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A B S T R A C T

Persistence, excitability and stability properties are considered for a class of nonlinear, forced, positive
discrete-time systems with delays. As will be illustrated, these equations arise in a number of biological and
ecological contexts. Novel sufficient conditions for persistence, excitability and stability are presented. Further,
similarities and differences between the delayed equations considered presently and their corresponding
undelayed versions are explored, and some striking differences are noted. It is shown that recent results for
a corresponding class of positive, nonlinear delay-differential (continuous-time) systems do not carry over to
the discrete-time setting. Detailed discussion of three examples from population dynamics is provided.
1. Introduction

We consider boundedness, persistence, excitability and stability
properties of the following system of forced, positive, nonlinear differ-
ence equations with delay

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝑏𝑓 (𝑢(𝑡), 𝑐⊤𝑥(𝑡) + 𝑑⊤𝑥(𝑡 − 1)) + 𝑣(𝑡),

𝑥(0) = 𝑥0, 𝑥(−1) = 𝑥−1, 𝑡 ∈ N0 . (1.1)

Here the matrix 𝐴 and the vectors 𝑏, 𝑐, 𝑑 are nonnegative, 𝑓 is a
nonlinearity mapping into [0,∞) and 𝑥0, 𝑥−1 are nonnegative initial
vectors. The functions 𝑢 and 𝑣 denote external signals which, depending
on the context, could play the role of disturbance or control terms.
We call 𝑢 and 𝑣 forcing functions or inputs and it is assumed that 𝑣
is nonnegative.

Positive dynamical systems are dynamical systems with the defining
property that they leave some positive cone invariant. This defining
property captures the natural requirement that the modelled quantities
(e.g., concentrations, densities) must take nonnegative values to be
physically meaningful. The study of positive systems described by
linear dynamic equations is underpinned by the seminal work of Perron
and Frobenius in the early 1900s on irreducible and primitive matrices.
A range of extensions of these results appear across the literature
(see, for example, [1]). Positive dynamical systems are closely related
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to the concept of monotone dynamical systems [2,3]. Positive and
monotone dynamical systems are mathematically interesting owing
to their various invariance properties and amenability to comparison
arguments, and are known to often admit linear or separable Lyapunov
functions (see [4], or, for monotone systems, [5]). Moreover, they
are the appropriate modelling framework for numerous applications.
The reader can find more information about these systems and their
applications in [1,6–9].

Control theory deals with the study of dynamical systems which in-
teract with their wider environment via the inclusion of input (control,
forcing) and output (measurement) variables, and their interconnec-
tion via feedback. A branch of control theory augments positive and
monotone dynamical systems with input and output variables, and
gives rise to so-called positive and monotone control systems, see
the texts [8,10] or [11,12], respectively. The model (1.1) (with the
nonnegativity assumptions stated above) is an example of a positive
control system.

The inclusion of forcing terms is essential when seeking to explore
the effects of external signals on resulting dynamics, such as the re-
sponse of a population to, for instance, anthropogenic, environmental
or demographic variation. Two perspectives are afforded: first, the ro-
bustness of desirable properties of the model with respect to unwanted
vailable online 14 June 2024
167-2789/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.physd.2024.134260
Received 24 November 2023; Received in revised form 24 April 2024; Accepted 11
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

June 2024

https://www.elsevier.com/locate/physd
https://www.elsevier.com/locate/physd
mailto:dfranco@ind.uned.es
mailto:c.guiver@napier.ac.uk
mailto:h.logemann@bath.ac.uk
mailto:jperan@ind.uned.es
https://doi.org/10.1016/j.physd.2024.134260
https://doi.org/10.1016/j.physd.2024.134260
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2024.134260&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Physica D: Nonlinear Phenomena 467 (2024) 134260D. Franco et al.

c
d
c

l
d
b
a
r
𝑏
d
s
5
s
t
w
u
w
c
a

N
F
c
v
i
p
l
𝜉
F

[

forcing terms, and second, the role of forcing terms (here likely to be
interpreted as management actions) in catalysing or ensuring desirable
dynamic behaviour, such as population persistence in the context of
conservation.

Whilst delays in discrete- and continuous-time dynamical systems
play largely the same purpose — to capture some contribution from
previous states in the forward evolution of the state — there are sig-
nificant differences. Namely, delay-differential equations are instances
of functional differential equations [13], and to fully describe the time
evolution in terms of a state variable requires an infinite-dimensional
state space. The same is not true for difference equations: it is always
possible to rewrite the original delayed difference equation as an unde-
layed difference equation with an augmented finite-dimensional state.
Consequently, there is the potential to apply persistence and stability
results for first-order difference equations [14,15] to delayed systems of
the form (1.1). However, rewriting (1.1) in first-order form imposes a
certain special structure on the first-order system data which frequently
prevents a straightforward application of the results in [14,15]. Here,
we develop a bespoke approach to the persistency and stability analysis
of (1.1) which takes the said special structure of the first-order version
of (1.1) into account.

Delays are an important feature of models arising in mathematical
biology and ecology. For instance, many plants grow from seeds, and
it is a known plant survival strategy that not all seeds germinate
in the year following their dispersal. Seeds which remain dormant
underground, so-called seed banks, introduce delays into models. A
review of mathematical models including seed banks appears in [16].
Or, in another setting, much attention has been devoted to the role
of delay-until-reproductive-maturation in age-structured models, dating
back to at least [17], and further studied and generalised across, for
example, [18–20].

System (1.1) contains both linear and nonlinear components, and,
in control theoretic terminology, is an instance of a forced, positive,
delayed discrete-time Lur’e system, see, for example [21]. Lur’e systems
of difference equations have gained some recent traction in structured
population modelling owing to their ability to represent both density
independent and density-dependent vital or transition rates. Indeed,
they have been proposed and considered as models in ecology in, for
example, [14,15,22–26]. This line of enquiry dates back to the two
papers [27,28] where control theoretic tools were used to study so-
called ‘‘trichotomies of stability’’. Under mild assumptions, unforced
Lur’e systems admit two equilibria, zero and a unique nonzero equi-
librium, with the usual interpretation of population absence/extinction
and steady state, respectively. For models arising in mathematical
biology, boundedness and persistence are fundamental properties. The
latter property addresses, roughly speaking, the extent to which the
zero state is repelling. Persistence is a well-established concept with a
number of variations appearing across, but not limited to, [14,15,29–
31]. Moreover, persistence relates to the control theoretic concept of
excitability, that is, the use of external inputs to drive the system into
a persistency regime.

Here, we provide a range of boundedness, persistence, excitability
and stability properties for the Lur’e system (1.1) which are important
and interesting, both mathematically and from an applications perspec-
tive, as outlined above. Investigating these properties, and developing
sufficient conditions under which they occur, comprise the main objec-
tives of the present work. Whilst the terminology is broadly intuitive,
we introduce each concept precisely to make the work self-contained.
We note here that the persistence properties we consider are ultimate
in that they only apply after some fixed number of time-steps, and
uniform with respect to certain compact sets of initial conditions. We
contend that this concept of persistence is suitable for all practical
purposes. Our main boundedness and persistence results are Propo-
sition 3.1 and Theorem 3.12, respectively. Theorem 4.1 is the main
stability result, from which a number of corollaries are derived which
2

apply to convergent forcing terms. Our results are rigorous and, by
way of our analysis, we establish sufficient conditions for boundedness,
persistence, excitability or stability by identifying conditions on: (i)
the ‘‘linear terms’’ appearing in (1.1) (that is, the data 𝐴, 𝑏, 𝑐, 𝑑), (ii)
the classes of nonlinearity 𝑓 considered, and (importantly), (iii) the
interplay between (i) and (ii). This approach is typical when studying
Lur’e systems. Mathematically, our argumentation is underpinned by a
blend of positive system (comparison) and control theoretic techniques.

Our results build on, refine and further develop our earlier works
[14,15] which consider boundedness, persistence and stability proper-
ties of variations of model (1.1) above, but without delay. The main
novelty of our work, particularly compared to [14,15], is twofold: the
inclusion of the delay term in (1.1), and the development of sufficient
conditions for a certain excitability property (introduced in this paper).
To give more details, we demonstrate that there is some overlap
between the boundedness and stability properties of (1.1) and the
undelayed case, yet there are considerable differences when it comes
to persistence. Roughly speaking, the inclusion of delays can make
persistence ‘‘harder’’ than in the undelayed case: a potential intuitive
explanation being that the linear and nonlinear terms in (1.1), both
of which are nonnegative and so contribute positively towards persis-
tence, now need not be acting synchronously. Interestingly, we show
that the discrete-time analogue of assumptions which are sufficient for
persistence in a system of delayed Lur’e differential equations, the focus
of [32], are not sufficient for comparable persistence notions in the
ontext of the discrete-time system (1.1). In other words, there are some
iscrepancies between persistence in the discrete- and continuous-time
ases.

The present work is organised as follows. Section 2 contains pre-
iminary material. Our main results appear across Sections 3 and 4,
edicated to boundedness, excitability, persistence properties, and sta-
ility results, respectively. Three examples from population dynamics
re presented in Section 5. One typical application is when (1.1)
epresents a stage-structured population, where the nonlinear term
𝑓 (𝑐⊤𝑥(𝑡) + 𝑑⊤𝑥(𝑡 − 1)) captures recruitment into the population, the
elay term 𝑑⊤𝑥(𝑡 − 1) modelling delays in recruitment. This is the
ituation considered in Example 5.1. Moreover, in Examples 5.2 and
.3, we consider populations spatially structured in several patches and
tudy how modifying the dispersal rate between these patches affects
he persistence and the asymptotic size of the population. Interestingly,
e find that there are only two possible response scenarios of the pop-
lation size to an increase of dispersal for these models. This contrasts
ith the four scenarios observed recently in [33–35] for other simple

ontinuous- and discrete-time dispersal models. Finally, a summary
ppears in Section 6.

otation. We set R+ ∶= [0,∞), N ∶= {1, 2,…} and N0 ∶= N ∪ {0}.
or 𝑛 ∈ N, let R𝑛 denote the space of column vectors with 𝑛 real
omponents. We define R𝑛+ to be the subset of R𝑛 consisting of all
ectors in R𝑛 with non-negative components. For 𝜉 ∈ R𝑛, we write 𝜉 ≥ 0
f 𝜉 ∈ R𝑛+, 𝜉 > 0 if 𝜉 ≥ 0 and 𝜉 ≠ 0, and 𝜉 ≫ 0 if all components of 𝜉 are
ositive. If 𝜉 ≫ 0, then we also say that 𝜉 is strictly positive. Furthermore,
et 𝜉, 𝜁 ∈ R𝑛. If 𝜉 − 𝜁 ≥ 0, 𝜉 − 𝜁 > 0 or 𝜉 − 𝜁 ≫ 0, then we write 𝜉 ≥ 𝜁 ,
> 𝜁 or 𝜉 ≫ 𝜁 , respectively. Similar conventions apply to real matrices.
or vectors 𝜉 ∈ R𝑛 and 𝜁 ∈ R𝑚, we set

[𝜉, 𝜁]] ∶=
(

𝜉
𝜁

)

∈ R𝑛+𝑚.

For a square matrix 𝑀 (with real or complex entries), the spectrum of
𝑀 is denoted by spec(𝑀). A square matrix is called asymptotically stable
if its spectral radius is less than one. Finally, for a subset 𝑆 ⊂ R𝑛, let
𝜕𝑆 denote the boundary of 𝑆.

2. Preliminaries

Consider the system of positive, nonlinear, forced, delayed differ-
ence equations (1.1). Here 𝐴 ∈ R𝑛×𝑛+ , 𝑏, 𝑐, 𝑑 ∈ R𝑛+ and 𝑥0, 𝑥−1 ∈ R𝑛+. It
will be assumed throughout that
𝑏 ≠ 0, 𝑑 ≠ 0, 𝐴 is asymptotically stable.
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Fig. 2.1. Application of the feedback law 𝑤 = 𝑓 (𝑢, 𝑦) to system (2.1).

he terms 𝑢(𝑡) and 𝑣(𝑡) in (1.1) denote exogenous forcing functions
which could be control inputs or disturbances). Throughout, the func-
ions 𝑢 and 𝑣 take values in non-empty compact sets 𝑈 ⊂ R𝑚 and 𝑉 ⊂
R𝑛+, respectively, where it is assumed that 0 ∈ 𝑉 , and the nonlinearity
𝑓 ∶ 𝑈 × R+ → R+ is continuous. The initial-value problem (1.1) has a
nique solution 𝑥 ∶ {−1} ∪N0 → R𝑛. As the system and initial data are

nonnegative, it is clear that the solution of (1.1) has values in R𝑛+.
System (1.1) can be thought of as the feedback loop obtained by

subjecting the linear controlled and observed system

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝑏𝑤(𝑡) + 𝑣(𝑡), 𝑦(𝑡) = 𝑐⊤𝑥(𝑡) + 𝑑⊤𝑥(𝑡 − 1) (2.1)

to the nonlinear feedback 𝑤(𝑡) = 𝑓 (𝑢(𝑡), 𝑦(𝑡)), see the block diagram
in Fig. 2.1. In control theory, such feedback systems are called Lur’e
systems. In (2.1), 𝑤 is a (scalar-valued) input which is available for
feedback, whereas 𝑦 is the measurement, observation or output.

Associated with the quadruple (𝐴, 𝑏, 𝑐⊤, 𝑑⊤) is the rational function
𝐆 defined by

𝐆(𝜁 ) ∶=
(

𝑐⊤ + (1∕𝜁 )𝑑⊤
)(

𝜁𝐼 − 𝐴
)−1𝑏, where 𝜁 ∈ C.

If 𝑥(0) = 𝑥(−1) = 0 and 𝑣 = 0, then application of the Z-transform to
(2.1) shows that

(Z𝑦)(𝜁 ) = 𝐆(𝜁 )(Z𝑤)(𝜁 ).

The above identity shows that if 𝑥(0) = 𝑥(−1) = 0 (zero initial
conditions) and 𝑣 = 0, then the effect of the input 𝑤 on the output 𝑦 of
system (2.1) is described in the frequency domain by the product of 𝐆
and the Z-transform of 𝑤. Therefore, 𝐆 is called the transfer function
of (2.1) with 𝑣 = 0.

We set

‖𝐆‖𝐻∞ ∶= sup
|𝜁 |≥1

|𝐆(𝜁 )| = sup
|𝜁 |=1

|𝐆(𝜁 )|,

where 𝐻∞ refers to the space of all bounded holomorphic functions
defined on the complement of the closed unit disc. If 𝑥(0) = 𝑥(−1) = 0
and 𝑣 = 0 in (2.1), then the associated output 𝑦 = 𝑦𝑤 depends only on
𝑤, and

sup{‖𝑦𝑤‖𝓁2 ∶ ‖𝑤‖𝓁2 = 1} = ‖𝐆‖𝐻∞ , where ‖𝑤‖𝓁2 ∶=

√

√

√

√

∞
∑

𝑡=0
|𝑤(𝑡)|2.

he above identity provides an appealing interpretation of ‖𝐆‖𝐻∞ in
time-domain terms. Using the positivity assumptions on 𝐴, 𝑏, 𝑐 and 𝑑
we have that, for all 𝜁 ∈ C such that |𝜁 | = 1,

|𝐆(𝜁 )| ≤
∞
∑

𝑗=0

|

|

|

(𝑐⊤ + (1∕𝜁 )𝑑⊤)𝜁−(𝑗+1)𝐴𝑗𝑏||
|

≤
∞
∑

𝑗=0

(

|𝑐⊤𝐴𝑗𝑏| + |𝑑⊤𝐴𝑗𝑏|
)

=
∞
∑

𝑗=0
(𝑐⊤ + 𝑑⊤)𝐴𝑗𝑏 = 𝐆(1),

where, invoking the asymptotic stability of 𝐴, we have used that (𝜁𝐼 −
𝐴)−1 = 𝜁−1(𝐼 − 𝜁−1𝐴)−1 =

∑∞
𝑗=0 𝜁

−(𝑗+1)𝐴𝑗 for all 𝜁 ∈ C such that |𝜁 | = 1.
Consequently,

‖𝐆‖𝐻∞ = 𝐆(1).

We define

𝑝 ∶= 1 = 1 , where 𝑝 ∶= ∞ if 𝐆(1) = ‖𝐆‖𝐻∞ = 0.
3

𝐆(1) ‖𝐆‖𝐻∞
For 𝜉 ∈ R2𝑛, we write

𝜉 = [[𝜉0, 𝜉−1]], 𝜉0, 𝜉−1 ∈ R𝑛,

nd define the linear functional F ∶ R2𝑛 → R by

(𝜉) = F
(

[[𝜉0, 𝜉−1]]
)

= (𝑐⊤ + 𝑑⊤)(𝐼 − 𝐴)−1𝜉0 + 𝑑⊤𝜉−1

=
(

(𝑐⊤ + 𝑑⊤)(𝐼 − 𝐴)−1, 𝑑⊤
)

𝜉.

efining 𝜙 ∈ R2𝑛
+ by

∶=
(

(𝑐⊤ + 𝑑⊤)(𝐼 − 𝐴)−1, 𝑑⊤
)⊤, (2.2)

t follows that F(𝜉) = 𝜙⊤𝜉, and therefore, we will frequently identify
with the row vector 𝜙⊤ =

(

(𝑐⊤ + 𝑑⊤)(𝐼 − 𝐴)−1, 𝑑⊤
)

. Furthermore, for
∈ R𝑛, we shall make use of the matrix

(𝑒⊤, 𝐴) ∶=

⎛

⎜

⎜

⎜

⎜

⎝

𝑒⊤

𝑒⊤𝐴
⋮

𝑒⊤𝐴𝑛−1

⎞

⎟

⎟

⎟

⎟

⎠

∈ R𝑛×𝑛,

nd introduce the following assumption (cf. [32]):

(O) ker O(𝑐⊤, 𝐴) ∩ ker O(𝑑⊤, 𝐴) ∩ R𝑛+ = {0}.

s 𝐴, 𝑏, 𝑐 and 𝑑 are non-negative, (O) is equivalent to ker O((𝑐+𝑑)⊤, 𝐴)∩
𝑛
+ = {0}.

The matrix O(𝑒⊤, 𝐴) is the so-called observability matrix of the ob-
erved system

(𝑡 + 1) = 𝐴𝑥(𝑡), 𝑦(𝑡) = 𝑒⊤𝑥(𝑡). (2.3)

bviously, the output 𝑦 of (2.3) is given by 𝑦(𝑡) = 𝑒⊤𝐴𝑡𝑥(0). It is well
nown and not difficult to show that 𝑦(𝑡) = 0 for all 𝑡 ∈ N0 if, and
nly if, 𝑥(0) ∈ ker O(𝑒⊤, 𝐴). In particular, if 𝑥(0) ∉ ker O(𝑒⊤, 𝐴), then the
orresponding observation is not identically equal to 0. If ker O(𝑒⊤, 𝐴)
s non-trivial, then the non-zero vectors in ker O(𝑒⊤, 𝐴) are called the
nobservable states of (2.3). If there exists an unobservable state 𝑥0 of
2.3), then, for every 𝑧 ∈ R𝑛, we have that 𝑒⊤𝐴𝑡𝑧 = 𝑒⊤𝐴𝑡(𝑧 + 𝑥0) for all
∈ N0, that is, the states 𝑧 and 𝑧+𝑥0 are indistinguishable on the basis
f their corresponding output information.

The condition (O) is not very restrictive because the set

∶= {(𝑒, 𝐴) ∈ R𝑛+ × R𝑛×𝑛+ ∶ ker O(𝑒⊤, 𝐴) ∩ R𝑛+ = {0}}

s ‘‘large’’ in the sense that 𝛺 is dense in R𝑛+×R𝑛×𝑛+ , 𝛺 is relatively open
ith respect to R𝑛+×R

𝑛×𝑛
+ and the complement of 𝛺 in R𝑛+×R

𝑛×𝑛
+ has zero

ebesgue measure. The latter is a trivial consequence of the inclusion

R𝑛+ × R𝑛×𝑛+
)

∖𝛺 ⊂
(

{0} × R𝑛×𝑛+
)

∪
(

𝜕R𝑛+ × 𝜕R𝑛×𝑛+
)

⊊ 𝜕
(

R𝑛+ × R𝑛×𝑛+
)

.

Assumption (O) shall appear in later persistence and stability results,
see Corollaries 3.13 and 4.4, respectively. Roughly speaking, its valid-
ity simplifies the verification of persistence properties. The following
proposition contains an elementary characterisation of condition (O)
and, further, that (O) is sufficient for certain positivity properties of 𝐆
and F.

Proposition 2.1. The following statements hold.

(1) 𝐆(1) > 0 if, and only if, 𝑏 ∉ ker O((𝑐 + 𝑑)⊤, 𝐴).
(2) Assumption (O) holds if, and only if, (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1 = (𝑐 +

𝑑)⊤
∑∞
𝑘=0 𝐴

𝑘 ≫ 0.
(3) If (O) holds, then 𝐆(1) > 0.
(4) F(𝜉) ≥ 0 for all 𝜉 ∈ R2𝑛

+ .
(5) If (O) holds, then inf 𝜉∈R2𝑛

+ , ‖𝜉0‖=1
F(𝜉) > 0.

(6) If 𝑑 ≫ 0, then inf 𝜉∈R2𝑛
+ , ‖𝜉‖=1

F(𝜉) > 0.

(7) Assume that 𝑏 ∉ ker O((𝑐 + 𝑑)⊤, 𝐴). If 𝑧 is a solution of the linear
difference equation

( ⊤ ⊤ )
𝑧(𝑡 + 1) = 𝐴𝑧(𝑡) + 𝑝𝑏 𝑐 𝑧(𝑡) + 𝑑 𝑧(𝑡 − 1) , (2.4)
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then

F
(

�̃�(𝑡 + 1)
)

= F
(

�̃�(𝑡)
)

, 𝑡 ∈ N0, where �̃�(𝑡) ∶= [[𝑧(𝑡), 𝑧(𝑡 − 1)]].

Statement (7) shows that if 𝑏 ∉ ker O((𝑐 + 𝑑)⊤, 𝐴) and 𝑧 is a solution
of (2.4), then F is constant on �̃�(N0).

Proof of Proposition 2.1. (1) As 𝐴 is asymptotically stable, we have
that

(𝐼 − 𝐴)−1 =
∞
∑

𝑗=0
𝐴𝑗 , (2.5)

and so,

𝐆(1) = (𝑐 + 𝑑)⊤
(

∞
∑

𝑗=0
𝐴𝑗

)

𝑏 ≥ 0.

Trivially, if 𝐆(1) = 0, then (𝑐 + 𝑑)⊤𝐴𝑗𝑏 = 0 for all 𝑗 ∈ N0, and so 𝑏 ∈
ker O((𝑐+𝑑)⊤, 𝐴). Conversely, if 𝑏 ∈ ker O((𝑐+𝑑)⊤, 𝐴), then (𝑐+𝑑)⊤𝐴𝑗𝑏 =
0 for all 𝑗 ∈ {0, 1,… , 𝑛 − 1}. An application of the Cayley–Hamilton
theorem then shows that (𝑐 + 𝑑)⊤𝐴𝑗𝑏 = 0 for all 𝑗 ∈ N0, implying
that 𝐆(1) = 0. The claim now follows via contraposition.
(2) Yet again, we will prove the statement by contraposition. If (O) does
not hold, then there exists non-zero 𝑧 ∈ R𝑛+ such that (𝑐 + 𝑑)⊤𝐴𝑗𝑧 = 0
for all 𝑗 ∈ {0, 1,… , 𝑛−1}. Hence, by the Cayley–Hamilton theorem, (𝑐+
𝑑)⊤𝐴𝑗𝑧 = 0 for all 𝑗 ∈ N0, and so, appealing to (2.5), (𝑐+𝑑)⊤(𝐼−𝐴)−1𝑧 =
0, showing that (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1 is not strictly positive.

Conversely, assume that there exists non-zero 𝑧 ∈ R𝑛+ such that (𝑐 +
𝑑)⊤(𝐼 − 𝐴)−1𝑧 = 0, that is, (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1 is not strictly positive.
Using (2.5) once more, we see that (𝑐 + 𝑑)⊤𝐴𝑗𝑧 = 0 for all 𝑗 ∈
N0. Consequently, 𝑧 ∈ ker O((𝑐 + 𝑑)⊤, 𝐴), showing that the intersec-
tion ker O(𝑐⊤, 𝐴) ∩ ker O(𝑑⊤, 𝐴) ∩ R𝑛+ contains non-zero elements.

(3) This is an immediate consequence of statement (2) as 𝑏 > 0.
(4) Statement (4) is obvious as (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1 ≥ 0 and 𝑑⊤ ≥ 0.
(5) This statement follows from statement (2).
(6) Noting that 𝑑 ≫ 0 implies that 𝜙⊤ =

(

(𝑐⊤+𝑑⊤)(𝐼−𝐴)−1, 𝑑⊤
)

≫ 0,
the claim follows easily.

(7) Assume that 𝑏 ∉ ker O((𝑐+𝑑)⊤, 𝐴). By statement (1), 𝐆(1) > 0, or,
equivalently, 𝑝 <∞. Let 𝑧 be a solution of 𝑧(𝑡+ 1) = 𝐴𝑧(𝑡) + 𝑝𝑏

(

𝑐⊤𝑧(𝑡) +
𝑑⊤𝑧(𝑡 − 1)

)

. Using that (𝐼 − 𝐴)−1𝐴 = (𝐼 − 𝐴)−1 − 𝐼 , we obtain that, for
all 𝑡 ∈ N0,

F
(

�̃�(𝑡 + 1)
)

= (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1
(

𝐴𝑧(𝑡) + 𝑝𝑏(𝑐⊤𝑧(𝑡) + 𝑑⊤𝑧(𝑡 − 1))
)

+ 𝑑⊤𝑧(𝑡)

= (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1𝑧(𝑡) + 𝑐⊤𝑧(𝑡) + 𝑑⊤𝑧(𝑡 − 1) − (𝑐 + 𝑑)⊤𝑧(𝑡)

+ 𝑑⊤𝑧(𝑡)

= (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1𝑧(𝑡) + 𝑑⊤𝑧(𝑡 − 1)

= F
(

�̃�(𝑡)
)

,

completing the proof. □

3. Boundedness, persistency and excitability

In this section, we explore boundedness, persistency and excitability
properties of the Lur’e system (1.1). Frequently, our analysis bene-
fits from the useful and convenient construction of expressing the
second-order (or, delayed) Lur’e system (1.1) in first-order form:

�̃�(𝑡 + 1) = �̃��̃�(𝑡) + �̃�𝑓
(

𝑢(𝑡), 𝑐⊤�̃�(𝑡)
)

+ �̃�(𝑡), �̃�(0) = �̃�0 ∶= [[𝑥0, 𝑥−1]], (3.1)

where 𝑡 ∈ N0, and

�̃� ∶=
(

𝐴 0
𝐼 0

)

, �̃� ∶=
(

𝑏
0

)

, 𝑐 ∶=
(

𝑐
𝑑

)

, �̃�(𝑡) ∶=
(

𝑥(𝑡)
𝑥(𝑡 − 1)

)

,

�̃�(𝑡) ∶=
(

𝑣(𝑡)
0

)

. (3.2)

We note that �̃� is asymptotically stable, �̃�, �̃� and 𝑐 are non-negative
and

(𝜁𝐼−�̃�)−1 =
(

(𝜁𝐼 − 𝐴)−1 0
−1

)

∀ 𝜁 ∈ C, 𝜁 ≠ 0, 𝜁 ∉ spec(𝐴).
4

(1∕𝜁 )(𝜁𝐼 − 𝐴) (1∕𝜁 )𝐼
Hence,

𝑐⊤(𝜁𝐼 − �̃�)−1�̃� = (𝑐⊤ + (1∕𝜁 )𝑑⊤)(𝜁𝐼 − 𝐴)−1𝑏

= 𝐆(𝜁 ) ∀ 𝜁 ∈ C, 𝜁 ≠ 0, 𝜁 ∉ spec(𝐴). (3.3)

Moreover,

𝑐⊤(𝐼 − �̃�)−1 =
(

(𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1, 𝑑⊤
)

= 𝜙⊤.

Recall that, in (1.1), the functions 𝑢 and 𝑣 take values in the compact
subsets 𝑈 ⊂ R𝑚 and 𝑉 ⊂ R𝑛+, respectively, where it is assumed that
0 ∈ 𝑉 . We introduce the following assumptions on the nonlinearity 𝑓 .

(N1) 𝑓 (𝑤, 𝑧) > 0 for all 𝑤 ∈ 𝑈 and 𝑧 > 0 and

lim sup
𝑧→∞

(

max
𝑤∈𝑈

𝑓 (𝑤, 𝑧)
𝑧

)

< 𝑝.

(N2) (N1) holds, 𝑝 <∞ and

lim inf
𝑧↓0

(

min
𝑤∈𝑈

𝑓 (𝑤, 𝑧)
𝑧

)

> 𝑝.

onditions (N1) and (N2) were also employed in the continuous-time
etting in [32] when studying boundedness and persistence. The inter-
sted reader can find a biological interpretation of these assumptions
n [14, Remark 4.2]. We note that, by statement (1) of Proposition 2.1,
e could replace condition 𝑝 <∞ in (N2) by 𝑏 ∉ ker O(𝑐⊤ + 𝑑⊤, 𝐴).

3.1. Boundedness and persistency

The first result of this subsection will be used as a tool in the analysis
of persistence properties of system (1.1). We set

𝑦𝑥(𝑡) ∶= 𝑐⊤𝑥(𝑡) + 𝑑⊤𝑥(𝑡 − 1) = 𝑐⊤�̃�(𝑡) ∀ 𝑡 ∈ N0,

here 𝑥 is the solution of (1.1).

roposition 3.1. Consider the system (1.1) and let 𝛽 > 0. The following
tatements hold.

(1) If (N1) holds, then there exist 𝛾 > 0 such that, for all 𝑥−1, 𝑥0 ∈ R𝑛+
with ‖𝑥−1‖, ‖𝑥0‖ ≤ 𝛽, all 𝑢∶N0 → 𝑈 , and all 𝑣∶N0 → 𝑉 , the
solution 𝑥 of (1.1) satisfies

‖𝑥(𝑡 − 1)‖ ≤ 𝛾, ∀ 𝑡 ∈ N0 . (3.4)

(2) If (N2) holds, then there exists 𝜃 > 0 such that, for all 𝑥−1, 𝑥0 ∈ R𝑛+
with ‖𝑥−1‖, ‖𝑥0‖ ≤ 𝛽, all 𝑢 ∶ N0 → 𝑈 , and all 𝑣∶N0 → 𝑉 , the
solution 𝑥 of (1.1) satisfies

min
𝑤∈𝑈

𝑓 (𝑤, 𝑦𝑥(𝑡)) ≥ 𝜃𝑦𝑥(𝑡), ∀ 𝑡 ∈ N0. (3.5)

(3) If (N2) holds, there exists 𝜂 > 0 such that, for all 𝑥−1, 𝑥0 ∈ R𝑛+
with ‖𝑥−1‖, ‖𝑥0‖ ≤ 𝛽, all 𝑢∶N0 → 𝑈 , and all 𝑣∶N0 → 𝑉 , the
solution 𝑥 of (1.1) satisfies

F(�̃�(𝑡)) ≥ min
(

F(�̃�(0)), 𝜂
)

, ∀ 𝑡 ∈ N0.

roof. (1) Statement (1) follows immediately from [14, Theorem 4.4]
pplied to the augmented system (3.1). Note that (1.1) and (3.1) have
he same nonlinear term 𝑓 , and 𝑐⊤(𝐼 − �̃�)−1�̃� = 𝐆(1) = 1∕𝑝 by (3.3).

(2) By statement (1) there exists 𝛾 > 0 such that, for all 𝑥−1, 𝑥0 ∈ R𝑛+
ith ‖𝑥−1‖, ‖𝑥0‖ ≤ 𝛽 and all functions 𝑢 ∶ N0 → 𝑈 and 𝑣 ∶ N0 → 𝑉 , the

olution 𝑥 of (1.1) satisfies

𝑥(𝑡) ≤ (‖𝑐‖ + ‖𝑑‖)𝛾 ∀ 𝑡 ∈ N0. (3.6)

n the one hand, by assumption (N2), there exists 0 < 𝑦♯ < (‖𝑐‖+‖𝑑‖)𝛾
uch that

min
𝑤∈𝑈

𝑓 (𝑤, 𝑧) ≥ 𝑝𝑧 ∀ 𝑧 ∈ [0, 𝑦♯]. (3.7)

n the other hand, using the positivity and continuity of 𝑓 ,
♯
�̂� ∶= min{𝑓 (𝑤, 𝑧)∕𝑧 ∶ 𝑤 ∈ 𝑈, 𝑦 ≤ 𝑧 ≤ (‖𝑐‖ + ‖𝑑‖)𝛾} > 0. (3.8)



Physica D: Nonlinear Phenomena 467 (2024) 134260D. Franco et al.

h
C

T

F

f

s
c
s
f

𝑥

i
o
n

t

P
e
p

o

E
𝑣

𝐴

I
a
d

i
i

D
t
s

𝑦

f

a
c
f
a

𝑓
b
b
r
s
a

p
t
c

A

L

𝑐

P

𝑐

I

𝑐

I
C
T

t

L

Hence, inequality (3.5) holds with 𝜃 ∶= min{𝑝, �̂�}.
(3) As in the proof of statement (2), there exists 𝛾 > 0 such that

(3.6) is satisfied for all 𝑥0 and 𝑥−1 such that ‖𝑥0‖, ‖𝑥−1‖ ≤ 𝛽. By
assumption (N2) there exists 0 < 𝑦♯ < (‖𝑐‖ + ‖𝑑‖)𝛾 such that (3.7)
olds. Let 𝑡 ∈ N0. We consider two cases.
ase 1: 𝑦𝑥(𝑡) < 𝑦♯. Since 𝑓 (𝑢(𝑡), 𝑦𝑥(𝑡)) ≥ 𝑝𝑦𝑥(𝑡), we have

F
(

�̃�(𝑡 + 1)
)

= (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1𝑥(𝑡 + 1) + 𝑑⊤𝑥(𝑡)

= (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1
[

𝐴𝑥(𝑡) + 𝑏𝑓 (𝑢(𝑡), 𝑦𝑥(𝑡)) + 𝑣(𝑡)
]

+ 𝑑⊤𝑥(𝑡) .

Hence, using that (𝐼 − 𝐴)−1𝐴 = (𝐼 − 𝐴)−1 − 𝐼 ,

F
(

�̃�(𝑡 + 1)
)

≥ (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1
(

𝐴𝑥(𝑡) + 𝑝𝑏𝑦𝑥(𝑡)
)

+ 𝑑⊤𝑥(𝑡)

= (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1𝑥(𝑡) − (𝑐 + 𝑑)⊤𝑥(𝑡) + 𝑦𝑥(𝑡) + 𝑑⊤𝑥(𝑡)

= (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1𝑥(𝑡) + 𝑑⊤𝑥(𝑡 − 1).

The above yields that

F
(

�̃�(𝑡 + 1)
)

≥ F
(

�̃�(𝑡)
)

. (3.9)

Case 2: 𝑦♯ ≤ 𝑦𝑥(𝑡) ≤ (‖𝑐‖ + ‖𝑑‖)𝛾. With �̂� as in (3.8), we have that

F
(

�̃�(𝑡 + 1)
)

= (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1
[

𝐴𝑥(𝑡) + 𝑏𝑓 (𝑢(𝑡), 𝑦𝑥(𝑡)) + 𝑣(𝑡)
]

+ 𝑑⊤𝑥(𝑡)

≥ 𝐆(1)�̂�𝑦♯ =
�̂�𝑦♯

𝑝
=∶ 𝜂 > 0 .

ogether with (3.9) established in Case 1, this shows that
(

�̃�(𝑡 + 1)
)

≥ min(F
(

�̃�(𝑡)
)

, 𝜂), 𝑡 ∈ N0,

rom which the claim follows. □

Whilst Propositions 2.1 and 3.1 (with 𝑐 = 0) show that there are
ome strong similarities between the continuous-time and discrete-time
ases, see [32, Propositions 3.2, 3.3 and Lemma 4.2], there are also
ubstantial differences. To highlight the differences, we consider the
ollowing positive differential-delay system

̇ (𝑡) = 𝐴c𝑥(𝑡) + 𝑏𝑓 (𝑢(𝑡), 𝑑⊤𝑥(𝑡 − ℎ)) + 𝑣(𝑡),

𝑥(𝑡) = 𝜉(𝑡) ∀ 𝑡 ∈ [−ℎ, 0], 𝜉 ∈ 𝐶([−ℎ, 0],R𝑛+), (3.10)

where 𝐴c ∈ R𝑛×𝑛+ , 𝑏, 𝑑 ∈ R𝑛+, 𝑏 ≠ 0, 𝑑 ≠ 0, ℎ > 0, 𝑓 ∶ R𝑚 × R+ → R+
s continuous, and 𝑢 and 𝑣 are bounded measurable functions defined
n R+ with values in R𝑚 and R𝑛+, respectively. Obviously, (3.10) is a
atural continuous-time time analogue of (1.1) (with 𝑐 = 0).

The following result is an immediate consequence of [32, Proposi-
ion 3.2 and Theorem 4.3].

roposition 3.2. Assume that in (3.10), 𝐴c is Metzler (all off-diagonal
ntries are non-negative) and Hurwitz (all eigenvalues have negative real
arts). The following statements hold.

(1) ker O(𝑑⊤, 𝐴c) ∩ R𝑛+ = {0} if, and only if, 𝑑⊤𝑒𝐴c𝑡 ≫ 0 for all 𝑡 > 0.
(2) If ker O(𝑑⊤, 𝐴c) ∩ R𝑛+ = {0}, (N2) holds and 𝜉(0) ≠ 0, then the

solution 𝑥 of (3.10) satisfies 𝑑⊤𝑥(𝑡) > 0 for all 𝑡 ≥ 2ℎ.
(3) If 𝑑 ≫ 0, (N2) holds and 𝜉(𝑡) ≢ 0, then the solution 𝑥 of (3.10)

satisfies 𝑑⊤𝑥(𝑡) > 0 for all 𝑡 ≥ 2ℎ.

The following example shows that Proposition 3.2 does not carry
ver to the discrete-time setting.

xample 3.3. Consider system (1.1) without external forcing (that is,
= 0 and 𝑓 (𝑤, 𝑧) = 𝑓 (𝑧) for all 𝑧 ∈ R+) and the linear and initial data

=
⎛

⎜

⎜

⎝

0 1 0
0 0 0
0 0 0

⎞

⎟

⎟

⎠

, 𝑏 =
⎛

⎜

⎜

⎝

1∕2
0

1∕2

⎞

⎟

⎟

⎠

, 𝑐 = 0, 𝑑 =
⎛

⎜

⎜

⎝

1
1
1

⎞

⎟

⎟

⎠

, 𝑥0 =
⎛

⎜

⎜

⎝

1
0
0

⎞

⎟

⎟

⎠

, 𝑥−1 = 0.

t is clear that (O) holds (because 𝑑 ≫ 0) and 𝑑⊤𝐴𝑡 = (0, 0, 0) for
ll 𝑡 ∈ N0 with 𝑡 ≥ 2. This shows that statement (1) of Proposition 3.2
5

oes not carry over to the discrete-time setting.
Furthermore, for every continuous 𝑓 ∶R+ → R+ such that 𝑓 (0) = 0,
it is straightforward to prove by induction that the solution 𝑥 of (1.1)
satisfies

𝑥(𝑡) = 0, if 𝑡 = 2𝑚 + 1, 𝑚 ∈ N0

and 𝑥(𝑡) = 𝑏𝑓 𝑡∕2(1), if 𝑡 = 2(𝑚 + 1), 𝑚 ∈ N0.

Consequently, 𝑑⊤𝑥 = 0 if 𝑡 = 2𝑚 + 1, 𝑚 ∈ N0, showing that statements
(2) and (3) of Proposition 3.2 do not extend to the discrete-time system
(1.1). ◊

A key requirement for the stability properties that we will present
in Section 4 is that the observation 𝑦𝑥(𝑡) = 𝑐⊤𝑥(𝑡)+𝑑⊤𝑥(𝑡−1) associated
with system (1.1) is eventually uniformly positive. However, as we have
just seen in Example 3.3, conditions (O) and (N2) (or conditions 𝑑 ≫ 0
and (N2)) do not guarantee that such a requirement is fulfilled in the
discrete-time case for all (𝑥0, 𝑥−1) ≠ (0, 0). In order to deal with this
ssue, we introduce a concept of persistency with respect to a set of
nitial conditions for the system (1.1).

efinition 3.4. Given a set of initial conditions 𝛤 ⊂ R2𝑛
+ , we say

hat (1.1) is 𝑐-persistent with respect to 𝛤 if there exist 𝜏 ∈ N0 and 𝛿 > 0
uch that the solution 𝑥 of (1.1) satisfies

𝑥(𝑡 + 𝜏) = 𝑐⊤�̃�(𝑡 + 𝜏) = 𝑐⊤𝑥(𝑡 + 𝜏) + 𝑑⊤𝑥(𝑡 + 𝜏 − 1) ≥ 𝛿 ∀ 𝑡 ∈ N0 , (3.11)

or all (𝑥0, 𝑥−1) ∈ 𝛤 and all functions 𝑢 ∶ N0 → 𝑈 and 𝑣 ∶ N0 → 𝑉 . ◊

As the persistency property 𝑐⊤�̃�(𝑡) ≥ 𝛿 is required to hold only for
ll sufficiently large 𝑡, it would perhaps be more accurate to call the
oncept ‘‘ultimate 𝑐-persistency with respect to 𝛤 ’’, but we will refrain
rom doing so for the sake of simplicity and the avoidance of potentially
wkward formulations.

If 𝑓 is non-decreasing in its second argument (that is, 𝑓 (𝑤, 𝑧1) ≤
(𝑤, 𝑧2) for all 0 ≤ 𝑧1 ≤ 𝑧2 and all 𝑤 ∈ 𝑈), then persistency can
e checked without reference to the additive forcing 𝑣. This follows
ecause, in this case, it is routine to show that (1.1) is 𝑐-persistent with
espect to 𝛤 if, and only if, there exist 𝜏 ∈ N0 and 𝛿 > 0 such that the
olution 𝑥 of (1.1) with 𝑣 = 0 satisfies (3.11) for all (𝑥0, 𝑥−1) ∈ 𝛤 and
ll 𝑢 ∶ N0 → 𝑈 . However, this equivalence is not in true in general.

Our first approach to 𝑐-persistency properties of (1.1) is to apply the
ersistency results of [14, Section 4] for undelayed difference equations
o the augmented system (3.1). To this end, we introduce the following
ondition on �̃�, �̃� and 𝑐 defined in (3.2).

(P1) There exists 𝜏 ∈ N0 such that 𝑐⊤
(

�̃� + �̃�𝑐⊤
)𝜏 ≫ 0.

simple consequence of (P1) is described in the following lemma.

emma 3.5. Assume that there exists 𝜏 ∈ N0 such that (P1) holds. Then

̃⊤
(

�̃� + 𝑞�̃�𝑐⊤
)𝑡+𝜏 ≫ 0 for all 𝑞 > 0 and 𝑡 ∈ N0.

roof. Let 𝑞 > 0. If 𝑞 ≥ 1, then 𝑞 − 1 ≥ 0, and thus,

̃⊤
(

�̃� + 𝑞�̃�𝑐⊤
)𝜏 = 𝑐⊤

(

�̃� + �̃�𝑐⊤ + (𝑞 − 1)�̃�𝑐⊤
)𝜏 ≥ 𝑐⊤

(

�̃� + �̃�𝑐⊤
)𝜏 ≫ 0.

f 𝑞 < 1, then 𝑞−1 − 1 > 0, and hence,

̃⊤
(

�̃� + 𝑞�̃�𝑐⊤
)𝜏 = 𝑞𝜏𝑐⊤

(

�̃� + �̃�𝑐⊤ + (𝑞−1 − 1)�̃�
)𝜏 ≥ 𝑞𝜏𝑐⊤

(

�̃� + �̃�𝑐⊤
)𝜏 ≫ 0.

t follows that the matrix �̃� + 𝑞�̃�𝑐⊤ cannot have any zero columns.
onsequently, as 𝑐⊤

(

�̃�+𝑞�̃�𝑐⊤
)𝜏 ≫ 0, we have that 𝑐⊤

(

�̃�+𝑞�̃�𝑐⊤
)𝜏+1 ≫ 0.

he claim now follows from a straightforward induction argument. □

The next result provides necessary and sufficient conditions for (P1)
o hold.

emma 3.6. The following statements hold.
(1) If (P1) holds, then 𝑑 ≫ 0.
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(2) If 𝑑 ≫ 0 and there exists 𝑘 ∈ N0 such that 𝑐⊤(𝐴 + 𝑏𝑐⊤)𝑘 ≫ 0, then
(P1) holds with 𝜏 = 𝑘 + 1.

(3) If 𝑑 ≫ 0 and 𝐴𝑏 > 0, then (P1) holds with 𝜏 = 3.
(4) If 𝑐 = 0 and (P1) holds, then 𝑑 ≫ 0 and 𝐴𝑏 > 0.

roof. (1) If 𝑑 is not strictly positive, then

̃ + �̃�𝑐⊤ =
(

𝐴 + 𝑏𝑐⊤ 𝑏𝑑⊤

𝐼 0

)

as a zero column, and hence (�̃� + �̃�𝑐⊤)𝜏 has a zero column for every
∈ N. Consequently, 𝑐⊤(�̃� + �̃�𝑐⊤)𝜏 is not strictly positive for every
∈ N0, showing that (P1) does not hold. The claim now follows by

ontraposition.
(2) A standard induction argument shows that, for every 𝑗 ∈ N0,

here exist vectors 𝑞𝑗 , 𝑟𝑗 ∈ R𝑛+ such that

𝑐⊤
(

�̃� + �̃�𝑐⊤
)𝑗+1 =

(

𝑐⊤(𝐴 + 𝑏𝑐⊤)𝑗+1 + 𝑞𝑗 , (𝑐⊤(𝐴 + 𝑏𝑐⊤)𝑗 + 𝑟𝑗 )𝑏𝑑⊤
)

.

It follows that if 𝑑 ≫ 0 and there exists 𝑘 ∈ N0 such that 𝑐⊤(𝐴+𝑏𝑐⊤)𝑘 ≫
, then (P1) holds for 𝜏 = 𝑘 + 1.

(3) A routine calculation shows that there exist 𝑞, 𝑟 ∈ R𝑛+ such that

𝑐⊤
(

�̃� + �̃�𝑐⊤
)3 =

(

(𝑑⊤𝑏)𝑑⊤ + 𝑞⊤, (𝑑⊤𝐴𝑏)𝑑⊤ + 𝑟⊤
)

.

Consequently, if 𝑑 ≫ 0 and 𝐴𝑏 > 0, then the right-hand side is strictly
positive, showing that (P1) holds for 𝜏 = 3.

(4) Assume that 𝑐 = 0 and (P1) holds, and set

�̂� ∶= �̃� + �̃�𝑐⊤ =
(

𝐴 𝑏𝑑⊤

𝐼 0

)

.

y statement (1), 𝑑 ≫ 0. To show that 𝐴𝑏 > 0, we argue by
contraposition. If 𝐴𝑏 > 0 does not hold, then 𝐴𝑏 = 0 as 𝐴𝑏 ≥ 0. A
imple induction argument shows that then

̂2𝑘+1 =
(

∗ ∗
∗ 0

)

∀ 𝑘 ∈ N0,

ith the induction step comprising

̂2(𝑘+1)+1 = �̂�2𝑘+1�̂�2 =
(

∗ ∗
∗ 0

)(

∗ 𝐴𝑏𝑑⊤

∗ ∗

)

=
(

∗ ∗
∗ 0

)(

∗ 0
∗ ∗

)

=
(

∗ ∗
∗ 0

)

,

here ∗ stands for certain matrices, the entries and structure of which
re irrelevant for the matter under consideration. Therefore, 𝑐⊤�̂�2𝑘+1 =
∗ , 0) for all 𝑘 ∈ N0, and so, property (P1) cannot hold for odd 𝜏.
t follows from Lemma 3.5 that (P1) cannot hold for even 𝜏 either,
ompleting the proof. □

We are now in the position to state the first persistency result.

orollary 3.7. Consider the system (1.1) and assume that (P1) and (N2)
old. Then (1.1) is 𝑐-persistent with respect to any compact set 𝛤 ⊂ R2𝑛

+
uch that 0 ∉ 𝛤 .

Corollary 3.7 follows from a straightforward application of [14,
heorem 4.4] to the augmented system (3.1).

Observe that in Example 3.3 the conclusion of Corollary 3.7 does not
old. This is explained by the fact that (P1) is not satisfied (as follows
rom statement (4) of Lemma 3.6 since 𝑐 = 𝐴𝑏 = 0).

Whilst the conclusion of Corollary 3.7 is strong in the sense that it
uarantees 𝑐-persistency with respect to every compact set 𝛤 ⊂ R2𝑛

+ not
ontaining 0 (so-called semi-global 𝑐⊤-persistency), the requirement of
trict positivity of 𝑑 (which, by Lemma 3.6, is necessary for (P1) to
old) is too restrictive for many applications. Therefore, our approach
s to identify conditions weaker than (P1) which, together with (N2)
or some variant of it), are sufficient for 𝑐-persistency with respect
ufficiently ‘‘large’’ sets to allow interesting applications. To this end,
e introduce the following positivity hypotheses on the linear system:
6

(P2) There exist 𝜏 ∈ N and 𝜀 > 0 such that 𝑐⊤(�̃�+�̃�𝑐⊤)𝜏 ≥ 𝜀𝜙⊤, where
𝜙 is defined in (2.2).

he inequality in (P2) can be expressed in the form 𝑐⊤(�̃� + �̃�𝑐⊤)𝜏𝜉 ≥
F(𝜉) for all 𝜉 ∈ R2𝑛

+ .
Furthermore, we consider the following variant of hypothesis (N2):

(N3) Hypothesis (N1) holds, 𝑑⊤𝑏 > 0 and

lim inf
𝑧↓0

(

min
𝑤∈𝑈

𝑓 (𝑤, 𝑧)
𝑧

)

> 1
𝑑⊤𝑏

.

t follows from an argument similar to that used in the proof of
emma 3.5 that if (P2) holds, then, for all 𝑞 > 0,

𝑐⊤(�̃� + 𝑞�̃�𝑐⊤)𝜏 ≥ 𝜀𝑞𝜙
⊤, (3.12)

here 𝜀𝑞 ∶= 𝜀min{1, 𝑞𝜏} > 0. Note that (P2) is implied by (P1), but (P2)
s not sufficient for (P1) to hold (see Example 3.8 below). In fact it is
asy to show that (P1) is satisfied if, and only if, (P2) holds and 𝑑 ≫ 0.

Whilst, (P2) is weaker than (P1), the hypothesis (N3) places a
tronger condition on the nonlinearity 𝑓 than (N2) because 𝑑⊤𝑏 ≤
(1) = 1∕𝑝, and thus, if (N3) holds, then so does (N2). In general, 𝑑⊤𝑏
nd 1∕𝑝 are not equal, but when they are, hypotheses (N2) and (N3)
oincide.

xample 3.8. We discuss two examples illustrating condition (P2).
1) Consider

=
(

1∕2 1
0 1∕2

)

, 𝑏 =
(

1
1

)

, 𝑐 = 0, 𝑑 =
(

1
0

)

.

s

𝐼 − 𝐴)−1 =
(

2 4
0 2

)

,

e have that 𝜙⊤ =
(

𝑑⊤(𝐼 − 𝐴)−1, 𝑑⊤
)

= (2, 4, 1, 0). Moreover, 𝑐⊤(�̃� +
̃𝑐⊤)2 = (1∕2, 1, 1, 0), and we conclude that (P2) holds with 𝜏 = 2 and
= 1∕4. It follows from Lemma 3.6 that (P1) does not hold because 𝑑

s not strictly positive.
2) Let 𝐴, 𝑏, 𝑐 and 𝑑 be given by

=
⎛

⎜

⎜

⎝

0 0 0
1 0 0
0 1 0

⎞

⎟

⎟

⎠

, 𝑏 =
⎛

⎜

⎜

⎝

1
0
0

⎞

⎟

⎟

⎠

, 𝑐 = 0, 𝑑 =
⎛

⎜

⎜

⎝

0
1
1

⎞

⎟

⎟

⎠

. (3.13)

hen

𝐼 − 𝐴)−1 =
⎛

⎜

⎜

⎝

1 0 0
1 1 0
1 1 1

⎞

⎟

⎟

⎠

,

nd 𝜙⊤ =
(

𝑑⊤(𝐼 − 𝐴)−1, 𝑑⊤
)

= (2, 2, 1, 0, 1, 1). Elementary calculations
ield that 𝑐⊤

(

�̃� + �̃�𝑐⊤
)7 = (1, 1, 1, 0, 2, 2), showing that (P2) holds with

= 7 and 𝜀 = 1∕2. Moreover, 7 is the smallest value of 𝜏 such that (P2)
s satisfied. As 𝑑 is not strictly positive, Lemma 3.6 implies that (P1)
oes not hold. ◊

The next result provides a sufficient condition for (P2).

emma 3.9. If there exist 𝑘, 𝑙 ∈ N0 and 𝛿 > 0 such that

𝑑⊤, 𝑑⊤
)(

�̃�+�̃�𝑐⊤
)𝑙 ≥ 𝛿𝜙⊤ and 𝜇 ∶= min{𝑑⊤𝐴𝑘𝑏, 𝑑⊤𝐴𝑘+1𝑏} > 0, (3.14)

hen (P2) holds with 𝜏 = 𝑘 + 𝑙 + 3 and 𝜀 = 𝛿𝜇.

Assume that there exists 𝜌 > 0 such that 𝑑⊤ ≥ 𝜌𝑐⊤ (for example,
hen 𝑐 = 0). Then it is sometimes easier to verify (3.14) than (P2), see
art (1) of Example 3.10 below. Furthermore,

𝑑⊤, 𝑑⊤
)

(�̃� + �̃�𝑐⊤) ≥
(

𝜌𝑐⊤, 𝑑⊤
)

(�̃� + �̃�𝑐⊤) ≥ min{1, 𝜌}𝑐⊤(�̃� + �̃�𝑐⊤),

nd thus (P2) implies that the first inequality in (3.14) holds. However,
P2) does not imply the existence of an integer 𝑘 such that the second
nequality in (3.14) is satisfied as part (2) of Example 3.10 below shows.
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Example 3.10. (1) Consider 𝐴, 𝑏, 𝑐 and 𝑑 as given in (3.13) with 𝜙⊤ =
(2, 2, 1, 0, 1, 1). It is straightforward to show that

(

𝑑⊤, 𝑑⊤
)(

�̃� + �̃�𝑐⊤
)3 =

(1, 1, 1, 0, 2, 2) ≥ (1∕2)𝜙⊤ and 𝑑⊤𝐴𝑏 = 𝑑⊤𝐴2𝑏 = 1 > 0, showing that
(3.14) holds with 𝑙 = 3, 𝛿 = 1∕2 and 𝑘 = 1. Recall from part (2) of
Example 3.8 that 7 is the smallest value of 𝜏 such that (P2) is satisfied.
(2) Consider

𝐴 =
(

0 𝑎
𝑎 0

)

, 𝑏 =
(

0
1

)

, 𝑐 = 0, 𝑑 =
(

1
0

)

,

where 0 < 𝑎 < 1. Elementary calculations show that (P2) holds with
𝜏 = 4 and 𝜀 = (1 − 𝑎2)𝑎4. But, for all 𝑘 ∈ N0,

𝑑⊤𝐴2𝑘𝑏 = 0 and 𝑑⊤𝐴2𝑘+1𝑏 = 𝑎2𝑘+1,

showing that min{𝑑⊤𝐴𝑘𝑏, 𝑑⊤𝐴𝑘+1𝑏} = 0 for all 𝑘 ∈ N0. It follows that
condition (3.14) is not necessary for (P2) to hold. ◊

Proof of Lemma 3.9. Since

�̃� + �̃�𝑐⊤ =
(

𝐴 + 𝑏𝑐⊤ 𝑏𝑑⊤

𝐼 0

)

≥
(

𝐴 𝑏𝑑⊤

𝐼 0

)

,

a routine induction argument shows that

(�̃� + �̃�𝑐⊤)𝑗+3 ≥
(

𝐴𝑗+1𝑏𝑑⊤ 𝐴𝑗+2𝑏𝑑⊤

𝐴𝑗𝑏𝑑⊤ 𝐴𝑗+1𝑏𝑑⊤

)

∀ 𝑗 ∈ N0.

Consequently, for all 𝑗 ∈ N0,

𝑐⊤(�̃� + �̃�𝑐⊤)𝑗+3 ≥ (0, 𝑑⊤)(�̃� + �̃�𝑐⊤)𝑗+3 ≥
(

(𝑑⊤𝐴𝑗𝑏)𝑑⊤, (𝑑⊤𝐴𝑗+1𝑏)𝑑⊤
)

,

and thus

𝑐⊤(�̃� + �̃�𝑐⊤)𝑘+3 ≥ 𝜇(𝑑⊤, 𝑑⊤).

Multiplying the above inequality from the right by (�̃� + �̃�𝑐⊤)𝑙 leads to

𝑐⊤(�̃� + �̃�𝑐⊤)𝑘+𝑙+3 ≥ 𝜇(𝑑⊤, 𝑑⊤)(�̃� + �̃�𝑐⊤)𝑙 ≥ 𝛿𝜇𝜙⊤,

showing that (P2) is satisfied with 𝜏 = 𝑘 + 𝑙 + 3 and 𝜀 = 𝛿𝜇. □

Whilst Lemma 3.9 constitutes a sufficient condition for (P2) to hold,
the next result provides, under the assumption that (𝑐 + 𝑑)⊤𝑏 ≠ 0, a
necessary condition for (P2).

Lemma 3.11. Assume that (𝑐 + 𝑑)⊤𝑏 ≠ 0. If (P2) is satisfied, then
(𝐴 + 𝑏𝑐⊤)𝑏 ≠ 0.

Proof. We prove the claim by contraposition. To this end, we assume
that (𝐴 + 𝑏𝑐⊤)𝑏 = 0. We have to show that (P2) is not satisfied. Since
(𝐴+ 𝑏𝑐⊤)𝑏 = 0, it follows that 𝐴𝑏 = 0 and (𝑐⊤𝑏)𝑏 = 0. As 𝑏 ≠ 0, the latter
identity implies that 𝑐⊤𝑏 = 0. Next we note that

𝜙⊤
(

𝑏
0

)

=
(

(𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1, 𝑑⊤
)

(

𝑏
0

)

= (𝑐 + 𝑑)⊤
∞
∑

𝑗=0
𝐴𝑗𝑏 = (𝑐 + 𝑑)⊤𝑏 > 0. (3.15)

Furthermore, as 𝑑 ≠ 0,

𝜙⊤
(

0
𝑑

)

=
(

(𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1, 𝑑⊤
)

(

0
𝑑

)

= ‖𝑑‖2 > 0. (3.16)

On the other hand, a straightforward induction argument shows that
there exist ℎ𝑘 ∈ R𝑛+ and 𝜆𝑘 ∈ R+ such that

𝑐⊤
(

�̃� + �̃�𝑐⊤
)2𝑘 =

(

ℎ⊤𝑘𝐴 + 𝜆𝑘𝑐⊤, ∗
)

∀ 𝑘 ∈ N,

and, furthermore,

𝑐⊤
(

�̃� + �̃�𝑐⊤
)2𝑘+1 = ( ∗ , 0) ∀ 𝑘 ∈ N0.

Consequently, for all 𝑘 ∈ N0,

𝑐⊤
(

�̃� + �̃�𝑐⊤
)2𝑘

(

𝑏
0

)

= 0 and 𝑐⊤
(

�̃� + �̃�𝑐⊤
)2𝑘+1

(

0
𝑑

)

= 0.

Comparing this to (3.15) and (3.16) shows that (P2) is not satisfied. □
7

The following theorem, the proof of which can be found in the
Appendix, contains a number of 𝑐-persistency results invoking the
above hypotheses (P2), (N2) and (N3). Recall the notation 𝑦𝑥(𝑡) =
𝑐⊤𝑥(𝑡) + 𝑑⊤𝑥(𝑡 − 1) = 𝑐⊤�̃�(𝑡), where 𝑥 is the solution of (1.1).

Theorem 3.12. The following statements hold for the system (1.1).

(1) If 𝑑⊤𝑏 > 0, 𝑓 (𝑤, 𝑧) > 0 for all 𝑧 > 0 and 𝑤 ∈ 𝑈 and min{𝑐⊤𝑥0 +
𝑑⊤𝑥−1, 𝑑⊤𝑥0} > 0, then the solution 𝑥 of (1.1) satisfies 𝑦𝑥(𝑡) > 0 for
all 𝑡 ∈ N0.

(2) If min{𝑐⊤𝑏, 𝑑⊤𝑏} > 0, 𝑓 (𝑤, 𝑧) > 0 for all 𝑧 > 0 and 𝑤 ∈ 𝑈 and
𝑐⊤𝑥0 + 𝑑⊤𝑥−1 > 0, then the solution 𝑥 of (1.1) satisfies 𝑦𝑥(𝑡) > 0 for
all 𝑡 ∈ N0.

(3) If hypothesis (N3) holds, then (1.1) is 𝑐-persistent with respect to any
non-empty compact subset 𝛤 of

𝛤 ′ ∶=
{

[[𝜉0, 𝜉−1]] ∈ R2𝑛
+ ∶ min{𝑐⊤𝜉0 + 𝑑⊤𝜉−1, 𝑒⊤𝜉0}

+ min{𝑒⊤𝜉0, 𝑒⊤𝐴𝜉0} > 0
}

, (3.17)

where 𝑒 ∶= 𝐴⊤𝑐 + 𝑑 ∈ R𝑛+.
(4) If hypotheses (N2) and (P2) hold, then (1.1) is 𝑐-persistent with

respect to any non-empty compact subset 𝛤 of

𝛤 ′′ ∶=
{

𝜉 = [[𝜉0, 𝜉−1]] ∈ R2𝑛
+ ∶ F(𝜉) > 0

}

. (3.18)

Note that the set 𝛤 ′ can be expressed in form
′ =

{

[[𝜉0, 𝜉−1]] ∈ R2𝑛
+ ∶ min{𝑒⊤𝜉0, (𝑐⊤ + 𝑒⊤𝐴)𝜉0 + 𝑑⊤𝜉−1} > 0

}

.

e remark that the subsets 𝛤 ′ and 𝛤 ′′ of R2𝑛
+ are ‘‘large’’ in the

ollowing two senses:
a) 𝛤 ′ and 𝛤 ′′ are dense in R2𝑛

+ and relatively open with respect to R2𝑛
+ ;

b) the complements R2𝑛
+ ∖𝛤 ′ and R2𝑛

+ ∖𝛤 ′′ are null sets with respect to
ebesgue measure as
2𝑛
+ ∖𝛤 ′ ⊂ 𝜕R2𝑛

+ and R2𝑛
+ ∖𝛤 ′′ ⊂ 𝜕R𝑛+ × 𝜕R𝑛+ ⊊ 𝜕R

2𝑛
+ .

e proceed to state and prove the following important corollary of
heorem 3.12. For which purpose, we set

∶= (𝐼, 0) ∈ R𝑛×2𝑛

nd note that 𝑃 [[𝜉0, 𝜉−1]] = 𝜉0 for all 𝜉0, 𝜉−1 ∈ R𝑛.

orollary 3.13. Assume that hypotheses (O) and (N2) are satisfied. If
P2) holds, then (1.1) is 𝑐-persistent with respect to any non-empty compact
ubset 𝛤 ⊂ R2𝑛

+ such that 0 ∉ 𝑃𝛤 .

roof. Let 𝛤 ⊂ R2𝑛
+ be non-empty, compact and such that 0 ∉ 𝑃𝛤 .

hen, obviously, for all 𝜉0, 𝜉−1 ∈ R𝑛+,

[𝜉0, 𝜉−1]] ∈ 𝛤 ⇒ 𝜉0 ≠ 0.

nvoking statement (5) of Proposition 2.1, we conclude that F(𝜉) > 0 for
ll 𝜉 ∈ 𝛤 , showing that 𝛤 ⊂ 𝛤 ′′. The claim now follows from statement
4) of Theorem 3.12. □

If the condition 0 ∉ 𝑃𝛤 is not satisfied, then 𝑐-persistency with
espect to 𝛤 may fail to hold. Indeed, take any system of the form
1.1) such that (O), (P2) and (N2) are satisfied, 𝑑 is not strictly positive,
(𝑢e, 0) = 0 for some 𝑢e ∈ 𝑈 , 𝑢(𝑡) ≡ 𝑢e and 𝑣(𝑡) ≡ 0: if 𝑥0 = 0 and 𝑥−1 ≠ 0

s such that 𝑑⊤𝑥−1 = 0, then 𝑥(𝑡) ≡ 0 is the solution of (1.1), and hence
1.1) is not 𝑐-persistent with respect to compact sets 𝛤 ⊂ R2𝑛

+ which
ontain [[𝑥0, 𝑥−1]].

As the following example shows, (P2) does not imply (O), and
herefore, the explicit requirement in Corollary 3.13 that (O) holds is
ot redundant.

xample 3.14. Consider

=
(

0 0
)

, 𝑏 =
(

1
)

, 𝑐 = 0, 𝑑 =
(

0
)

.

0 1∕2 1 1
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Then,

𝜙 = (𝑑⊤(𝐼 − 𝐴)−1, 𝑑⊤) = (0, 2, 0, 1) and 𝑐⊤(�̃� + �̃�𝑐⊤)2 = (0, 1∕2, 0, 1),

showing that (P2) holds with 𝜏 = 2 and 𝜀 = 1∕4. Furthermore,

ker O(𝑐⊤, 𝐴) = R𝑛 and ker O(𝑑⊤, 𝐴) = ker
(

0 1
0 1∕2

)

= {(𝑧, 0)⊤ ∶ 𝑧 ∈ R},

and thus, (O) is not satisfied. We therefore cannot expect that the
conclusions of Corollary 3.13 hold, and indeed they do not, as we now
show. To this end, we note that in this example 𝑝 = 1∕𝐆(1) = 1∕2. Let
𝑓 ∶ R+ → R+ be continuous and such that (N2) holds with 𝑝 = 1∕2 and
𝑓 (0) = 0. Trivially, the singleton 𝛤 ∶= {(1, 0, 1, 0)⊤} ⊂ R4

+ is compact
and such that 0 ∉ 𝑃𝛤 . It is straightforward to see that the solution 𝑥
of (1.1) with 𝑣 = 0 and 𝑥0 = 𝑥−1 = (1, 0)⊤ satisfies 𝑥(𝑡) = 0 for all 𝑡 ∈ N,
showing that (1.1) is not 𝑐-persistent with respect to 𝛤 . ◊

Next, we provide a simple example to illustrate Theorem 3.12.

Example 3.15. Consider the special case of (1.1) wherein the quadru-
ple (𝐴, 𝑏, 𝑐⊤, 𝑑⊤) satisfies the conditions

𝐴𝑏 = 0, 𝑐⊤𝑏 = 0 and 𝑑⊤𝑏 > 0, (3.19)

and thus, 𝑝 = (𝑑⊤𝑏)−1 < ∞. We assume that 𝑓 satisfies hypothesis (N3)
(which coincides with (N2)).
(a) Statement (3) of Theorem 3.12 guarantees that (1.1) is 𝑐-persistent
with respect to any non-empty compact subset of the set 𝛤 ′. In the
specific example given by

𝐴 =
(

0 1
0 0

)

, 𝑏 = 𝑑 =
(

1
0

)

and 𝑐 =
(

0
0

)

,

the set 𝛤 ′ can be expressed as

𝛤 ′ =
{

(𝑧1, 𝑧2, 𝑧3, 𝑧4)⊤ ∈ R4
+ ∶ 𝑧1 > 0 and 𝑧2 + 𝑧3 > 0

}

.

(b) Returning to the class of quadruples (𝐴, 𝑏, 𝑐⊤, 𝑑⊤) given by (3.19),
we note that it follows from Lemma 3.11 that hypothesis (P2) is
not satisfied. In general, as statement (4) of Theorem 3.12 is only a
sufficient condition, this does not imply that its persistency conclusion
fails to hold. We will now show that, in the special scenario determined
by (3.19), the conclusion of statement (4) of Theorem 3.12 is not valid,
that is, there exist a compact subset 𝛤 of 𝛤 ′′ and a nonlinearity 𝑓
satisfying (N2) such that (1.1) is not 𝑐-persistent with respect to 𝛤 ,
where 𝛤 ′′ is defined as in statement (4) of Theorem 3.12. To this end,
choose 𝜉−1 ∈ R𝑛+ such that 𝑑⊤𝜉−1 = 0. It is clear that 𝜉 ∶= [[𝑏, 𝜉−1]] ∉ 𝛤 ′,
so part (a) does not apply. However, as

F(𝜉) = (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1𝑏 + 𝑑⊤𝜉−1 = 𝑑⊤𝑏 > 0,

it follows that 𝜉 ∈ 𝛤 ′′. We show that, given any nonlinearity 𝑓 such
that (N2) holds and 𝑓 (0, 𝑢e) = 0 for some 𝑢e ∈ 𝑈 , the system (1.1) is
not 𝑐-persistent with respect to {𝜉}. Let 𝑥 be the solution of (1.1) with
𝑢(𝑡) ≡ 𝑢e and 𝑣(𝑡) ≡ 0 and such that 𝑥(0) = 𝑏 and 𝑥(−1) = 𝜉−1. A routine
induction argument shows that there exists 𝜆𝑡 ≥ 0 such that

�̃�(2𝑡) = 𝜆𝑡

(

𝑏
0

)

∀ 𝑡 ∈ N.

Hence, 𝑐⊤�̃�(2𝑡) = (𝑐⊤, 𝑑⊤)�̃�(2𝑡) = 0 for all 𝑡 ∈ N, establishing that the
system is not 𝑐-persistent with respect to {𝜉}. ◊

3.2. Excitability

In this section we show that even for sets 𝛤 of initial conditions for
which 0 ∈ 𝑃𝛤 , the system (1.1) may be ‘‘kicked’’ into a persistency
regime by discrete-time ‘‘delta functions’’ of the form

𝑣 = 𝜃𝑡0𝜂, where 𝑡0 ∈ N0, 𝜂 ∈ R𝑛+ and 𝜃𝑡0 (𝑡) ∶=

{

1, 𝑡 = 𝑡0
0, 𝑡 ≠ 𝑡0 .

This is addressed in the following definition.
8

Definition 3.16. Assume that there exists 𝜌 > 0 such that {𝑧 ∈ R𝑛+ ∶
‖𝑧‖ ≤ 𝜌} ⊂ 𝑉 . Given 𝛤 ⊂ R2𝑛

+ and 𝑡0 ∈ N0, we say that (1.1) is
(a) 𝑐-excitable by small inputs with respect to 𝛤 and time 𝑡0 if, for every
𝜀 ∈ (0, 𝜌], there exist 𝜏 ∈ N0, 𝛿 > 0 and 𝜂 ∈ R𝑛+ satisfying ‖𝜂‖ ≤ 𝜀 and
such that the solution 𝑥 of (1.1) with 𝑣 = 𝜃𝑡0𝜂 satisfies

𝑦𝑥(𝑡 + 𝑡0 + 𝜏) = 𝑐⊤�̃�(𝑡 + 𝑡0 + 𝜏)

= 𝑐⊤𝑥(𝑡 + 𝑡0 + 𝜏) + 𝑑⊤𝑥(𝑡 + 𝑡0 + 𝜏 − 1) ≥ 𝛿 ∀ 𝑡 ∈ N0 (3.20)

or all (𝑥0, 𝑥−1) ∈ 𝛤 and all functions 𝑢 ∶ N0 → 𝑈 .
b) strictly 𝑐-excitable by small inputs with respect to 𝛤 and time 𝑡0 if, for
very 𝜀 ∈ (0, 𝜌], there exist 𝜏 ∈ N0 and 𝛿 > 0 such that the solution 𝑥
f (1.1) satisfies (3.20) for all (𝑥0, 𝑥−1) ∈ 𝛤 , all functions 𝑢 ∶ N0 → 𝑈
nd all 𝑣 = 𝜃𝑡0𝜂 with 𝜀∕2 ≤ ‖𝜂‖ ≤ 𝜀. ◊

Trivially, strict 𝑐-excitability implies 𝑐-excitability, but not necessar-
ly conversely. The former concept is independent of the ‘‘direction’’ of
he vector 𝜂: for every forcing function 𝑣 = 𝜃𝑡0𝜂 such that 𝜀∕2 ≤ ‖𝜂‖ ≤ 𝜀,
he inequality (3.20) holds (provided that the initial condition is in
). We recall that the excitability concept introduced in [10] refers

o an ‘‘excitation of all states’’ property (by application of a suitable
on-negative input under zero initial conditions). The notion of 𝑐-
xcitability by small inputs, although quite different, is inspired by this
oncept.

The following corollary provides sufficient conditions for 𝑐-
xcitability. This result shows the strength of the 𝑐-excitability con-
epts, namely, that under suitable conditions, (strict) 𝑐-excitability
olds with respect to arbitrary compact sets of initial conditions, as
as already hinted at the beginning of this section.

orollary 3.17. Assume that hypotheses (N2) and (P2) are satisfied,
nd there exists 𝜌 > 0 such that {𝑧 ∈ R𝑛+ ∶ ‖𝑧‖ ≤ 𝜌} ⊂ 𝑉 . Let 𝛤 ⊂ R2𝑛

+ be
ompact and 𝑡0 ∈ N0. Then (1.1) is 𝑐-excitable by small inputs with respect
o 𝛤 and time 𝑡0. Under the additional assumption that hypothesis (O) holds,
1.1) is strictly 𝑐-excitable by small inputs with respect to 𝛤 and time 𝑡0.

roof. Let 𝛤 ⊂ R2𝑛
+ be compact, 𝑡0 ∈ N0 and 𝜀 ∈ (0, 𝜌]. By statement

1) of Proposition 3.1 there exists 𝛾 > 0 such that the solution 𝑥 of (1.1)
atisfies

(𝑡) ∈ {𝑧 ∈ R𝑛+ ∶ ‖𝑧‖ ≤ 𝛾} =∶ 𝐶 ∀ 𝑡 ∈ N0

or all [[𝑥0, 𝑥−1]] ∈ 𝛤 and all functions 𝑢 ∶ N0 → 𝑈 and 𝑣 ∶ N0 → 𝑉 . As
≠ 0, there exists 𝜂 ∈ R𝑛+ such that ‖𝜂‖ ≤ 𝜀 and 𝑑⊤𝜂 > 0. Noting that

([[𝜂, 0]]) = (𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1𝜂 ≥ 𝑑⊤
∞
∑

𝑗=0
𝐴𝑗𝜂 ≥ 𝑑⊤𝜂 > 0,

t follows that the compact set

̂ ∶=
{

[[𝜉0, 𝜉−1]] ∶ 𝜉0, 𝜉−1 ∈ 𝐶 and 𝜉0 ≥ 𝜂
}

⊂ R2𝑛
+

s contained in 𝛤 ′′. Consequently, by statement (4) of Theorem 3.12,
ystem (1.1) is 𝑐-persistent with respect to 𝛤 . This means that there
xist 𝛿 > 0 and 𝜏 ∈ N0 such that the solution 𝑥 of (1.1) satisfies

𝑥(𝑡 + 𝜏) = 𝑐⊤𝑥(𝑡 + 𝜏) + 𝑑⊤𝑥(𝑡 + 𝜏 − 1) ≥ 𝛿 ∀ 𝑡 ∈ N0 (3.21)

or all [[𝑥0, 𝑥−1]] ∈ 𝛤 , all functions 𝑢 ∶ N0 → 𝑈 and 𝑣 ∶ N0 → 𝑉 .
Now let [[𝑥0, 𝑥−1]] ∈ 𝛤 , 𝑢 ∶ N0 → 𝑈 be arbitrary, 𝑣 = 𝜃𝑡0𝜂 and 𝑥 be

he corresponding solution of system (1.1). Then 𝑥(𝑡0+1), 𝑥(𝑡0) ∈ 𝐶 and
(𝑡0 + 1) ≥ 𝑣(𝑡0) = 𝜂, implying that [[𝑥(𝑡0 + 1), 𝑥(𝑡0)]] ∈ 𝛤 . Setting, for all
∈ N0,

̂(𝑡) ∶= 𝑥(𝑡+𝑡0+1), �̂�(𝑡) ∶= 𝑢(𝑡+𝑡0+1), �̂�(𝑡) ∶= 𝑣(𝑡+𝑡0+1) = 𝜃𝑡0 (𝑡+𝑡0+1)𝜂,

e have that �̂� is the solution of (1.1) corresponding to the forcing
unctions �̂� and �̂� = 0 and such that [[�̂�(0), �̂�(−1)]] = [[𝑥(𝑡0+1), 𝑥(𝑡0)]] ∈ 𝛤 .
onsequently, invoking (3.21),

(𝑡 + 𝑡 + 𝜏 + 1) = 𝑦 (𝑡 + 𝜏) ≥ 𝛿 ∀ 𝑡 ∈ N ,
𝑥 0 �̂� 0
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Fig. 4.1. Illustration of the sector condition (4.1). The dashed lines have slope ±𝑝.

showing that (1.1) is 𝑐-excitable by small inputs with respect to 𝛤 and
ime 𝑡0.

Finally, assume that hypothesis (O) holds. Changing the definition
f 𝛤 to

̂ ∶=
{

[[𝜉0, 𝜉−1]] ∶ 𝜉0, 𝜉−1 ∈ 𝐶 and ‖𝜉0‖ ≥ 𝜀∕2
}

⊂ R2𝑛
+

e have that 𝛤 is compact and 0 ∉ 𝑃𝛤 . Corollary 3.13 guarantees that
1.1) is 𝑐-persistent with respect to 𝛤 . The above argument can now be
sed to establish that (1.1) is strictly 𝑐-excitable by small inputs with
espect to 𝛤 and time 𝑡0. □

. Stability

In this section, we show that, under suitable assumptions on the
onlinearity 𝑓 , the boundedness and persistence results of Section 3
nsure certain stability properties of (1.1). Recall that model (1.1)
ontains external forcing terms 𝑢 and 𝑣 and, consequently, all stabil-
ty notions must incorporate these terms. As such, we appeal to the
o-called Input-to-State Stability (ISS) paradigm of nonlinear control
heory as a suitable analytical framework, see the survey articles [36,
7] and the recent monograph [38].

Given that we may express (1.1) as an augmented (and undelayed)
ur’e system (3.1), our approach to stability is to leverage ideas and
ethods from the semi-global stability theory developed in [14,15].
o this end, we introduce the following hypothesis (cf. [14, hypothesis
N3)]).

(N4) Hypothesis (N2) holds and there exists 𝑢e ∈ 𝑈 such that
|

|

|

𝑓 (𝑢e, 𝑧) − 𝑓 (𝑢e, 𝑧e)||
|

< 𝑝||
|

𝑧 − 𝑧e||
|

∀ 𝑧 > 0, 𝑧 ≠ 𝑧e , (4.1a)

where 𝑧e > 0 is the unique positive solution of 𝑓 (𝑢e, 𝑧) = 𝑝𝑧, and

lim sup
𝑧→𝑧e

|

|

|

𝑓 (𝑢e, 𝑧) − 𝑓 (𝑢e, 𝑧e)||
|

|

|

|

𝑧 − 𝑧e||
|

< 𝑝. (4.1b)

The existence of positive 𝑧e such that 𝑓 (𝑢e, 𝑧e) = 𝑝𝑧e follows from
the continuity of 𝑓 and hypothesis (N2). The uniqueness of 𝑧e is a
consequence of the inequality (4.1a). The inequality (4.1a) is a so-called
sector condition and means that the graph of 𝑧 ↦ 𝑓 (𝑧, 𝑢e) − 𝑓 (𝑧e, 𝑢e) is
strictly ‘‘sandwiched’’ between the straight lines 𝑧 ↦ ±𝑝(𝑧 − 𝑧e). The
condition (4.1b) means that 𝑧↦ 𝑓 (𝑢e, 𝑧) is non-tangential to these lines
at 𝑧 = 𝑧e. For reasons which will be explained below, 𝑢e is referred to
as an equilibrium inducing vector. An illustration of condition (N4) is
given in Fig. 4.1.

A number of sufficient conditions on the nonlinearity 𝑓 for the
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sector condition (4.1a) in (N4) to hold can be found in [15, Lemmas 4
5.4, 6.3]. In the typical case that 𝑧 ↦ 𝑓 (𝑤, 𝑧) is differentiable at
𝑧 = 𝑧e, verifying condition (4.1b) essentially involves studying the
absolute value of the partial derivative |𝜕𝑓∕𝜕𝑧| at 𝑧 = 𝑧e, and may
be investigated directly. Calculations of this type appear across the
examples in [14,15,32], such as [14, Example 6.1] and [32, Example
5.5].

Under hypothesis (N4), it is routine to establish that

𝑥e ∶= (𝐼 − 𝐴)−1𝑏𝑝𝑧e > 0 (4.2)

atisfies (𝑐⊤ + 𝑑⊤)𝑥e = 𝑧e, and is an equilibrium of (1.1) with 𝑢(𝑡) ≡ 𝑢e

nd 𝑣(𝑡) ≡ 0. Equivalently,

�̃�e ∶= [[𝑥e, 𝑥e]] = (𝐼 − �̃�)−1�̃�𝑝𝑧e > 0

atisfies 𝑐⊤�̃�e = 𝑧e, and is an equilibrium of the augmented Lur’e system
3.1) with 𝑢(𝑡) ≡ 𝑢e and �̃�(𝑡) ≡ 0, cf. [14, Lemma 5.1] or [15, Lemmas
.1-5.3].

The following theorem is the main stability result of this paper.

heorem 4.1. Let 𝛤 ⊂ R2𝑛
+ be non-empty and compact and assume

hat (N4) holds. If (1.1) is 𝑐-persistent with respect to 𝛤 , then there exist
onstants 𝑀 ≥ 1, 𝑁 > 0, 𝑟 > 0 and 𝜅 ∈ (0, 1) such that, for all
[𝑥0, 𝑥−1]] ∈ 𝛤 , all 𝑢∶N0 → 𝑈 and all 𝑣∶N0 → 𝑉 , the solution 𝑥 of (1.1)
atisfies

𝑥(𝑡)−𝑥e‖ ≤𝑀𝜅𝑡‖�̃�0−�̃�e‖+𝑁
(

‖𝑣‖𝓁∞(0,𝑡)+‖𝛽𝑟◦𝑢‖𝓁∞(0,𝑡)
)

∀𝑡 ∈ N0, (4.3)

here �̃�0 ∶= [[𝑥0, 𝑥−1]], ‖𝑣‖𝓁∞(0,𝑡) ∶= max{‖𝑣(𝑠)‖ ∶ 𝑠 = 0, 1,… , 𝑡} and

𝑟(𝑤) ∶= max
0≤𝑧≤𝑟

|𝑓 (𝑢e, 𝑧) − 𝑓 (𝑤, 𝑧)| ∀𝑤 ∈ 𝑈.

Theorem 4.1 can be proved by arguments very similar to those
sed in [14, proof of statement (a) of Theorem 5.2], applied to the
ugmented system (3.1) with 𝑟 = 2𝛾‖𝑐‖, where 𝛾 is as in (3.4). The
etails are left to the interested reader. We remark that, for simplicity,
e have appealed to the stability approach taken in [14] which yields

he exponential input-to-state stability estimate (4.3), namely the ex-
onential decay in the contribution of the initial state and the linearly
ounded contribution of the forcing functions 𝑢 and 𝑣. If, instead, the
pproach of [15] had been invoked, then condition (4.1b) in (N4) could
ave been omitted, at the expense of a slower, non-exponential, decay
f the contribution of the initial state in the estimate of ‖𝑥(𝑡) − 𝑥e‖
cf. [15, inequality (5.6)]).

If, in Theorem 4.1, the nonlinearity 𝑓 is globally Lipschitz in its first
ariable, that is, there exists 𝜆 > 0 such that

𝑓 (𝑤1, 𝑧) − 𝑓 (𝑤2, 𝑧)| ≤ 𝜆‖𝑤1 −𝑤2‖ ∀ 𝑧 ∈ R+, ∀𝑤1, 𝑤2 ∈ 𝑈,

hen the constant 𝑟 becomes redundant and (4.3) simplifies to

𝑥(𝑡) − 𝑥e‖ ≤𝑀𝜅𝑡‖�̃�0 − �̃�e‖ +𝑁
(

‖𝑣‖𝓁∞(0,𝑡) + 𝜆‖𝑢e − 𝑢‖𝓁∞(0,𝑡)
)

∀ 𝑡 ∈ N0,

n application of Corollary 3.7, Theorem 4.1 and [14, Statement (b) of
heorem 5.2] leads to the following stability result.

orollary 4.2. Assume that (P1) and (N4) are satisfied. Then the
ollowing statements hold.

(1) For every non-empty compact set 𝛤 ⊂ R2𝑛
+ such that 0 ∉ 𝛤 , there

exist 𝑀 ≥ 1, 𝑁 > 0, 𝑟 > 0 and 𝜅 ∈ (0, 1) such that, for all
[[𝑥0, 𝑥−1]] ∈ 𝛤 , all 𝑢∶N0 → 𝑈 and all 𝑣∶N0 → 𝑉 , the solution
𝑥 of (1.1) satisfies (4.3).

(2) For all 𝑥0, 𝑥−1 ∈ R𝑛+, [[𝑥0, 𝑥−1]] ≠ 0, all 𝑢∶ N0 → 𝑈 , and all
𝑣∶N0 → 𝑉 , if 𝑢(𝑡) → 𝑢e and 𝑣(𝑡) → 0 as 𝑡 → ∞, then the solution 𝑥
of (1.1) has the convergence property 𝑥(𝑡) → 𝑥e as 𝑡 → ∞.

The next result is an immediate consequence of Theorems 3.12 and

.1.
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Corollary 4.3. Let 𝛤 ⊂ R2𝑛
+ be non-empty and compact, let the subsets

′ and 𝛤 ′′ of R2𝑛
+ be given by (3.17) and (3.18), respectively, and assume

that (N4) is satisfied. If either
(a) (N3) holds and 𝛤 ⊂ 𝛤 ′, or
b) (P2) holds and 𝛤 ⊂ 𝛤 ′′,
then there exist 𝑀 ≥ 1, 𝑁 > 0, 𝑟 > 0 and 𝜅 ∈ (0, 1) such that, for all

[[𝑥0, 𝑥−1]] ∈ 𝛤 , all 𝑢∶N0 → 𝑈 and all 𝑣∶N0 → 𝑉 , the solution 𝑥 of (1.1)
satisfies (4.3).

Finally, under the assumption that (O), (P2) and (N4) hold, we
derive stability and convergence properties which are similar (but not
identical) to those in Corollary 4.2.

Corollary 4.4. Assume that (O), (P2) and (N4) are satisfied. Then the
following statements hold.

(1) For every non-empty compact set 𝛤 ⊂ R2𝑛
+ such that 0 ∉ 𝑃𝛤 , there

exist 𝑀 ≥ 1, 𝑁 > 0, 𝑟 > 0 and 𝜅 ∈ (0, 1) such that, for all
[[𝑥0, 𝑥−1]] ∈ 𝛤 , all 𝑢∶N0 → 𝑈 and all 𝑣∶N0 → 𝑉 , the solution
𝑥 of (1.1) satisfies (4.3).

(2) For all 𝑥0, 𝑥−1 ∈ R𝑛+, 𝑥0 ≠ 0, all 𝑢∶N0 → 𝑈 , and all 𝑣∶N0 → 𝑉 , if
𝑢(𝑡) → 𝑢e and 𝑣(𝑡) → 0 as 𝑡 → ∞, then the solution 𝑥 of (1.1) has
the convergence property 𝑥(𝑡) → 𝑥e as 𝑡 → ∞.

Proof. (1) This statement follows from Corollary 3.13 and Theo-
rem 4.1.
(2) Let 𝑥0, 𝑥−1 ∈ R𝑛+, 𝑥0 ≠ 0, set �̃�0 ∶= [[𝑥0, 𝑥−1]], and let 𝑢∶N0 → 𝑈
and 𝑣∶ N0 → 𝑉 be such that 𝑢(𝑡) → 𝑢e and 𝑣(𝑡) → 0 as 𝑡 → ∞.
By statement (1) of Proposition 3.1, there exists 𝛾 > 0 such that the
solution 𝑥 of (1.1) satisfies ‖�̃�(𝑡)‖ ≤ 𝛾 for all 𝑡 ∈ N0. By Corollary 3.13,
(1.1) is 𝑐-persistent with respect to the set {�̃�0} and consequently, there
exists 𝛿 ∈ (0, 𝛾∕2) and 𝜏 ∈ N0 such that ‖�̃�(𝑡 + 𝜏)‖ ≥ 2𝛿 for all 𝑡 ∈ N0,
where �̃�(𝑡) = [[𝑥(𝑡), 𝑥(𝑡 − 1)]]. Hence, for every 𝑡 ∈ N0, we have that
‖𝑥(𝑡 + 𝜏)‖ ≥ 𝛿 or ‖𝑥(𝑡 + 1 + 𝜏)‖ ≥ 𝛿. Setting

𝛤 ∶= {[[𝜉0, 𝜉−1]] ∈ R2𝑛
+ ∶ ‖𝜉0‖ ≥ 𝛿 and ‖

‖

‖

[[𝜉0, 𝜉−1]]‖‖
‖

≤ 𝛾} and

𝛩 ∶= {𝑡 ∈ N0 ∶ �̃�(𝑡) ∈ 𝛤 }, (4.4)

it is clear that 𝛤 is compact, 0 ∉ 𝑃𝛤 , and

{𝑡, 𝑡 + 1} ∩ 𝛩 ≠ ∅ for all 𝑡 ∈ N0 such that 𝑡 ≥ 𝜏. (4.5)

For 𝑠 ∈ N0, let 𝑧𝑠 denote the solution of the initial-value problem

𝑧(𝑡 + 1) = 𝐴𝑧(𝑡) + 𝑏𝑓 ((𝑇𝑠𝑢)(𝑡), 𝑐⊤𝑧(𝑡) + 𝑑⊤𝑧(𝑡 − 1)) + (𝑇𝑠𝑣)(𝑡),

𝑧(0) = 𝑥(𝑠), 𝑧(−1) = 𝑥(𝑠 − 1), 𝑡 ∈ N0, (4.6)

where 𝑇𝑠 denotes the translation operator given by (𝑇𝑠𝑢)(𝑡) = 𝑢(𝑡 + 𝑠).
We note that

𝑥(𝑡 + 𝑠) = 𝑧𝑠(𝑡) ∀ 𝑡, 𝑠 ∈ N0.

An application of statement (1), in the context of system (4.6) and the
set 𝛤 given in (4.4), shows that there exist constants 𝑀 ≥ 1, 𝑁 > 0,
𝑟 > 0 and 𝜅 ∈ (0, 1) such that

‖𝑥(𝑡 + 𝑠) − 𝑥e‖ = ‖𝑧𝑠(𝑡) − 𝑥e‖ ≤𝑀𝜅𝑡‖�̃�(𝑠) − �̃�e‖ +𝑁‖𝛽𝑟◦𝑇𝑠𝑢‖𝓁∞

+𝑁‖𝑇𝑠𝑣‖𝓁∞ ∀ 𝑡 ∈ N0, ∀ 𝑠 ∈ 𝛩, (4.7)

where ‖ ⋅ ‖𝓁∞ denotes the supremum norm on the space of bounded
functions defined on N0. Given 𝜀 > 0, there exists 𝜃 ∈ 𝛩 such that
𝑁
(

‖𝑇𝜃𝑣‖𝓁∞ +‖𝛽𝑟◦𝑇𝜃𝑢‖𝓁∞
)

≤ 𝜀∕2 for all 𝑡 ∈ N0 as follows from (4.5) and
the hypothesis that 𝑢(𝑡) → 𝑢e and 𝑣(𝑡) → 0 as 𝑡 → ∞. Finally, choosing
𝜎 ∈ N0 such that 𝑀𝜅𝜎‖�̃�(𝜃)− �̃�e‖ ≤ 𝜀∕2, it follows from (4.7) with 𝑠 = 𝜃
that ‖𝑥(𝑡) − 𝑥e‖ ≤ 𝜀 for all 𝑡 ∈ N0 such that 𝑡 ≥ 𝜎 + 𝜃, completing the
proof. □
10

𝑐

5. Examples

We illustrate our results through three examples: a stage-structured
population model with delay, and two models relating to spatially
structured population models.

Example 5.1 (A Stage-structured Population Model with Delay). Let 𝑥(𝑡) =
(𝑥1(𝑡), 𝑥2(𝑡),… , 𝑥𝑛(𝑡))⊤ denote the population at time-step 𝑡 ∈ N0 of a
single, local, stage-structured population with 𝑛 stages, where 𝑛 ≥ 2.
Inspired by the model appearing in [15, Example 6.1], assume that 𝑥
is governed by: for 𝑡 ∈ N0

𝑥1(𝑡 + 1) = 𝑠1𝑥1(𝑡) + 𝑔
(

𝑢(𝑡), 𝑑⊤𝑥(𝑡 − 1)
)

𝑑⊤𝑥(𝑡 − 1) + 𝑣1(𝑡)

𝑥𝑘(𝑡 + 1) = 𝑠𝑘𝑥𝑘(𝑡) + ℎ𝑘−1𝑥𝑘−1(𝑡) + 𝑣𝑘(𝑡) 𝑘 ∈ {2, 3,… , 𝑛} .

}

(5.1)

Here 𝑠𝑘 and ℎ𝑘 are probabilities (or proportions) denoting survival
(or stasis) within stage-classes and movement into subsequent stage-
classes, respectively, which we, therefore, assume satisfy ℎ𝑖 ∈ (0, 1) for
𝑖 ∈ {1, 2,… , 𝑛 − 1}, 𝑠𝑗 ∈ [0, 1) for 𝑗 ∈ {1, 2,… , 𝑛} and 𝑠𝑖 + ℎ𝑖 ≤ 1 for all
𝑖 ∈ {1, 2,… , 𝑛−1}. We further assume that 𝑠𝑛 > 0 and 𝑔 ∶ R2

+×R+ → R+
is continuous. Writing

𝑑 =
(

𝑑1,… , 𝑑𝑛
)⊤ ∈ R𝑛+, (5.2)

the nonnegative constants 𝑑𝑘 model the fecundity of the 𝑘th stage-class.
For fixed 𝑤 ∈ R2

+, the function 𝑔(𝑤, ⋅ ) represents the density-dependent
per-capita survival probability of new individuals. Consequently, the
product term

𝑔
(

𝑢(𝑡), 𝑑⊤𝑥(𝑡 − 1)
)

𝑑⊤𝑥(𝑡 − 1) = 𝑔
(

𝑢(𝑡),
𝑛
∑

𝑘=1
𝑑𝑘𝑥𝑘(𝑡 − 1)

)

𝑛
∑

𝑘=1
𝑑𝑘𝑥𝑘(𝑡 − 1)

in (5.1) captures the recruitment into the population at time-step
𝑡 + 1. Here, the forcing function 𝑢 represents the effects of temporal
nvironmental or demographic fluctuations which are assumed to affect
ecruitment only (in this example it takes values in R2

+). The exoge-
ous additive forcing variable 𝑣 represents structured migration into
he population. We assume, as is typical for such structured models,
hat reproduction adds individuals into the first stage-class, perhaps
epresenting the number of eggs, juveniles or seeds, in an insect, animal
r plant model, respectively.

The model (5.1) differs from that in [15, Example 6.1] via the inclu-
ion of the delayed recruitment, which is biologically plausible when
estation/reproduction is longer than a single time-step. System (5.1)
ay be written in the form (1.1) with

∶=

⎛

⎜

⎜

⎜

⎜

⎝

𝑠1 0 ⋯ 0
ℎ1 𝑠2 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ ℎ𝑛−1 𝑠𝑛

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑏 ∶=

⎛

⎜

⎜

⎜

⎜

⎝

1
0
⋮
0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑐 ∶= 0, 𝑓 (𝑤, 𝑧) ∶= 𝑔(𝑤, 𝑧)𝑧,

given by (5.2) and 𝑣(𝑡) ∶=
(

𝑣1(𝑡), 𝑣2(𝑡),… , 𝑣𝑛(𝑡)
)⊤.

As 𝑠𝑘 < 1 for all 𝑘 = 1,… , 𝑛, the matrix 𝐴 is asymptotically stable. To
implify the presentation, we assume that 𝑑1 = ⋯ = 𝑑𝑛−1 = 0 and 𝑑𝑛 > 0,
o that only the final stage class is reproductively active. Elementary
alculations give that

(1) =
𝑑𝑛

∏𝑛−1
𝑘=1 ℎ𝑘

∏𝑛
𝑘=1(1 − 𝑠𝑘)

> 0,

o that 𝑝 = 1∕𝐆(1) is finite.
We examine the extent to which the various hypotheses hold. A

alculation shows that the 𝑛×𝑛-matrix O(𝑑⊤, 𝐴) is lower triangular with
he 𝑘th anti-diagonal entry given by

𝑘 = 𝑑𝑛
𝑛−𝑘
∏

𝑗=0
ℎ𝑗 > 0, where ℎ0 ∶= 1,

nd the anti-diagonal is indexed from bottom left to top right. Conse-
uently, O(𝑑⊤, 𝐴) has full rank and, therefore, property (O) holds. Since
= 0 and 𝑑 is not strictly positive, it follows from Lemma 3.6 that
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property (P1) does not hold. We claim that property (P2) is satisfied.
Whilst this may be verified by direct calculations, we provide an
alternative argument based on Lemma 3.9. For which purpose, observe
first that 𝑑⊤𝐴𝑘𝑏 = 𝑑𝑛[𝐴𝑘](𝑛,1) > 0 if 𝑘 ≥ 𝑛−1, where [𝐴𝑘](𝑖,𝑗) denotes the
ntry of 𝐴𝑘 in position (𝑖, 𝑗). In particular, 𝜇 ∶= min(𝑑⊤𝐴𝑛−1𝑏, 𝑑⊤𝐴𝑛𝑏) > 0
see (3.14)). Moreover, let 𝛥𝑖𝑗 denote the 𝑛 × 𝑛-matrix with single non-
ero element equal to 1 in position (𝑖, 𝑗). A routine induction argument

shows that

(�̃� + �̃�𝑐⊤)𝑞 ≥
(

𝐴𝑞 𝐴𝑞−1𝑑𝑛𝛥1𝑛
∗ ∗

)

∀ 𝑞 ∈ N,

o that

𝑑⊤, 𝑑⊤
)

(�̃� + �̃�𝑐⊤)𝑞 ≥
(

𝑑⊤𝐴𝑞 , 𝑑⊤𝐴𝑞−1𝑑𝑛𝛥1𝑛
)

∀ 𝑞 ∈ N.

The structure of 𝐴 and 𝑑 gives 𝑑⊤𝐴𝑛−1 ≫ 0 and 𝑑⊤𝐴𝑛−1𝑑𝑛𝛥1𝑛 ≥ 𝛿𝑑⊤ for a
suitable constant 𝛿 > 0. As 𝜙 is of the form 𝜙 =

(

∗ , 𝑑⊤
)⊤, it follows that

there exists a constant 𝜀 ∈ (0, 𝛿] such that
(

𝑑⊤, 𝑑⊤
)

(�̃� + �̃�𝑑⊤)𝑛−1 ≥ 𝜀𝜙⊤.
This, together with the positivity of 𝜇, and subsequent application of
Lemma 3.9 shows that (P2) holds.

As usual, whether or not properties (N1), (N2) and (N4) are satisfied
depends on the interplay between the nonlinearity 𝑓 and the constant
𝑝. Note that, since 𝑑⊤𝑏 = 0, property (N3) does not hold.

As a numerical example, we consider a population stratified into
𝑛 = 4 stages, with model data

𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0
0.62 0.16 0 0
0 0.36 0.23 0
0 0 0.53 0.35

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑑4 = 30;

which gives rise to

𝐆(1) = 𝑑⊤(𝐼 − 𝐴)−1𝑏 = 8.4413 = 1∕𝑝, equivalently, 𝑝 = 0.1185.

We consider the Beverton–Holt type nonlinearity

𝑓 (𝑤, 𝑧) ∶= 𝑔(𝑤, 𝑧)𝑧, 𝑔(𝑤, 𝑧) ∶=
𝜆𝑤1

1 + 𝜅𝑤2𝑧
∀ 𝑧 ≥ 0. (5.3)

Here 𝜆 ∈ (0, 1) denotes the per capita survival probability at low
population abundance when 𝑤1 = 1; the constant 𝜅 > 0 plays the role
of moderating survival probabilities at higher population abundance.
For fixed non-empty, compact 𝑈 ⊆ (0, 1∕𝜆) × (0,∞), arguments as in
the proofs of [14, Proposition 4.3] and [15, Lemma 5.4] show that 𝑓
atisfies (N1), (N2) and (N4) if

min
𝑤∈𝑈

𝑔(𝑤, 0) = 𝜆 min
(𝑤1 ,𝑤2)∈𝑈

𝑤1 > 𝑝 . (5.4)

In this case, routine calculations show that, for fixed equilibrium induc-
ing vector 𝑢e = (𝑢e1, 𝑢

e
2)
⊤ ∈ 𝑈 ,

𝑧e ∶=
𝜆𝑢e1 − 𝑝
𝑝𝜅𝑢e2

,

s the unique positive solution of 𝑝𝑧 = 𝑓 (𝑢e, 𝑧) and, consequently,

𝑥e ∶= (𝐼 − 𝐴)−1𝑏𝑝𝑧e =

⎛

⎜

⎜

⎜

⎜

⎝

1
0.7381
0.3451
0.2814

⎞

⎟

⎟

⎟

⎟

⎠

𝜆𝑢e1 − 𝑝
𝜅𝑢e2

,

is the corresponding unique non-zero equilibrium population of (5.1)
with 𝑢(𝑡) ≡ 𝑢e and 𝑣(𝑡) ≡ 0. We see that variations of 𝑢e1 and 𝑢e2 from
1 have the effect of replacing 𝜆 and 𝜅 by 𝜆𝑢e1 and 𝜅𝑢e2, respectively.
In particular, 𝑧e, and hence also 𝑥e, is a decreasing function of the
parameter 𝜅 and of 𝑢e2.

We take

𝑢e ∶= (1, 1)⊤, 𝜆 = 0.95 and 𝜅 = 0.5,

with the graph of 𝑓 plotted in Fig. 5.1(a), showing that the sector
condition (N4) holds. To illustrate the persistence result Corollary 3.13,
11
Fig. 5.1(b) plots in grayscale the 𝑥4-component of 30 solutions of (5.1)
with 𝑢 ∶= 𝑢e, 𝑣 = 0 and (pseudo)random initial conditions such that

[[𝑥(0), 𝑥(−1)]] ∈ 𝛤 ∶= [0.1, 3]4 × [0, 2]4.

Evidently, 𝛤 is a non-empty, compact subset of R8
+ with 0 ∉ 𝑃𝛤 . For

clarity, the vertical axis in Fig. 5.1(b) has a logarithmic scale, and
we comment that the purpose is to visualise a system-level property.
Indeed, 𝑐-persistency is observed. Moreover, the hypotheses of Corol-
lary 4.4 are also satisfied, and convergence over time of 𝑥4(𝑡) to 𝑥e4 is
observed.

Next, we take 𝑈 ∶= [0.7, 1.3]2, and note that (5.4) is satisfied for
the given numerical scenario (𝜆 = 0.95 and 𝑝 = 0.1185). We consider
convergent 𝑢 of the form

𝑢(𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑢e 0 ≤ 𝑡 ≤ 10
(

𝐼 + 𝜃(0.95)𝑡−10
(

cos(0.3𝑡) 0
0 sin(0.3𝑡)

))

𝑢e 𝑡 > 10,

where 𝜃 ∈ [0, 0.3] plays the role of an amplitude parameter. We
assume that 𝑣 = 0 and that 𝑥(−1) = 𝑥(0) = 𝑥e. The interpretation
is that a disturbance from (𝑢, 𝑣, 𝑥) = (𝑢e, 0, 𝑥e) occurs after 𝑡 = 10.
The first component 𝑥1(𝑡) of 𝑥(𝑡) is plotted against 𝑡 in Fig. 5.1(c) for
varying 𝜃. Two phenomena are observed. First, the transient deviation
|𝑥1(𝑡) −𝑥e1| increases as ‖𝑢(𝑡) − 𝑢e‖ increases, facilitated by increasing 𝜃,
as expected from the inequality (4.3). Furthermore, for each value of
𝜃 > 0 considered, convergence |𝑥1(𝑡) − 𝑥e1| → 0 as 𝑡 → ∞ is observed, in
accordance with statement (2) of Corollary 4.4.

Finally, we perform numerical simulations with 𝑥(−1) = 𝑥(0) = 𝑥e,
𝑢(𝑡) ≡ 𝑢e = (1, 1)⊤ and 𝑣 given by

𝑣(𝑡) = 𝜃(0, 1, 0, 0)⊤(1 + sin(0.4𝑡)),

where 𝜃 again plays the role of an amplitude parameter. Graphs of
‖𝑥(𝑡) − 𝑥e‖1 against 𝑡 for increasing 𝜃 are plotted in Fig. 5.1(d). We
see that ‖𝑥(𝑡) − 𝑥e‖1 increases as 𝜃 (and hence 𝑣(𝑡)) increases, again in
accordance with the estimate (4.3). Note that the function 𝑧↦ 𝑓 (𝑢e, 𝑧)
iven by (5.3) is non-decreasing, and thus, if 𝑢(𝑡) ≡ 𝑢e, the difference

equation (5.1) is a monotone control system in the sense of [11]
(with respect to the nonnegative orthant R4

+ and input variable 𝑣). The
monotonicity properties observed in Fig. 5.1(d) is in accordance with
the predictions provided by the theory monotone control systems [11].
However, we emphasise that the theory developed in Sections 3 and 4
is not contingent on a monotone control systems structure. ◊

Example 5.2 (A Spatially and Stage-structured Population Model). Some
species have breeding areas where individuals move for reproduc-
tion [39]. The current example considers a population with two age
classes (juveniles and adults) spatially structured across three patches:
one is the breeding site and the other two (labelled 1 and 2) are feeding
ites. We model the following basic processes: adults produce juveniles,
enoted 𝐽 , in the breeding site; juveniles become adults and move
o site 1 or 2, denoted 𝐴1 and 𝐴2, respectively; moreover, adults in
atch 1 or 2 remain in that site or move to the other. Formalising the

verbal model description in [39], we arrive at the following system of
nonlinear difference equations:

𝐽 (𝑡 + 1) = 𝑓
(

𝐴1(𝑡) + 𝐴2(𝑡)
)

,

𝐴1(𝑡 + 1) = (1 − 𝑠)𝜂𝐽 (𝑡) + (1 − 𝑟1)𝜆𝐴1(𝑡) + 𝑟2𝜇𝐴2(𝑡),

𝐴2(𝑡 + 1) = 𝑠𝜂𝐽 (𝑡) + 𝑟1𝜆𝐴1(𝑡) + (1 − 𝑟2)𝜇𝐴2(𝑡),

⎫

⎪

⎬

⎪

⎭

(5.5)

here 𝑟1, 𝑟2, 𝑠, 𝜂, 𝜆, 𝜇 ∈ [0, 1] are constants and 𝑓 ∶ R+ → R+ is a non-
inearity, the biological interpretation of which is given in Table 5.1.

System (5.5) extends the Allen–Clark model, a scalar difference
quation of the form

(𝑡 + 1) = 𝛼𝑧(𝑡) + 𝛽𝑓 (𝑧(𝑡 − 1)),

named after Allen [40] and Clark [41], see also the bibliographical
otes in [42] for other early contributors). Indeed, after elimination
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(
‖

𝑧

Fig. 5.1. Numerical simulations illustrating Example 5.1. (a) Graph of the nonlinearity 𝑧 ↦ 𝑓 (𝑢e , 𝑧) in (5.3). The straight lines have slope ±𝑝 and intersect the graph of 𝑓 at 𝑧 = 𝑧e.
b) Plots of 𝑥4(𝑡) against 𝑡 for varying [[𝑥(0), 𝑥(−1)]] ∈ 𝛤 , with logarithmic scale on the vertical axis. The dotted line is 𝑥e4. (c) Plots of 𝑥1(𝑡) against 𝑡 for varying 𝜃. (d) Plots of
𝑥(𝑡) − 𝑥e‖1 against 𝑡 for varying 𝜃.
T
𝑟
a

Table 5.1
Interpretation of symbols in (5.5).

Symbol Interpretation (each per time-step)

𝑓 Recruitment function of new juveniles
𝑟𝑖 Proportion of adults who move from site 𝑖 to 3 − 𝑖
𝑠 Proportion of juveniles who move to patch 2
𝜂 Survival probability of juvenile transition to feeding sites
𝜆 Survival probability of adults in site 1
𝜇 Survival probability of adults in site 2

of 𝐽 (𝑡) from (5.5), we recover the above equation with 𝑧(𝑡) = 𝐴1(𝑡) or
(𝑡) = 𝐴1(𝑡) + 𝐴2(𝑡) by taking 𝑠 = 𝜇 = 𝑟1 = 𝑟2 = 0 or 𝜇 = 𝜆, respectively.

The dispersal is symmetric between the feeding sites if 𝑟1 = 𝑟2 =∶ 𝑟,
which we shall assume. To further simplify the presentation, we assume
that 𝜂 = 1. Eliminating 𝐽 (𝑡) from (5.5) yields a delayed Lur’e system of
the form (1.1) with 𝑛 = 2, and

𝑥(𝑡) ∶=
(

𝐴1(𝑡)
𝐴2(𝑡)

)

, 𝐴 ∶=
(

(1 − 𝑟)𝜆 𝑟𝜇
𝑟𝜆 (1 − 𝑟)𝜇

)

, 𝑏 ∶=
(

1 − 𝑠
𝑠

)

,

𝑐 ∶= 0 , 𝑑 ∶=
(

1
1

)

.

We assume that

0 < 𝜆 < 1 and 0 < 𝜇 < 1,

so that the column sums of the matrix 𝐴 are smaller than 1 and,
therefore, the matrix 𝐴 is asymptotically stable, see [43, Theorem
8.1.22]. An application of statement (3) of Lemma 3.6 yields that
property (P1) holds for all 𝑟 ∈ [0, 1] and all 0 < 𝜆, 𝜇 < 1. Consequently,
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t

the conclusions of Corollaries 3.7 and 4.2 hold, provided that the
nonlinearity 𝑓 satisfies (N2) and (N4), respectively.

We note the case 𝑟 = 0 corresponds to the absence of redistribution
of adults between the feeding patches. Ecological corridors or stepping
stones are used in ecosystems management to promote connectivity
between patches [44,45], that is, increasing the value of 𝑟. In the
following, we use the results of Sections 3 and 4 to investigate how
persistency of the total adult population and the asymptotic total adult
population are affected by changes in the parameter 𝑟.

We start with persistency. Routine calculations yield

𝐆(1) =
𝐶1𝑟 + 𝐶2
𝐶3𝑟 + 𝐶4

=∶ 𝐹 (𝑟),

with

𝐶1 ∶= 𝜆 + 𝜇, 𝐶2 ∶= 𝑠𝜇 − 𝜇 + 1 − 𝜆𝑠, 𝐶3 ∶= 𝜆 + 𝜇 − 2𝜆𝜇 and
𝐶4 ∶= 𝜆𝜇 − 𝜇 − 𝜆 + 1.

We compute that

𝐹 ′(𝑟) =
𝐶1𝐶4 − 𝐶2𝐶3

(𝐶3𝑟 + 𝐶4)2
,

and

𝐶1𝐶4 − 𝐶2𝐶3 = (𝜆 − 𝜇)(𝜆𝜇 − 𝜆 + 𝜆𝑠 + 𝜇𝑠 − 2𝜆𝜇𝑠) . (5.6)

he sign of 𝐶1𝐶4 − 𝐶2𝐶3 determines how 𝐹 changes with increasing
, and can take both signs depending on the interplay between 𝜆, 𝜇
nd 𝑠. We note that 𝐶1𝐶4 − 𝐶2𝐶3 is symmetric in 𝜆 and 𝜇 under the

ransformation 𝑠 ↦ 1 − 𝑠. This is intuitively obvious as swapping 𝜆 and
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𝜇, and replacing 𝑠 by 1 − 𝑠 amounts to swapping the labels of feeding
sites 1 and 2. Furthermore, as 𝑝 = 𝑝(𝑟) = 1∕𝐆(1) = 1∕𝐹 (𝑟), an increase
(decrease) in 𝐹 leads to a decrease (increase) in 𝑝. Assuming that

lim sup
𝑧→∞

𝑓 (𝑧)
𝑧

= 0,

the hypothesis (N2) becomes less (more) restrictive if 𝐹 (𝑟) is increasing
decreasing).

An inspection of (5.6) reveals several special cases, which we pro-
eed to highlight. First, if 𝜆 = 𝜇, then 𝐶1𝐶4 − 𝐶2𝐶3 = 0 and hence,
𝐹 is independent of 𝑟. In this case, the dynamics for 𝐴1 + 𝐴2 are
independent of the feeding site structure (essentially because both sites
are the same). Second, if 𝑠 ≈ 0, meaning juveniles strongly prefer site
, then

1𝐶4 − 𝐶2𝐶3 ≈ 𝜆(𝜆 − 𝜇)(𝜇 − 1)

which is positive when 𝜇 > 𝜆 and negative when 𝜇 < 𝜆. Third, and
conversely to the previous case, if 𝑠 ≈ 1, meaning juveniles strongly
refer site 2, then

1𝐶4 − 𝐶2𝐶3 ≈ 𝜇(𝜆 − 𝜇)(1 − 𝜆)

which is positive when 𝜆 > 𝜇 and negative when 𝜆 < 𝜇. These last two
observations indicate that, in case juveniles prefer feeding site 𝑖, where
𝑖 = 1, 2, it is the survivability of adults in site 3 − 𝑖 in relation to that
in site 𝑖 which determines the effect of an increase of dispersal on the
persistence of the adult population 𝐴1 +𝐴2: if juveniles strongly prefer
site 𝑖 and the survival probability of adults in site 3 − 𝑖 is greater than
in site 𝑖, then promoting dispersal between the feeding sites facilitates
the persistence of the adult population. This could be considered an
indirect rescue effect: emigrants from surrounding population sites may
reduce the probability of local extinction [46]; here, the rescue effect is
indirect in the sense that it is the greater survival probability of adults
in site 3 − 𝑖 which keeps the number of juveniles in the breeding site
and, as a consequence, the number of adults arriving at site 𝑖 above
certain levels.

Finally, if 𝑠 = 1∕2, meaning that juveniles do not have preference
for a feeding area, then

𝐶1𝐶4 − 𝐶2𝐶3 =
−(𝜆 − 𝜇)2

2
≤ 0.

Hence, in this case, increasing the connectivity between the feeding
sites has a potentially negative effect on the persistence of the adult
population.

Figs. 5.2(a) and 5.2(b) contain surface plots of 𝐶1𝐶4−𝐶2𝐶3, viewed
as a function of 𝜆 and 𝜇, for 𝑠 = 0.9 and 𝑠 = 0.55, respectively. The
plots were routinely computed using the surf command in Matlab.
The contour 𝐶1𝐶4 − 𝐶2𝐶3 = 0 is shown in black. Interestingly, whilst
there are regions where 𝐶1𝐶4−𝐶2𝐶3 is positive, the value of 𝐶1𝐶4−𝐶2𝐶3
is ‘‘small’’ here, and these regions are much smaller comparatively to
where 𝐶1𝐶4 − 𝐶2𝐶3 is negative, particularly when 𝑠 = 0.55, which is
close to 1/2, where 𝐹 ′(𝑟) is always non-positive. Roughly speaking,
𝐶1𝐶4 − 𝐶2𝐶3 = 0 is ‘‘more likely’’ to be negative it appears. Fig. 5.2(c)
plots graphs of 𝐹 (𝑟) against 𝑟 for two (𝜆, 𝜇) pairs, where 𝐹 ′(𝑟) takes
different signs, both for 𝑠 = 0.9.

Next, we study the response of the (nonzero) asymptotic total
population of adults to an increase of the dispersal rate 𝑟. There has
been a growing interest on understanding the effect of dispersal on
the asymptotic population size because of its practical implications;
see, for example [33,34,47–51]. In particular, in [34] it is shown that
for a two-patch population model with local Beverton–Holt dynamics
and symmetric dispersal there exist four possible response scenarios of
the total population size to an increases of the dispersal rate: mono-
tonically beneficial, monotonically detrimental, unimodally beneficial,
and beneficial turning detrimental. In the first two, the response of the
total population is monotonic, whereas in the last two, the response is
unimodal, that is, total population increases until it reaches a global
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maximum and then it decreases. Moreover, exactly the same four re-
sponse scenarios are possible for a continuous-time model with logistic
growth [33,34] and when dispersal is asymmetric [35].

Assume that 𝑓 satisfies hypothesis (N4) for all 𝑟 in some non-empty
interval 𝐽 ⊆ [0, 1]. In particular, for 𝑟 ∈ 𝐽 , it follows that 𝑥e = 𝑥e(𝑟)
given by (4.2) is the unique nonzero equilibrium of (1.1), that is, the
nonzero asymptotic adult population. Recall that in this example the
forcing function 𝑢 is not present (as 𝑓 (𝑤, 𝑧) = 𝑓 (𝑧)) and 𝑣(𝑡) ≡ 0. The
asymptotic total population of adults is given by

𝑥e1 + 𝑥
e
2 = (1, 1)𝑥e = 𝑑⊤(𝐼 − 𝐴)−1𝑏𝑝𝑧e = 𝐆(1)𝑝𝑧e = 𝑧e , (5.7)

here 𝑧e = 𝑧e(𝑟) is the unique positive solution of

𝐹 (𝑟)𝑓 (𝑧) = 𝑧, equivalently, 𝐹 (𝑟)
𝑓 (𝑧)
𝑧

= 1 𝑧 > 0 . (5.8)

Assume that

𝑧↦ 𝑓 (𝑧)∕𝑧 is non-increasing . (5.9)

The above condition includes unimodal and non-decreasing functions,
such as Ricker and Beverton–Holt nonlinearities, respectively. Thus,
we conclude from (5.8) that if 𝑟 ↦ 𝐹 (𝑟) is increasing (decreasing),
then 𝑧e(𝑟) is increasing (decreasing) and, hence, so is the asymptotic
population size by (5.7). Since the sign of 𝐹 ′(𝑟) is independent of 𝑟,
we obtain that the only possible response scenarios for model (5.5)
are monotonically beneficial, in which increasing dispersal monotoni-
cally increases the asymptotic adult population size, and monotonically
detrimental, in which increasing dispersal monotonically decreases the
asymptotic adult population size. Interestingly, to summarise, there are
only two response scenarios for model (5.5) with symmetric dispersal
and nonlinear term satisfying (5.9), rather than the four scenarios for
the model considered in [34].

The Beverton–Holt nonlinearity (cf. (5.3))

𝑓 (𝑧) = 𝑎𝑧
1 + 𝑏𝑧

𝑧 ≥ 0,

for positive constants 𝑎, 𝑏 > 0, satisfies condition (5.9). Moreover,
property (N4) holds if, and only if, 𝐹 (𝑟)𝑎 > 1, in which case

𝑧e =
𝐹 (𝑟)𝑎 − 1

𝑏
.

A surface plot of (𝐹 (𝑟)𝑎 − 1)∕𝑏 against varying 𝑟 and 𝑠 is shown in
ig. 5.2(d) for

= 0.7, 𝜆 = 0.9, 𝑎 = 1.1, 𝑏 = 0.01.

bserve how dispersal can be monotonically detrimental for 𝑠 close
o 1, and monotonically beneficial for 𝑠 close to 0; but there are no
nimodal responses of the total adult population to an increase of
ispersal as in [34]. ◊

Our third and final example is closely related to Example 5.2, but
ere assumption (P1) is not satisfied.

xample 5.3 (A Spatially Structured Population Model with Dormants).
onsider a population structured in three groups or classes: juveniles,
dults and dormants, denoted 𝐽 , 𝐴, and 𝐷, respectively. We consider

the following basic processes: adults produce juveniles; juveniles be-
come adults or dormants; adults remain as adults or become dormants;
and dormants remain as dormants or become adults. This model is
mathematically described by

𝐽 (𝑡 + 1) = 𝑓
(

𝐴(𝑡)
)

,

𝐴(𝑡 + 1) = (1 − 𝑠)𝜂𝐽 (𝑡) + (1 − 𝑟1)𝜆𝐴(𝑡) + 𝑟2𝜇𝐷(𝑡),

𝐷(𝑡 + 1) = 𝑠𝜂𝐽 (𝑡) + 𝑟1𝜆𝐴(𝑡) + (1 − 𝑟2)𝜇𝐷(𝑡),

⎫

⎪

⎬

⎪

⎭

(5.10)

here 𝑟1, 𝑟2, 𝑠, 𝜂, 𝜆, 𝜇 ∈ [0, 1] measure mortality and dispersal/
edistribution. When 𝑟1 = 𝑟2, the redistribution between the adult and
ormant groups is symmetric.
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Fig. 5.2. Numerical simulations illustrating Example 5.2. (a) and (b) Surface plots of 𝐶1𝐶4 − 𝐶2𝐶3 in (5.6) against varying 𝜆 and 𝜇 for 𝑠 = 0.9 and 𝑠 = 0.55. (c) Graphs of 𝐹 (𝑟)
against 𝑟 for different (𝜇, 𝜆) pairs, with fixed 𝑠 = 0.9. (d) Surface plot of asymptotic adult population size 𝑧e against varying 𝑟 and 𝑠, here 𝜆 = 0.9, 𝜇 = 0.7, and 𝑓 (𝑧) = 1.1𝑧

1+0.01𝑧
.

Eliminating 𝐽 (𝑡) from (5.10) yields a delayed Lur’e system of the
form (1.1) with 𝑛 = 2, and

𝑥(𝑡) ∶=
(

𝐴(𝑡)
𝐷(𝑡)

)

, 𝐴 ∶=
(

(1 − 𝑟1)𝜆 𝑟2𝜇
𝑟1𝜆 (1 − 𝑟2)𝜇

)

, 𝑏 ∶=
(

(1 − 𝑠)𝜂
𝑠𝜂

)

,

𝑐 = 0, 𝑑 ∶=
(

1
0

)

.

The models (5.5) and (5.10) are structurally very similar and differ only
by the form of the nonlinear recruitment term. However, by Lemma 3.6,
hypothesis (P1) does not hold here because 𝑑 is not strictly positive. We
assume that

𝑟1, 𝑟2, 𝜆, 𝜇 ∈ (0, 1), 𝑠 ∈ [0, 1) and 𝜂 ∈ (0, 1].

As in Example 5.2, it follows that 𝐴 is asymptotically stable. A straight-
forward calculation gives that

𝜙⊤ =
(

(𝑐 + 𝑑)⊤(𝐼 − 𝐴)−1, 𝑑⊤
)

=
(

∗ , ∗ , 1, 0
)

,

where ∗ denotes a nonnegative entry. Thus, there exists 𝜀 > 0 such that

𝑐⊤(�̃� + �̃�𝑐⊤)2 =
(

𝜆(1 − 𝑟1), 𝜇𝑟2, 𝜂(1 − 𝑠), 0
)

≥ 𝜀𝜙⊤,

showing that hypothesis (P2) is satisfied. Furthermore, it is straight-
forward to check that condition (O) also holds. Consequently, the
conclusions of Corollaries 3.13 and 4.4 hold, provided that the non-
linearity 𝑓 satisfies (N2) and (N4), respectively. Finally, if we take
𝑟 ∶= 𝑟1 = 𝑟2 and 𝜂 = 1 to address the effect of an increase of dispersal
on the persistency and the asymptotic size of the adult population as in
the previous example, we obtain similar results to the ones presented
there. Indeed, it is not hard to check that the response of 𝐆(1) to an
14
increase of 𝑟 is monotone (decreasing or increasing depending on the
values of 𝜆, 𝜇 and 𝑠). Consequently, if (5.9) holds, the response of the
asymptotic adult population size is monotone (decreasing or increasing
depending on the values of 𝜆, 𝜇 and 𝑠), but never unimodal in contrast
with the behaviour of the model studied in the paper [34]. ◊

6. Summary

Boundedness, persistence, excitability, and stability and conver-
gence properties of a class of forced, delayed, positive discrete-time
Lur’e systems have been considered. The inclusion of a delay distin-
guishes the present work from earlier papers [14,15,22] by the authors.
Similarly, the excitability property, presented in Section 3.2 and which
was not considered in [14,15,22], is a novelty of the present work.
We have demonstrated that whilst there is some overlap between
boundedness and stability properties, there are significant differences in
terms of persistency properties, where we have consequently focussed
our attention. To summarise, delays can be detrimental to ensuring 𝑐-
persistency for the models under consideration. Whilst condition (P1)
is known from [14] to be sufficient for 𝑐⊤-persistence of the first-order
version of (1.1), namely,

�̃�(𝑡 + 1) = �̃�𝑥(𝑡) + �̃�𝑓 (𝑢(𝑡), 𝑐⊤�̃�(𝑡)) + �̃�(𝑡),

with the augmented quantities �̃�, �̃�, 𝑐, �̃� and �̃� given by (3.2), we have
seen that (P1) is quite restrictive due to the special structure of �̃�, �̃�
and 𝑐. Therefore, new approaches to persistency have been developed,
namely in terms of the hypotheses (P2) or (N3). We have presented a
number of necessary and sufficient conditions for (P2), and our main
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result on persistence is Theorem 3.12. As hypothesis (P2) is strictly
weaker than (P1), Theorem 3.12 is applicable when the results of [14]
are not — this is a strength of the current work. Further strengths
of the work are the inclusion of control/disturbance terms in (1.1),
distinguishing our work from much of the current literature and facili-
tating the modelling of (possibly anthropogenic) interventions, and our
treatment of excitability.

We summarise some of the merits and limitations of work. In
terms of merits, a detailed study of the forced, nonlinear difference
equation (1.1) has been conducted, with readily checkable sufficient
conditions for a range of relevant and significant qualitative and quan-
titative properties provided. In terms of limitations, here we have
focussed on a unit delay in (1.1). A natural question is the effect of
potentially larger delays, that is, the qualitative properties of

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝑏𝑓
(

𝑢(𝑡),
ℎ
∑

𝑗=0
𝑐⊤𝑗 𝑥(𝑡 − 𝑗)

)

+ 𝑣(𝑡) 𝑡 ∈ N0 , (6.1)

where ℎ ∈ N is arbitrary. Given the differences in dynamical behaviour
between the undelayed case (see [14,15,22]) and unit delay considered
in this paper, a thorough study of (6.1) requires more research and is,
therefore, beyond the scope of the present work.

In closing we comment that our examples have not focussed in
depth on the Allen–Clark model (although it is related to the models
appearing in Examples 5.2 and 5.3, as commented there), which is
a common and important example of delayed nonlinear difference
equations arising frequently in mathematical biology or ecology. Whilst
the results of the present work are applicable to the Allen–Clark model,
the special structure of its first-order formulation is best exploited by
a bespoke persistency and stability theory (different to that pursued
in this paper). This theory will appear in the forthcoming paper [52]
which considers a large class of scalar higher-order system containing
the Allen–Clark model and the scalar version of (6.1) as special cases.
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Appendix. Proof of Theorem 3.12

Proof of Theorem 3.12. Let 𝑢 and 𝑣 be arbitrary functions from N0 to
𝑈 and 𝑉 , respectively. Every solution of (1.1) satisfies

𝑦𝑥(𝑡 + 2) ≥ 𝑑⊤𝑥(𝑡 + 1) ≥ 𝑑⊤𝑏𝑓 (𝑢(𝑡), 𝑦𝑥(𝑡)), ∀ 𝑡 ∈ N0. (A.1)

(1) Let 𝑥0, 𝑥−1 ∈ R𝑛+ be such that min{𝑐⊤𝑥0+𝑑⊤𝑥−1, 𝑑⊤𝑥0} > 0, and let 𝑥
be the solution of (1.1) satisfying 𝑥(0) = 𝑥0 and 𝑥(−1) = 𝑥−1. The claim
follows from an induction argument applied to inequality (A.1).
(2) Let 𝑥0, 𝑥−1 ∈ R𝑛+ be such that 𝑐⊤𝑥0 + 𝑑⊤𝑥−1 > 0, and let 𝑥 be
the solution of (1.1) satisfying 𝑥(0) = 𝑥0 and 𝑥(−1) = 𝑥−1. As 𝑥(1) ≥
𝑓 (𝑢(0), 𝑐⊤𝑥0+𝑑⊤𝑥−1), we have that 𝑐⊤𝑥(1) ≥ 𝑐⊤𝑏𝑓 (𝑢(0), 𝑐⊤𝑥0+𝑑⊤𝑥−1) >
, implying that 𝑦𝑥(1) > 0. Invoking (A.1), we conclude that 𝑦𝑥(𝑡) > 0
or all 𝑡 ∈ N0.
3) Let 𝛤 ⊂ 𝛤 ′ be non-empty and compact and let [[𝑥0, 𝑥−1]] ∈ 𝛤 . By
ypothesis (N3) and the continuity of 𝑓 , there exists 𝑧0 > 0 such that

𝑑⊤𝑏) min
𝑤∈𝑈

𝑓 (𝑤, 𝑧) ≥ 𝑧 ∀ 𝑧 ∈ [0, 𝑧0]. (A.2)

et 𝑥 be the solution of (1.1) such that 𝑥(0) = 𝑥0 and 𝑥(−1) = 𝑥−1.
y statement (2) of Proposition 3.1 there exists a constant 𝜃 > 0
depending on 𝛤 , 𝑈 and 𝑉 , but not on 𝑥0, 𝑥−1, 𝑢 or 𝑣) such that

(𝑢(𝑡), 𝑦𝑥(𝑡)) ≥ 𝜃𝑦𝑥(𝑡) ∀ 𝑡 ∈ N0.

ence, if 𝑦𝑥(𝑡) ≥ 𝑧0, then, by (A.1),

𝑥(𝑡 + 2) ≥ 𝑑⊤𝑏𝑓 (𝑢(𝑡), 𝑦𝑥(𝑡)) ≥ 𝑑⊤𝑏𝜃𝑦𝑥(𝑡) ≥ (𝑑⊤𝑏)𝜃𝑧0 > 0.

n the other hand, if 𝑦𝑥(𝑡) ≤ 𝑧0, then it follows from (A.1) and (A.2)
hat

𝑥(𝑡 + 2) ≥ 𝑑⊤𝑏𝑓 (𝑢(𝑡), 𝑦𝑥(𝑡)) ≥ 𝑦𝑥(𝑡).

ombining the above two inequalities, we obtain

𝑥(𝑡 + 2) ≥ min{𝑦𝑥(𝑡), 𝜂} ∀ 𝑡 ∈ N0, where 𝜂 ∶= (𝑑⊤𝑏)𝜃𝑧0 > 0. (A.3)

onsequently,

𝑥(𝑡) ≥ min{𝑐⊤𝑥0 + 𝑑⊤𝑥−1, 𝑒⊤𝑥0, 𝜂} ∀ 𝑡 ∈ N0. (A.4)

urthermore, a simple induction argument based on (A.3) gives

𝑥(𝑡) ≥ min{𝑒⊤𝑥0, 𝑐⊤𝑥(2) + 𝑑⊤𝑥(1), 𝜂} ∀ 𝑡 ∈ N.

ince
⊤𝑥(2) + 𝑑⊤𝑥(1) ≥ 𝑐⊤𝐴𝑥(1) + 𝑑⊤𝐴𝑥0 ≥ 𝑐⊤𝐴2𝑥0 + 𝑑⊤𝐴𝑥0 = 𝑒⊤𝐴𝑥0,

e conclude that

𝑥(𝑡) ≥ min{𝑒⊤𝑥0, 𝑒⊤𝐴𝑥0, 𝜂} ∀ 𝑡 ∈ N. (A.5)

efining 𝜓1, 𝜓2 ∶ R2𝑛 → R by

1
(

[[𝜉0, 𝜉−1]]
)

∶= min{𝑐⊤𝜉0 + 𝑑⊤𝜉−1, 𝑒⊤𝜉0},

𝜓2
(

[[𝜉0, 𝜉−1]]
)

∶= min{𝑒⊤𝜉0, 𝑒⊤𝐴𝜉0}; ∀ 𝜉0, 𝜉−1 ∈ R𝑛,

e have that

1
(

[[𝜉0, 𝜉−1]]
)

+ 𝜓2
(

[[𝜉0, 𝜉−1]]
)

> 0 ∀ [[𝜉0, 𝜉−1]] ∈ 𝛤 ′. (A.6)

t follows from (A.4) and (A.5) that

𝑦𝑥(𝑡) ≥ min
{

𝜓1
(

[[𝑥0, 𝑥−1]]
)

, 𝜂
}

+ min
{

𝜓2
(

[[𝑥0, 𝑥−1]]
)

, 𝜂
}

∀ 𝑡 ∈ N. (A.7)

s 𝛤 ⊂ 𝛤 ′, 𝛤 is compact and 𝜓1 and 𝜓2 are continuous, it follows from
A.6) that there exists 𝜀 > 0 such that

1
(

[[𝜉0, 𝜉−1]]
)

+ 𝜓2
(

[[𝜉0, 𝜉−1]]
)

≥ 𝜀 ∀ [[𝜉0, 𝜉−1]] ∈ 𝛤 .

ogether with (A.7) this leads to

𝑦 (𝑡) ≥ min{𝜀, 𝜂} > 0 ∀ 𝑡 ∈ N.
𝑥
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n

𝑓

(4) Let 𝛤 ⊂ 𝛤 ′′ be non-empty and compact, [[𝑥0, 𝑥−1]] ∈ 𝛤 , and let 𝑥 be
he solution of (1.1) satisfying 𝑥(0) = 𝑥0 and 𝑥(−1) = 𝑥−1. By statement

(2) of Proposition 3.1 there exists 𝜃 > 0 (depending on 𝛤 , 𝑈 and 𝑉 , but
ot on 𝑥0, 𝑥−1, 𝑢 or 𝑣) such that

(𝑢(𝑡), 𝑐⊤�̃�(𝑡)) = 𝑓 (𝑢(𝑡), 𝑦𝑥(𝑡)) ≥ 𝜃𝑦𝑥(𝑡) = 𝜃𝑐⊤�̃�(𝑡) ∀ 𝑡 ∈ N0,

where we recall that �̃�(𝑡) = [[𝑥(𝑡), 𝑥(𝑡 − 1)]]. Using the above inequality
in combination with (3.1) yields

�̃�(𝑡 + 𝜏) ≥
(

�̃� + 𝜃�̃�𝑐⊤
)

�̃�(𝑡 + 𝜏 − 1) ≥ ⋯ ≥
(

�̃� + 𝜃�̃�𝑐⊤
)𝜏 �̃�(𝑡) ∀ 𝑡 ∈ N0.

It follows from (3.12), a consequence of (P2), that

𝑦𝑥(𝑡+𝜏) = 𝑐⊤�̃�(𝑡+𝜏) ≥ 𝑐⊤(�̃�+𝜃�̃�𝑐⊤)𝜏 �̃�(𝑡) ≥ 𝜀𝜃𝜙
⊤�̃�(𝑡) = 𝜀𝜃F(�̃�(𝑡)) ∀𝑡 ∈ N0,

where 𝜀𝜃 ∶= 𝜀min{1, 𝜃𝜏} > 0. Appealing to statement (3) of Proposi-
tion 3.1, we conclude that there exists 𝜂 > 0 such that

𝑦𝑥(𝑡 + 𝜏) ≥ 𝜀𝜃 min{F(�̃�(0)), 𝜂} ∀ 𝑡 ∈ N0.

Finally, 𝜇 ∶= min𝜉∈𝛤 F(𝜉) > 0, and thus,

𝑦𝑥(𝑡 + 𝜏) ≥ 𝜀𝜃 min{𝜇, 𝜂} > 0 ∀ 𝑡 ∈ N0,

completing the proof. □
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