If 2(0) = (z(—k),... ,:18(0))T # 0, this is an immediate
consequence of Theorem 3.5. Let us now consider the case wherein Z(0) = (z(—k), ... ,x(O))—r =0.

As has been already pointed out, it follows from (N2) and (5.1) that f(ue,0) > 0. As f is
continuous and u(t) — ue as t — oo, it follows that x(t) #Z 0, whence 2:(0) > 0 for some 6 € Ny. It
now follows as in the proof of statement (2) of Theorem 4.2 that (5.5) holds with suitable o € Ny
and 7 € (0, ze).

Proposition 3.3 guarantees that x is bounded. Consequently, as f is continuous (and hence uni-
formly continuous on compact sets), and ¢(t) defined in (4.15) converges to 0 at t — oo:

tlggo alt) = 0.
We note that = satisfies
k k
z(t+1) = Zaja:(t —j)+ ﬁf(ue, nyjx(t —j)) +w(t) Vte Ny,
=0 =0
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where w(t) := v(t) + ¢(t), or, equivalently,
E(t+1) = AZ(t) + bf (ue, ¢ 3(t)) +w(t) VYt € Ny,

where @(t) := (w(t),0, ... ,O)T for all t € Ng. Setting #*P(t) := (v*(t),0,...,0)" for all t € Z, we
have that

. S\ sapr) —
thm (w(t) — o*P(t)) = 0. (5.6)
Let f be as in (4.13) and note that, by (5.1) and (N2),

f(2) — 1)

|,

<p V(%) eRxRz#¢ and lim (p]z|—\f(z)|)

|z]—o0

00. (5.7)

For an arbitrary function @ : T — R¥*!, where T = Ny or T = Z, consider the system
y(t+1) = Ay(t) + bf (c"y(t)) +w(t) VteT. (5.8)

It follows from (S), (L) and (5.7) that system (5.8) satisfies the hypotheses of [26, Theorem 4.3],
and therefore, [26, Theorem 4.3] guarantees that

(a) if, in (5.8), T = Z and w = 9P, then there exists a unique bounded solution y*P : Z — RF*1
of (5.8), y* € AP(Z,RF*1), and, for all € > 0, there exists 6 > 0 such that P(¢°P,§) C
Py, e);

(b) if, in (5.8), T = Ny and @ = @, then, since w(t)—0*P(t) — 0 as t — oo by (5.6), y(t)—y*P(t) —
0 as t — oo for every solution y of (5.8).

Using the notation for left translates defined in (1.3), we have that 05" and y5~ are almost periodic,
and it is clear that statements (a) and (b) remain valid when 9?P, y®P and @ are replaced by 5",
y5? and 10,, respectively. Therefore, as y* : Ng — R¥T! defined by y*(t) := @(t + o) — Fe, where

- T T
To = (Te,. . Te) = (2¢/7s---r2/7) € (0, oo)kHL,
satisfies (5.8) with T = Ny and @ = w@,, we have that y*(t) — y5(t) — 0 as t — co. Consequently,
I(t+o)— (y5P(t) + Te) - 0 ast— oo. (5.9)

As Z(t) > 0 for all t € Ny and the function ¢ — yo"(t) + Ze is almost periodic, it follows from
Lemma 5.2 that y5”(¢) + Ze > 0 for all ¢ € Z. Defining 7*? € AP(Z, lerl) by

TP(t) =yt —0) + Te = y™P(t) + Te Vi€ Z,

we have that
P(t+1) = Az (t) + bf(ue, cT:Eap(t)) +0*P(t) VtelZ.

Furthermore, by (a)
P(0%P,0) C P(y*,e) = P(z™,¢).

Invoking (5.9) yields
I(t) — () =z(t) — (YP(t — o) + &) > 0 ast — oo. (5.10)

Denoting the first component of Z#P(t) by x?P(t), it is clear that z*P is almost periodic, x?P sat-
isfies (5.2), and, for every € > 0, there exists § > 0 such that P(v®",d§) C P(z*,e). Also, by
(5.10),

x(t) — 2 (t) - 0 ast— oo. (5.11)
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Combining (5.11) with (5.5), the almost periodicity of the function ¢ s ¢ %P (t) = Zj}:o 7P (t —
4) and Lemma 5.2 shows that (5.3) holds. Finally, by almost periodicity of ¢'#*, we have
that inf;ez ¢’ #%P(t) = liminf; oo ¢! %P(t), and thus, by (5.10) and (5.3),

liminf ¢' Z(t) = inf ¢"Z%P(t) > 0
t—o0 teZ

establishing (5.4) and completing the proof. O

We close this section by specifying a class of nonlinearities which satisfy the condition (5.1) in
Theorem 5.1. The lemma below follows from a straightforward application of the mean-value
theorem for differentiation.

Lemma 5.3. Let U C R"™ be compact, ue € U and p > 0. Assume that z — f(ue, 2) is continuously
differentiable, f(ue,0) >0 and
sup | f'(ue, 2)| < p, (5.12)
220
where f' denotes the derivative of f with respect to the second arqument z. Then there exists a
unique ze > 0 such that f(ue, ze) = pze and (5.1) holds.

Note that if (5.12) holds, but f(ue,0) = 0, then f(ue,z) < pz for all z > 0, implying that there
does not exist z, > 0 such that f(ue,ze) = pze.

Finally, we note that if f satisfies the assumptions of Lemma 5.3, then condition (4.21) in Corol-
lary 4.4 holds.

6 Examples

To illustrate the results in Sections 3-5, we discuss four examples.

Ezample 6.1 (The forced Allen-Clark model). Here we consider the nonlinear, scalar, higher-order
(or delayed) difference equation

x(t+1) =ax(t)+ Bf(u(t),z(t — k) +v(t) teNg, (6.1)

where @ > 0, 5 > 0 and k € Ny are constants, and f = f(w, z) is a nonlinearity. Obviously, (6.1)
is itself a forced (or controlled) version of the Allen-Clark model (1.2), both of which are special
cases of the general higher-order difference equation (1.1) with

Q) = &, alz...:ak:O, ’}/k:L ’)/0:...:’)/]{,1:0.

Equation (6.1) will be referred to as the forced Allen-Clark model. We will see below that the
theoretical results of Sections 3-5 apply if a > 0, but they do not apply if & = 0. As has been
already indicated, the term v facilitates modelling immigration into a population, and the term u
may capture environmental variation or harvesting, either anthropogenic or otherwise. For example,
the model [22, equation (6.7)] is of the form (6.1) and expresses the juvenile-only harvesting situation
of a population presented in [68], and further studied in [41], with harvesting rates are assumed
constant in [41, 68].

In accordance with Section 2, the rational function G, the number p and the polynomials a and c
associated with (6.1) are given by

B 1 l-a &

— pi=——-=——¢€(0,00), al()=C"((—a), c(¢)=1. 6.2
We investigate under which conditions the key hypotheses of this paper are satisfied. It is clear
that (L) holds because the comprimeness condition (ii) in (L) is trivially satisfied. The linear

G(¢) =
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stability condition (S) holds if, and only if, & < 1. Furthermore, if & > 0, then J = {1,k + 1},
implying that (P2) is satisfied. We note that if & = 0, then J = {k + 1}, and so, (P2) fails to hold
whenever k # 0. Throughout the rest of this example, it will be assumed that a € (0,1).

Hypotheses (N1)—(N3), as well as the inequality (4.21), depend on the nonlinearity f, and its
relation to the positive parameter p, and require f to enjoy certain qualitative properties. As a
specific example, we consider (6.1) with

fw,2z) =2e7"% 2>0, weU, whereU C (0,00) is compact,

that is,
z(t+ 1) = ax(t) + Ba(t — k)e "O*E=F) L y1) teNy. (6.3)

We remark that (6.3) is a forced version of the model [56, equation (6)] for biomass of mature fish.
Table 6.1 relates the notation used presently to that in [56, equation (6)]. The cases of « = 0
or a > 0 correspond to semelparous and iteroparous species, respectively, although recall that we
consider a > 0 here only.

Symbol | Symbol in [56] | Interpretation

x(t) B(t) biomass of mature fish in the population at time ¢
o o7 Z = M, + F > 0 is the overall instantaneous mortality rate, and is the
sum of natural mortality M, and fishing mortality F'
15} « maximum per capita reproduction rate (at low population abundance)
K B density-dependent mortality near equilibrium abundance parameter

Table 6.1: Comparison of notation used in model (6.3).

In the idealised situation in which reproduction in (6.1) is density-independent, meaning f(w, z) =
f(z) = z, the quantity 5/(1 —a) = 1/p = G(1) is readily shown to equal the inherent net
reproductive number [13, pp. 7-9, Definition 1] of the linear model (6.3). Adapting the conclusion
on [13, p. 9], B/(1 — a) equals the expected amount of biomass produced, per unit of biomass,
over the course of its lifetime. Therefore, the existence of a non-trivial equilibrium of the density-
dependent model (6.3) requires that

p

11—«

>1 < p<l.

In the following numerical simulations we fix the model data

k=2 «a=01 f=6 k=15 z°=1, 2z '=15 2z2=0,
(6.4)

U=1[0911, ue=1 V=][0,10].

Then p = 0.15 < 1, and as already discussed, (P2), (S) and (L) are satisfied. A graph of the
nonlinearity f(ue, -) = f(1, -) is shown in Figure 6.1a, along with the straight lines z — pz and z —
—pz + 22.(1,0) determining the sector condition (4.7). Furthermore, as e™2 < p = 0.15 < 1,
Lemma 4.6 yields that (N2) and (4.21) hold with model data as in (6.4), whence the hypotheses
of Theorem 3.5, Theorem 4.2 and Corollary 4.4, our main persistence, stability and convergence
results, are satisfied. In the context of (6.3), the key condition ze = ze(ue,ve) € Fy, 1 (’yve /(1 —
@))\{0} from Section 4 becomes

/8 —KUeZe __ Ve
Zo = T zee =T o (6.5)
As v =1, we have that ze = Te(Ue, Ve) = Ze(Ue, Ve) = Ze.
To illustrate statement (1) of Theorem 4.2, let ve = 0 and consider
u(t) =1+ 0sin(t/4) and o(t) =6r(t) te€Np, (6.6)
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where r(t) is equal to a uniform (pseudo)random number in [0, 1] for each ¢t € Ny, and 6 € [0,0.1]
is an amplitude parameter. Figures 6.1b, 6.1c and 6.1d shows plots of z(t;2°, 271,272 1,v),
r(t; 2% 271 272 u,0) and z(t; 20, 271, 272, u,v) * against ¢, respectively, in each case for § = 0.05
and § = 0.1. For comparison, in each plot a graph of the unforced solution z(¢; 2%, =%, 272 1,0) is
displayed and is seen to converge to x.(1,0) as ¢ increases. As predicted by the estimate (4.8) in
Theorem 4.2, the deviation of z(¢) from z.(1,0) decreases as 6 decreases. Observe that despite v
taking only nonnegative values, the values of z(t;z2% 2~!,272,1,v) are occasionally smaller than
those of the unforced solution, a consequence of the non-monotonicity of the Ricker nonlinearity,

capturing so-called overcompensatory recruitment.

To illustrate Corollary 4.4, we consider the convergent additive forcing functions

7 (t) = Ue,l(l + (—O.9)t), vz(t) = Ve,2 + te_t, ’Ug(t) = Ue,3 t € Ng, (6.7)

with ve; = 0.5i for i = 1,2,3. Figure 6.1e shows graphs of z(t; 2%, 271,272, 1, v;) against ¢, for i €

{1,2,3}. In each case, convergence x(t) — z¢(1,ve;) as t — oo is observed, in accordance with
Corollary 4.4. The limits x¢(1, ve ;) agree with the solutions of (6.5), obtained numerically by using
the MATLAB command fsolve, here giving

Teq = 1.5586, wen = 1.8674, o = 2.2049.

System (6.3) is known to admit oscillatory solutions, even in the unforced case, if condition (4.22)
fails. This occurs, for instance, when 3 in (6.4) is replaced by 8 = 12, in which case e=2 > p = 0.075.
However, system (6.3) still satisfies the hypotheses of Theorem 3.5 and exhibits the ultimate semi-
global persistence property of Definition 3.4. As a numerical illustration, Figure 6.1f plots in
grayscale 40 solutions of (6.3) with (pseudo)random initial conditions such that

22 €[0.1,5] and z '=z2"2=0, (6.8)

and v and v as in (6.6) with § = 0.1. The inset shows a plot of z(t) against ¢ for 0 < ¢t < 5 with
a logarithmic scale on the vertical axis. We comment that the purpose of Figure 6.1f is not to
follow individual solutions, but rather to visualise a system-level property. The simulations shown
in Figure 6.1f are in accordance with Theorem 3.5: indeed, 7 = 4 is the minimal 7 € Ny such
that ¢ (A +bc')” > 0, and thus, Theorem 3.5 guarantees the existence of a number 7 > 0 such
that, for all initial conditions satisfying (6.8) and all forcing functions u and v with values in U
and V, respectively, the corresponding solution x satisfies z(t 4+ 2) > n for all ¢ € N. O

Ezample 6.2 (A plant population model with seed bank). Many plants grow from seeds, and it is
a known plant survival strategy that not all seeds germinate in the year following their dispersal.
Seeds which remain dormant underground comprise what is often termed the seed bank. Thus,
mathematical models for seed banks inherently contain delays (and hence, in discrete-time, higher-
order terms). A nice review of mathematical models of plant species with seed banks appears
in [46], and a comprehensive construction of a model for single local plant populations with linear
growth appears in [17, Section 1.2, p.8]. Here, we show how certain plant models inspired by those
in [17] and [46] are of the form (1.1). We assume that seeds may survive k + 1 years in the seed
bank, and that older seeds are not viable. In particular, the present framework allows for any fixed
dormancy period. Similar to [46, Section 2], we let s(¢) and a(t) denote the number of germinating
seeds and adult plants of generation ¢, respectively, which are assumed to satisfy the following
difference equations

k

s(t+1) =Y malt—j), a(t+1)=f(s(t+1)), teNp. (6.9)
=0

“Here and in Example 6.4, this notation is used to emphasize the dependence of solutions on the initial conditions
and forcing functions, and to distinguish notationally between several solutions.
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Figure 6.1: Simulations of the forced Allen-Clark model (6.3) with model data (6.4) and (6.6).
In panels (b), (c) and (d) the blue curves show the solution of the unforced model (u(t) = 1
and v(t) = 0). Panel (e) displays graphs of the solutions corresponding to the forcing functions
given in (6.7). Panel (f) contains simulations with § = 12 and forcing term (6.6) with 6 = 0.1.

Here 7; > 0 are constants which capture the combination of the survival of seeds, the fraction
that delay their germination, and the number of seeds produced per plant. Consequently, the first
equation determines the number of new seedlings, and the second equation models the density-
dependent growth of germinating seeds into adult plants over the course of a season, captured by
the nonlinearity f: Ry — Ry. Eliminating s(t + 1) from (6.9), we obtain

a(t+1) (E:% t—j ) t € Ny,

which is of the form (1.1) with 8 =1 and a; = 0 for every j € {0,1,...k}. In particular, the above
model fits the scope of the current work. Hypothesis (P1) holds, provided that ~; > 0, which we
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shall assume, and hypothesis (S) is always satisfied. In this example

a() == ¢ and c(Q) =+,

which are coprime as v, > 0, implying that hypothesis (L) is satisfied. Furthermore, as J =
{i € {1,...,k+1} : 751 > 0}, a sufficient condition for (P2) to hold is the existence of an
integer ¢ € {1,...,k + 1} such that v;_1 > 0 and ¢ and k + 1 are coprime (for example, if 79 > 0).
As usual, properties (N1)—(N3) depend on the nonlinearity f and its interplay with the positive
parameter p =1/G(1) =1/ (Z?:o ;). In closing, we comment that the inclusion of forcing terms
in model (6.9) seems very natural, and the main results of Sections 3—5 would apply in this setting.

O

Ezample 6.3 (Delay independent stability). Here we demonstrate that there exist scenarios in
which the Allen-Clark model (6.1) has delay-independent global stability properties. To this end,
consider (6.1) and assume that o € (0,1), 8 >0 and f: U x Ry — R4 is continuous. Moreover,
fix ue € U and let vo = 0. As shown in Example 6.1, the constant p is given by p = (1 — «) /8 (not
depending on k) and hypotheses (S), (P2) and (L) are satisfied for every k € Ny. Consequently, an
application of Corollary 4.3 shows that if f satisfies (N3) (a condition which is independent of k
as p does not depend on k), then, for every k& € Ny, the unique positive number ze := z¢(ue, 0)
satisfying pre = f(ue,xe) is an equilibrium of (6.1) with v(¢) = 0, and furthermore, given an
arbitrary compact set I' C R’fl\{O}, there exists ¥ € KL and ¢ € K such that, for all initial
conditions (20,...,27")T € T, all uw : Ny — U and all V : Ny — V the solution = of (6.1)
satisfies (4.8) (with ve = 0). In particular, if u(t) = ue and v(t) = 0, then

k

2 (t) — o] < ¢(Z 27 — xe\,t> Vvt € N,

j=0

showing that z, is a globally asymptotically stable equilibrium of the unforced Allen-Clark model
(here considered on the domain ]R’i“\{O}). We conclude that, in the context of (6.1), condi-
tion (N3) guarantees delay-independent global asymptotic stability.

These findings contrast with those of [43] which show that conditions under which the positive
equilibrium z, of (1.2) is globally asymptotically stablefor in the undelayed k = 0 case, are not
sufficient for global asymptotic stabilitywhen k > 3. In other words, global asymptotic stability in
these settings depends on the delay. O

Ezample 6.4 (Blood cell model). The Allen-Clark model (1.2) also arises as a discretisation of the
delay-differential equation

z(t) = —px(t) + f(x(t —9)) te€ Ry where d,u >0, (6.10)

see [39]. We remark that (6.10) is sometimes referred to as Nicholson or Mackey-Glass equation [27,
44]. In the special case wherein f(z) = e "% for all z > 0, (6.10) is the so-called (reduced)
Lasota-Wazewska haematology model [47, Equation (5.24)]. Here we consider the following forced
discrete-time version of this model, namely

z(t+1) = azx(t) + Bf(u(t),z(t — k) +v(t) teNg, (6.11)

with k € Ng, @ € (0,1), 8,k > 0, w and v taking values in non-empty compact sets U C (0, c0)
and V C Ry, respectively, and f(w, z) = e "% for all (w, z) € U x R;. The forcing terms u and v
could, for example, model the intake of drugs affecting blood cell production and transfusions,
respectively. In the unforced case (u(t) = 1 and v(t) = 0), (6.11) has been studied, for example,
in [32], whilst in [8], equation (6.11) is analysed in the special case wherein k& = 0, u(t) = 1
and v(t) = const > 0.

Since (6.11) is a forced Allen-Clark model, conditions (S), (L) and (P2) hold, and p associated
with (6.11) is given by (6.2), see Example 6.1. It is clear that (N2) is satisfied. Furthermore, for
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any u, € U, we have that

f(ue,0) =1>0 and sup|f (ue,2)| = tek,
z>0

and thus, Lemma 5.3 guarantees that (5.1) is satisfied whenever

11—«
0<ue< —- (6.12)
As a consequence, if the inequality (6.12) holds, then Theorem 5.1 is applicable.
For numerical simulations, we fix the model data
k=1, a=03 A=06 k=15 U=[0.054, w=1 V=04, (6.13)

in which case inequality (6.12) is satisfied. Therefore, Theorem 5.1 guarantees that the response of
the system is asymptotically (almost) periodic if u(t) — ue and v : Ng — V' is (almost) periodic.
Let v be given by

v(t) = 0.5+ 0.2(cos(0.4mt) + 0.5sin(0.37t)) Vit € N, (6.14)

a periodic function with period 20. The graphs in Figure 6.2 show the solutions of (6.11) corres-
ponding to v as in (6.14) and u, 2° and 7! as specified below:

I: u=u, 2°=1, z27t=1 (6.15a)
I: w=u,, 2°=075 z1=0 (6.15b)
I: w=2u —u,, 2°=0, z !'=1.5, (6.15c¢)

where wu,(t) := ue(1 + (—0.95)") for all ¢ € Ny. We observe that, in accordance with Theorem 5.1,
each solution tends asymptotically to the same periodic function.

Figure 6.2: Simulations of the forced Allen-Clark model (6.11) with model data (6.13) and forcing
functions and initial conditions given by (6.14) and (6.15).

7 Discussion

The dynamic properties of boundedness, persistency, stability and convergence have been con-
sidered for the class of nonlinear, positive, scalar, higher-order difference equations (1.1). Sufficient
conditions for these properties have been provided across our main results of Proposition 3.3, The-
orems 3.5, 4.2 and 5.1, and Corollary 4.4. Persistency plays a pivotal role throughout and the key
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hypothesis (P2) is an easily checkable condition which, together with (S), (L) and (N2), guarantees
that (1.1) is persistent. Our work traces its inspiration to [63], complements related work of the
authors [21]-[24], and enhances aspects of these papers.

The application of our results to a range of models arising in theoretical biology and ecology —
the Allen-Clark model in population dynamics, plant models with seed banks, and haematology
models — has been presented across Examples 6.1, 6.2 and 6.4, respectively. For the Allen-Clark
model (1.2), our results, when applicable, ensure delay-independent stability as described in Ex-
ample 6.3. A distinguishing feature, as compared to the literature, is the inclusion of forcing terms.
The stability and convergence results in Sections 4 and 5, based on control-theoretic input-to-state
stability ideas and which go beyond standard Lyapunov theory and apply to the forced system (1.1),
are not restricted to the analysis of the stability properties of the equilibrium of the unforced version
of (1.1).

In terms of open problems, we have made essential use of the sector condition (N3) to ensure sta-
bility. Careful analyses such as [25] have identified classes of unforced higher-order scalar difference
equations, which are special cases of (1.1) and where (N3) is violated, yet global asymptotic stabil-
ity of a non-zero equilibrium is still ensured. The work [25] exploits that the dynamics of a certain
higher-order difference equation may be dominated by the dynamics of a first-order difference equa-
tion with a positive global attractor. The extent to which these methods, or the use of envelopments
by linear fractional functions [12], may be applicable to forced problems are interesting topics for
future research.
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A Appendix

Consider the following higher-order Lur’e difference equation, which is of the same form as (1.1),
but without any non-negativity constraints and the nonlinearity is independent of any external
forcing;:

Ea

E

z(t+1) = Zajx(t —J)+ ﬁh( vz (t —j)) +ou(t), z(—j) =27 €R,
= s (A1)

j:(),...,k‘, tENo,

where k € Ny, aj,7j,6 € R for j =0,...,k, [ #0, E?:o |vj| > 0 and |ag| + |y > 0. The
nonlinearity A : R — R is assumed to be continuous and the function v takes values in R. As in

Section 2, set a(¢) := ¢F+1 — Z?:o ajCF I, e(¢) == S8, 7;¢F 7 and

B Zkzo 756 pe(<)
G(¢) = . -
(C) Ck+1 _ Z?:O Oéjck_j a(C) )

where ¢ € C.
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Let A € REFDXEHD and b ¢ € RF! be given by (2.5) and set @(t) := (v(t),0,...,0)". Then
equation (A.1) can be expressed in the form

Z(t+1) = Az(t) + bh(c E(t)) + 0(t), #(0)=(z°..., 27", t e N,. (A.2)

Furthermore, G(¢) = ¢' (¢I — A)~'b.

The following theorem is a special case of [53, Theorem 13]

Theorem A.1. Assume that (S) and (L) hold. If there there exists p € Koo such that
h(2)] < (1/1Gllz=)lz] = p(Iz]) Vz €R,

then there exist ) € KL and ¢ € K such that, for all (20,271, ..., 27%)T € R*1 and allv : Ng — R,
the solution x of (A.1) satisfies

k
2O < (D 1e7Lt) + o(vllep) ¥t E No.

=0

Proof. Consider the first-order (or state-space) formulation (A.2) of the higher-order system (A.1)
and note that, by the special structure of A and b, the linear system

z(t+1) = Az(t) + bu(t), y(t) =c"z(t)

is controllable. Trivially, by the linear stability assumption (S), this system is also stabilizable and
detectable. Consequently, invoking (L) and Lemma 3.1, we conclude that [53, Assumption A] is
satisfied. Exploiting the linear stability assumption (S) once more, it follows that [53, Theorem 13]
applies to (A.2) (with, in the notation of [53], linear stabilizing feedback K = 0), establishing the
claim. O
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