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Abstract

Continuous-time low-gain integral control strategies are presented for tracking of constant reference signals for 6nite-dimensional,
continuous-time, asymptotically stable, single-input single-output, linear systems subject to a globally Lipschitz and non-decreasing input
nonlinearity and a locally Lipschitz, non-decreasing and a8nely sector-bounded output nonlinearity. Both non-adaptive (but possibly time
varying) and adaptive integrator gains are considered. In particular, it is shown that applying error feedback using an integral controller
ensures asymptotic tracking of constant reference signals, provided that (a) the steady-state gain of the linear part of the plant is positive,
(b) the positive integrator gain is ultimately su8ciently small and (c) the reference value is feasible in a very natural sense. The classes of
actuator and sensor nonlinearities under consideration contain standard nonlinearities important in control engineering such as saturation
and deadzone.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The synthesis of low-gain integral and proportional-
plus-integral controllers for (uncertain) stable plants has
received considerable attention in the last 20 years. The
following principle is well known (see, for example,
Davison 1976; Lunze, 1988): closing the loop around an
asymptotically stable, 6nite-dimensional, continuous-time,
single-input, single-output linear plant �, with transfer func-
tion G, compensated by a pure integral controller with gain
k, will result in a stable closed-loop system which achieves
asymptotic tracking of arbitrary constant reference signals,
provided that |k| is su8ciently small and kG(0)¿ 0. There-
fore, if a plant is known to be asymptotically stable and
if the sign of G(0) is known (this information can be ob-
tained from plant step response data), then the problem of
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tracking by low-gain integral control reduces to that of
tuning the gain parameter k. The problem of tuning the in-
tegrator gain adaptively has been addressed in a number of
papers, see Cook (1992) and Miller and Davison 1989, 1993
(with input constraints treated in Miller and Davison (1989,
1993)). Recently, Logemann et al. have developed tuning
regulator results for in6nite-dimensional systems with input
nonlinearities (Logemann & Ryan, 2000; Logemann, Ryan,
& Townley, 1998).
In this paper, we present results which show that the

above principle remains true if the plant to be controlled
is a stable, 6nite-dimensional single-input, single-output,
linear system subject to an input and/or output nonlinearity
(see Fig. 1). Precisely, we prove that, if G(0)¿ 0 and if the
constant reference signal r is feasible in an entirely natural
sense, then there exists a number k∗ ¿ 0 such that, for all
non-decreasing, piecewise continuously diDerentiable, glob-
ally Lipschitz input nonlinearities ’ and all non-decreasing,
piecewise continuously diDerentiable, locally Lipschitz
and a8nely sector-bounded output nonlinearities  the
following holds: for all positive, bounded and continuous
integrator gains k(·) (thus in particular for positive constant
gains), the output y(t) of the closed-loop system converges
to r as t → ∞, provided that lim supt→∞ k(t)¡k∗ and
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Fig. 1. Low-gain integral control.

k is not of class L1 (under some additional assumptions
on the nonlinearities, results concerning the rate of con-
vergence are derived). When compared with Logemann
and Ryan (2000) and Logemann et al. (1998), the novelty
in this paper is not only the inclusion of output nonlin-
earities, but also a diDerent Lyapunov analysis which, for
6nite-dimensional systems, is more natural and powerful
than the (in6nite-dimensional) approaches developed in
Logemann and Ryan (2000) and Logemann et al. (1998).
Finally, in Section 3.2, we show that one consequence

of the above principle is that the following simple adapta-
tion law (introduced in Logemann and Ryan (2000)) k(t)=
1=l(t), l̇(t) = |r − y(t)| with l(0) = l0 ¿ 0, produces an in-
tegrator gain k so that the output y(t) of the closed-loop
system converges to r as t → ∞.

2. Problem formulation

The problem of tracking constant reference signals
r ∈R will be addressed in the context of a class of
6nite-dimensional (state space RN ) single-input (u(t)∈R),
single-output (y(t)∈R), continuous-time (time domain
R+ := [0;∞)), real linear systems � = (A; B; C; D) having
a nonlinearity in the input and output channel:

ẋ = Ax + B’(u); x(0) = x0 ∈RN ;

w = Cx + D’(u); y =  (w): (1)

2.1. The class S of linear systems

In (1), A is assumed to be Hurwitz, i.e., each eigenvalue of
A has negative real part. Furthermore, the transfer function
G, given by G(s)=C(sI−A)−1B+D, is assumed to satisfy
G(0)¿ 0: Thus, the underlying class of real linear systems
�= (A; B; C; D) is

S := {�= (A; B; C; D) |A Hurwitz;

G(0) = D − CA−1B¿ 0}:
If G is the transfer function of a system �∈S, then it is
readily shown that Re(G(s)=s) is bounded away from −∞
on the open right-half plane and, hence,

1 + �Re
G(s)
s
¿ 0 ∀s∈C with Re s¿ 0 (2)

for all su8ciently small �¿ 0. We refer to (2) as the
positive-real condition. De6ne

�∗ := sup{�¿ 0 | (2) holds}: (3)

Fig. 2. Nonlinearity with saturation and deadzone.

Lower bounds and formulae for �∗ may be found in
Logemann, Ryan, and Townley (1999). The following
lemma will be invoked in a later stability analysis:
the lemma is the continuous-time analogue of the
discrete-time result in Fliegner, Logemann, and Ryan (2001,
Lemma 3.2).

Lemma 1. Assume that � = (A; B; C; D)∈S and
let �¿ 1=�∗. Then there exists P ∈RN×N such that P =
PT ¿ 0 and[

PA+ ATP PA−1B− CT

(A−1B)TP − C −2�

]
¡ 0: (4)

2.2. Input and output nonlinearities

With the intention of encompassing nonlinearities with
su8ciently general regularity properties to capture, for ex-
ample, saturation and deadzone (see Fig. 2), the follow-
ing sets of piecewise continuously diDerentiable, monotone
non-decreasing nonlinearities are 6rst introduced:

M := {f: R→ R |f is piecewise continuously

diDerentiable and non-decreasing};

M(�) := {f∈M | 06 (f(�)− f(0))�6 ��2 ∀�∈R};

ML(�) := {f∈M |f is globally Lipschitz

with Lipschitz constant �}:
Clearly,ML(�) ⊂ M(�) ⊂ M and for every f∈M, its left
f′
−(�) and right f

′
+(�) derivative exist at every point �∈R.

Remark 2. (i) Let f∈M(�). Then f(�) = f(0) +  (�)�
for all �, where  (�) := (f(�) − f(0))=� if � �= 0 and
 (0) := �. Clearly,  (�)∈ [0; �] for all �∈R.
(ii) If f∈M(�), then for each !∈R, there exists �̃¿ 0

such that the function � �→ f(�+!)−f(!) is of classM(�̃).
(iii) If f∈ML(�), then for each !∈R, � �→ f(�+ !)−

f(!) is also of class ML(�).

Let f∈M. For �∈R, we de6ne
f�(�) := min{f′

−(�); f
′
+(�)}:

Note that, since f is non-decreasing, f�(�)¿ 0 for all
�∈R. Clearly, f�(�) coincides with the derivative f′(�)
whenever the latter exists. A point �∈R is said to be a crit-
ical point (and f(�) is said to be a critical value) of f
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if f�(�)=0. We denote, by C(f), the set of critical values
of f.
The following lemma will be used later. The proof is

straightforward and is therefore omitted.

Lemma 3. Let f∈M and let g : R+ → R be absolutely
continuous. Then f ◦ g is absolutely continuous and

d
dt
(f ◦ g)(t) = f�(g(t))ġ(t) for a:a: t ∈R+:

Finally, we make precise the class N of input/output non-
linearities:

N := {(’;  )∈ML(�1)×M(�2) | �1 ¿ 0; �2 ¿ 0}:

2.3. The tracking objective and feasibility

Given �= (A; B; C; D)∈S and (’;  )∈N, the tracking
objective is to determine, by feedback, an input u such that,
for given r ∈R, the output y of (1) has the property y(t) →
r as t→∞. Clearly, if this objective is achievable, then r is
necessarily in the closure of im  . We will impose a stronger
condition, namely,

%r ∩ O& �= ∅;
where %r := {v∈R |  (G(0)v) = r}, & := im’, O& :=
clos(&), and refer to the set

R := {r ∈R|%r ∩ O& �= ∅}
as the set of feasible reference values. The next proposition
(proof omitted for brevity) shows that r ∈R is close to being
a necessary condition for tracking insofar as, if tracking of r
is achievable whilst maintaining continuity and boundedness
of ’ ◦ u, then r ∈R.

Proposition 4. Let �= (A; B; C; D)∈S, let ’;  : R→ R
be continuous and let u : R+ → R be such that ’ ◦ u is
continuous and bounded. For x0 ∈RN , let x : R+ → RN

denote the bounded solution of the initial-value problem in
(1). If limt→∞ [ (Cx(t) + D’(u(t)))] = r, then r ∈R.

3. Integral control

Let �= (A; B; C; D)∈S and (’;  )∈N. To achieve the
objective of tracking feasible reference values r ∈R, we will
investigate integral control action

u(t) = u0 +
∫ t

0
k(()[r −  (Cx(() + D’(u(())] d(

= u0 +
∫ t

0
k(()[r − y(()] d( (5)

with control gain k (possibly constant) which is either
prescribed or determined adaptively.

3.1. Prescribed gain

Henceforth, we assume that the gain function k:
R+ → (0;∞) satis6es

k ∈G := {g | g : R+ → (0;∞); g is continuous

and bounded}:
An application of integrator (5) leads to the following sys-
tem of nonlinear diDerential equations

ẋ(t) = Ax(t) + B’(u(t)); (6a)

u̇(t) = k(t)[r −  (Cx(t) + D’(u(t)))]; (6b)

(x(0); u(0)) = (x0; u0)∈RN × R: (6c)

The next proposition follows from a routine argument
based on standard results from the theory of diDerential
equations.

Proposition 5. Let � = (A; B; C; D)∈S and (’;  )∈N,
k ∈G and r ∈R. For each (x0; u0)∈RN×R, the initial-value
problem (6) has a unique solution (x; u) : R+ → RN × R.

Before presenting the main results in Theorems 7 and 11
below, we prove a convenient lemma which facilitates the
proofs of these theorems. Since the lemma hypothesizes the
convergence of ’(u(t)) as t→∞, it is not of independent
interest.

Lemma 6. Let �=(A; B; C; D)∈S, (’;  )∈N, r ∈R and
k ∈G. For (x0; u0)∈RN × R, let (x; u) : R+ → RN × R be
the unique solution of the initial-value problem (6).Assume
that K(t) :=

∫ t
0 k → ∞ as t→∞ and that limt→∞ ’(u(t))

exists and is ;nite. Then

(i) limt→∞ ’(u(t))= : ’r ∈%r ∩ O&,
(ii) limt→∞ x(t) =−A−1B’r ,
(iii) limt→∞ y(t) = r, where

y(t) =  (Cx(t) + D’(u(t)));

(iv) if %r ∩ O&=%r ∩ &, then

limt→∞ dist(u(t); ’−1(’r)) = 0;

(v) if %r ∩ O&=%r ∩ int(&), then u(·) is bounded.

Proof. By hypothesis, there exists ’r ∈R such that
limt→∞ ’(u(t)) = ’r which, together with the Hurwitz
property of A, implies limt→∞ w(t) = G(0)’r , where
w = Cx + D’(u). Evidently, ’r ∈ O& and so, to establish
(i), it su8ces to show that ’r ∈%r . Seeking a contra-
diction, suppose that ’r �∈ %r . This implies that * :=
(r −  (G(0)’r))=2 �= 0. Using continuity of  , we obtain
for su8ciently large s¿ 0

|y(t)−  (G(0)’r)|6 |*| ∀t¿ s:
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As a consequence, and noticing that u̇(t)= k(t)[r−y(t)]=
k(t)[2*− y(t) +  (G(0)’r)], we have

−|*|k(t)6 u̇(t)− 2*k(t)6 |*|k(t) ∀t¿ s:

Since * �= 0, either *¿ 0 or *¡ 0. Assume *¿ 0. Then
u̇(t)¿ *k(t) for all t¿ s which, on integration, yields u(t)−
u(s)¿ *(K(t) − K(s)) for all t¿ s. Since K(t) → ∞ as
t → ∞, we conclude that u(t) → ∞ as t → ∞, hence

sup O&= lim
t→∞’(u(t)) = ’r: (7)

Let ’∗ ∈%r ∩ O&. Since *¿ 0, it follows ’∗ ¿’r and, con-
sequently, by (7), sup O&¡’∗, a contradiction. A similar
argument shows that the assumption *¡ 0 also leads to
a contradiction. Therefore, we may conclude ’r ∈%r ∩ O&
which is statement (i). Statement (ii) follows from (i) and
the Hurwitz property of A. Statement (iii) is a consequence
of (i), (ii) and continuity of  . Next, we establish statement
(iv). Assume %r ∩ O& = %r ∩ & which, together with (i),
implies the existence of �∗ ∈R such that ’r =’(�∗). Seek-
ing a contradiction, suppose that dist(u(t); ’−1(’r)) 9 0
as t → ∞. Then there exist +¿ 0 and a sequence (tn)∈R+

with tn → ∞ as n → ∞, such that

dist(u(tn); ’−1(’r))¿ +: (8)

If the sequence (u(tn)) is bounded, we may assume with-
out loss of generality that it converges to a 6nite limit u∞.
By continuity, ’(u∞)=’r and so u∞ ∈’−1(’r). This con-
tradicts (8). Therefore, we may assume that (u(tn)) is un-
bounded. Extracting a subsequence if necessary, we may
then assume that either u(tn) → ∞ or u(tn) → −∞ as n →
∞: if the former holds, then u(tn)¿�∗ for all n su8ciently
large; if the latter holds, then u(tn)¡�∗ for all n su8ciently
large. In either case, by monotonicity of ’ it follows that
’(u(tn)) = ’(�∗) = ’r for all n su8ciently large. Clearly,
this contradicts (8) and so statement (iv) must hold.
To prove (v), assume that %r ∩ O& = %r ∩ int(&) and,

for contradiction, suppose that u is unbounded. Then there
exists a sequence (tn) ⊂ (0;∞) with tn → ∞ and |u(tn)| →
∞ as n → ∞. By monotonicity of ’ and (i), it then follows
that either ’r = sup& or ’r = inf &, contradicting the fact
that ’r ∈%r ∩ int(&) ⊂ int(&). Therefore, u is bounded.
This completes the proof of the lemma.

The next theorem forms the core of the paper: it contains
the main non-adaptive low-gain tracking result, and, in com-
bination with Lemma 6, is crucial in the proof of the adaptive
counterpart in Theorem 11. First we recall that, if functions
f1; f2 are such that f1(t); f2(t) → 0 and f1(t)=O(f2(t))
as t → ∞, then the convergence of f1 is said to
be of order f2.

Theorem 7. Let � = (A; B; C; D)∈S, (’;  )∈N and
r ∈R.
There exists k∗ ¿ 0 such that, for all k ∈G and

(x0; u0)∈RN ×R, the unique solution (x; u) : R+ → RN ×R

of the initial-value problem (6) is such that the following
hold.

(i) If lim supt→∞ k(t)¡k∗, then limt→∞ ’(u(t)) exists
and is ;nite.

(ii) If lim supt→∞ k(t)¡k∗ and K(t) :=
∫ t
0 k → ∞ as

t → ∞, then statements (i) to (v) of Lemma 6 hold.
If, in addition, %r ∩ O&=%r ∩&, %r ∩C(’) = ∅ and
r �∈ C( ), then the convergence in statements (i) to
(iii) of Lemma 6 is of order exp(−.K(·)) for some
.¿ 0.

Moreover, if  ∈ML(�2), then (i) and (ii) are valid with
k∗=�∗=(�1�2), where �∗ is given by (3) and �1 ¿ 0 is such
that ’∈ML(�1).

Remark 8. Theorem 7 identi6es conditions on the inte-
grator gain k under which convergence of ’ ◦ u, the main
prerequisite for an application of Lemma 6, is implied. An
immediate consequence of Theorem 7 is the following: if
k ∈G is chosen such that, as t → ∞, k(t) tends to zero suf-
;ciently slowly (in the sense that k �∈ L1(R+;R+)), then the
tracking objective is achieved (this strategy is independent
of k∗ ¿ 0). If  ∈ML(�2) for some �2 ¿ 0, then we may in-
fer that the tracking objective is achievable by constant gain
k ∈ (0; �∗=(�1�2)) and, moreover, under additional condi-
tions on the nonlinearities, the convergence is exponential.

Proof of Theorem 7. Since r ∈R, it follows that %r �= ∅.
Let ’∗ ∈%r; since  ∈M(�2) for some �2 ¿ 0, the function

 ̃ : R→ R; � �→  (�+ G(0)’∗)− r (9)

is in M(�̃2) for some �̃2 ¿ 0 (cf. Remark 2(ii)). Therefore,
by Remark 2(i),

 ̃ (�) =  (�)� ∀�∈R; (10)

where

 (0) := �̃2 and  (�) :=  ̃ (�)=� for all � �= 0: (11)

Note that 06  (�)6 �̃2 for all �∈R. Now de6ne � :=
�1�̃2 and k∗ := �∗=�, where �∗ is given by (3). Let
(x0; u0; k)∈RN × R × G and let (x; u) : R+ → RN × R be
the unique solution of the initial-value problem (6).
(i) Assume that lim supt→∞ k(t)¡k∗. Choose k∗ ¿ 0

such that

lim sup
t→∞

k(t)¡k∗ ¡k∗ (12)

and 6x � := 1=(k∗�). By Lemma 1 there exists a P ∈RN×N ,
with P = PT ¿ 0, such that

/ :=

[
PA+ ATP PA−1B− CT

(A−1B)TP − C −2=�

]
¡ 0:

Introduce new variables

z(t) := x(t) + A−1B’(u(t)); v(t) := ’(u(t))− ’∗ (13)
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and notice that, in terms of the new variables, w is given by

w = Cx + D’(u) = Cz + G(0)(v+ ’∗) = w̃ + G(0)’∗;

where w̃ := Cz+G(0)v. By Lemma 3, v̇(t)=’�(u(t))u̇(t)
for almost all t ∈ [0;∞). Using (9), we obtain

ż(t) = Az(t)− k(t)’�(u(t))A−1B ̃ (w̃(t));

v̇(t) =−k(t)’�(u(t)) ̃ (w̃(t)) for a:a: t¿ 0:

Invoking (10),

ż(t) = Az(t) + A−1B1(t); v̇(t) = 1(t) for a:a: t¿ 0;

(14)

where

1(t) := −k(t)2(t)w̃(t);

2(t) := ’�(u(t)) (w̃(t)): (15)

Note that

06 2(t)6 �1�̃2 = � ∀t¿ 0: (16)

We will investigate asymptotic properties of (z; v) using a
Lyapunov approach. De6ne the absolutely continuous func-
tion V : R+ → R+; t �→ 〈z(t); Pz(t)〉 + G(0)v2(t). Then,
using (14) and (15)

V̇ (t) = 〈z(t); (PA+ ATP)z(t)〉
+2(A−1B)TPz(t)1(t) + 2G(0)v(t)1(t)

= 〈z(t); (PA+ ATP)z(t)〉
+2[(A−1B)TP − C]z(t)1(t) + 2w̃(t)1(t)

= 〈[zT(t); 1(t)]T; /[zT(t); 1(t)]T〉
+2�12(t)− 2k(t)2(t)w̃2(t)

6−4[‖z(t)‖2 + 12(t)]− 2k(t)2(t)

[1− k(t)2(t)�]w̃2(t) for a:a: t¿ 0;

where 4 = 1=‖/−1‖. Invoking (12) and (16), we see that
there exists T1¿ 0 such that

sup
t¿T1

k(t)2(t)�¡ 1: (17)

Consequently, there exists 61 ¿ 0 such that

V̇ (t)6− 4‖z(t)‖2 − 412(t)− 61k(t)2(t)w̃2(t)

for a:a: t¿T1: (18)

It follows that z ∈L2(R+;RN ) and 1∈L2(R+;R). Since
k2v = −(G(0))−1[k2Cz + 1], we may conclude that
k2v∈L2(R+;R) and thus

k2vCz ∈L1(R+;R): (19)

Moreover, using (18) and the de6nition of w̃, we obtain

V̇ (t)6−261G(0)k(t)2(t)v(t)Cz(t)

− 61G2(0)k(t)2(t)v2(t) for a:a: t¿T1

and so we have

06V (t)6 V (T1)− 261G(0)
∫ t

T1

k(s)2(s)v(s)Cz(s) ds

− 61G2(0)
∫ t

T1

k(s)2(s)v2(s) ds ∀t¿T1;

which, together with (19), implies that

k2v2 ∈L1(R+;R): (20)

From (19) and (20), we may infer that v1 = −k2v[Cz +
G(0)v]∈L1(R+;R). Multiplying the second of equations
(14) by v(t) and integrating yields

lim
t→∞ v2(t) = v2(T1) + 2 lim

t→∞

∫ t

T1

v1= c

for some constant c∈ [0;∞). By continuity of v it follows
that either limt→∞ v(t) =

√
c or limt→∞ v(t) = −√

c. This
establishes statement (i).
(ii) Assume that lim supt→∞ k(t)¡k∗ and K(t) → ∞

as t → ∞. Then it immediately follows from Lemma 6 and
(i) that statements (i)–(v) of Lemma 6 hold; in particular,
there exists ’r ∈%r ∩ O& such that limt→∞ ’(u(t)) = ’r .
To show that the convergence is of order exp(−.K(·)) for

some .¿ 0, we make use of inequality (18) with ’∗ in (9)
and (13) replaced by ’r . Introduce functions * : R+ → R+

and W! : R+ → R+ (parameterized by !¿ 0) de6ned by

*(t) :=
∫ t

0
k2 and W!(t) := exp(2!*(t))V (t):

Noting that, for some constant 62 ¿ 0,

V (t) = 〈z(t); Pz(t)〉+ [w̃(t)− Cz(t)]2=G(0)

6 62[‖z(t)‖2 + w̃2(t)] ∀t ∈R+

and invoking (17) and (18), we have

Ẇ !(t) = exp(2!*(t))[V̇ (t) + 2!k(t)2(t)V (t)]

6 exp(2!*(t))[− (4− (262!)=�)‖z(t)‖2

− k(t)2(t)(61 − 262!)w̃2(t)] for a:a: t¿T1:

Choose !¿ 0 su8ciently small so that 0¡ 262!6
min{4�; 61=2}, in which case

Ẇ !(t)6− 1
2 61 exp(2!*(t))k(t)2(t)w̃2(t) for a:a: t¿T1;

whence boundedness of W! which, in turn, implies the ex-
istence of a constant L¿ 0 such that

‖exp(!*(t))z(t)‖6L;

|exp(!*(t))v(t)|6L; ∀t ∈R+: (21)

Notice that, by hypothesis, ’r ∈& and ’r �∈ C(’).
Thus, by monotonicity, the preimage ’−1(’r) is a singleton
{ur} and ’�(ur)¿ 0. By Lemma 6(iv), u(t)→ ur as
t→∞. Since ’ is piecewise continuously diDerentiable,
there exists T2¿T1 such that

’�(u(t))¿min{’′
−(u

r); ’′
+(u

r)}=2¿ 0

∀t¿T2: (22)
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Since by assumption r �∈ C( ), we have that

 ̃ �(0) =  �(G(0)’r)¿ 0:

We claim that there exist T3¿T2 and 0¡9¡� such that
96 2(t) for all t¿T3. Seeking a contradiction, suppose the
claim is not true. Then, by (22), there is a sequence tn → ∞
such that 06  (w̃(tn))6 1=n. De6ne hn := w̃(tn)=Cz(tn)+
G(0)v(tn). By statements (i) and (ii) of Lemma 6 we know
that hn → 0 for n → ∞. Now, using (11),

0 = lim
n→∞  (hn) = lim

n→∞
 ̃ (hn)
hn

¿ lim inf
h→0

 ̃ (h)
h

=min{ ̃ ′
−(0);  ̃

′
+(0)}=  ̃ �(0)¿ 0;

a contradiction. Thus, there exist 9∈ (0; �) and T3¿T2 such
that 96 2(t) for all t¿T3. As a consequence, setting . :=
!9, there exists L1 ¿ 0 such that exp(.K(t))6L1 exp(!*(t))
for all t¿ 0, and so, by (21), there exists L2 ¿ 0 such that

‖exp(.K(t))z(t)‖6L2;

|exp(.K(t))v(t)|6L2 ∀t ∈R+: (23)

This shows that the convergence in (i) and (ii) of Lemma 6 is
of order exp(−.K(·)). Convergence of order exp(−.K(·))
in (iii) of Lemma 6 follows by a routine argument.
Finally, assume that  ∈ML(�2) for some �2 ¿ 0. By Re-

mark 2(iii) it follows that, for any 6xed r ∈R, the function
 ̃ : R → R; � �→  (� + G(0)’r) − r is also in ML(�2).
The argument used above in the proof of (i) and (ii) applies
mutatis mutandis to conclude that (i) and (ii) hold with
k∗ = �∗=(�1�2).

Remark 9. Note that (14) can be written in the form
dz̃
dt

(t) = Ãz̃(t)− B̃’̃(t; C̃z̃(t)); (24)

where

z̃ :=

(
z

v

)
; Ã :=

(
A 0

0 0

)
; B̃ :=

(
A−1B

1

)
;

C̃ := (C;G(0)) and ’̃(t; �) := k(t)2(t)�. Clearly,

06 ’̃(t; �)�6 k∗��2 ¡�∗�2; ∀t¿T1; ∀�∈R: (25)

Moreover, G̃(s) := C̃(sI − Ã)−1B̃= G(s)=s, and so

1 + �∗ Re G̃(s)¿ 0; ∀s∈C with Re s¿ 0: (26)

In view of (24) to (26), it might appear that the Lyapunov
analysis of (14) in the proof of statement (i) of Theorem
7 can be replaced by an application of the circle criterion.
Since k(t)2(t) might be equal to 0 for some values of t
(indeed k2 might vanish on subintervals of R+) and G̃ has
a pole at 0, it is clear that the circle criterion, as presented
in standard texts such as (Brockett, 1970; Khalil, 1996;
Vidyasagar, 1993; Willems, 1970), does not apply to (24).
Moreover, the relaxed circle criterion in Aeyels, Sepulchre,
and Peuteman (1998) does not encompass the case wherein
k(t)2(t) → 0 as t → ∞ (see (69) in Aeyels et al., 1998) and

so again does not apply to (24). Less importantly, we men-
tion that the above references assume minimality of the un-
derlying linear state–space system, an assumption which we
have not imposed. Nevertheless, a suitable extension of the
circle criterion (which does not seem to be available in the
literature) can indeed be used to derive statement (i). How-
ever, for gain functions k converging to 0, this approach does
not yield the claim in statement (ii) of Theorem 7 relating to
convergence of order exp(−.K(·)), a result which is crucial
in the proof of the adaptive result given in Theorem 11.

3.2. Adaptive gain

Whilst Theorem 7 identi6es conditions under which the
tracking objective is achieved through the use of a prescribed
gain function, the resulting control strategy is somewhat un-
satisfactory insofar as the gain function is selected a priori:
no use is made of the output information from the plant to
update the gain. We now consider the possibility of exploit-
ing this output information to generate, by feedback, an ap-
propriate gain function. Let L denote the class of locally
Lipschitz functions R+ → R+ with value zero only at zero
and with linear growth near zero, speci6cally:

L :=
{

f |f : R+ → R+; f locally Lipschitz;

f−1(0) = {0}; lim inf
�↓0

�−1f(�)¿ 0
}
:

Let ;∈L and let the gain k(·) be generated by the following
adaptation law:

k(t) = 1=l(t); l̇(t) = ;(|r − y(t)|); l(0) = l0 ¿ 0: (27)

This leads to the feedback system

ẋ(t) = Ax(t) + B’(u(t)); (28a)

u̇(t) = k(t)[r −  (Cx(t) + D’(u(t)))]; (28b)

k̇(t) =−k2(t);(|r −  (Cx(t) + D’(u(t)))|); (28c)

(x(0); u(0); k(0)) = (x0; u0; k0)∈RN × R× (0;∞): (28d)

The following proposition can be obtained by a routine ar-
gument.

Proposition 10. Let � = (A; B; C; D)∈S, (’;  )∈N,
;∈L and r ∈R.
For each (x0; u0; k0)∈RN × R × (0;∞), the initial-

value problem (28) has a unique solution (x; u; k) : R+ →
RN × R× (0;∞).

We now arrive at the main adaptive tracking result.

Theorem 11. Let �= (A; B; C; D)∈S, (’;  )∈N, ;∈L
and r ∈R. Assume further that, if ’ is unbounded, then
there exists <¿ 0 such that ;(�)¿ <� for all �∈R+. For
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each (x0; u0; k0)∈RN × R × (0;∞), the unique solution
(x; u; k) : R+ → RN ×R× (0;∞) of the initial-value prob-
lem (28) is such that statements (i) to (v) of Lemma 6 hold.
Moreover, if%r∩ O&=%r∩&,%r∩C(’)=∅ and r �∈ C( ),
then the monotone gain k converges to a positive value.

Proof. Let (x0; u0; k0)∈RN ×R× (0;∞) and let (x; u; k) :
R+ → RN × R × (0;∞) be the unique solution of the
initial-value problem (28). For all t ∈R+, let K(t) =

∫ t
0 k,

l(t)=1=k(t) and e(t)= r−  (Cx(t)+D’(u(t))). Since l is
a continuous non-decreasing function, either l(t) → ∞ as
t → ∞ (Case 1), or l(t) → l̂∈ (0;∞) as t → ∞ (Case 2).

Case 1: In this case, k(t) ↓ 0 as t → ∞ and by Theorem
7(i), ’(u(t)) and consequently x(t) converge as t → ∞,
and so, in particular, ’ ◦ u and x are bounded functions.
Therefore, there exists 6¿ 0 such that l̇(t) = ;(|e(t)|)6 6
for all t¿ 0, whence

k(t) = 1=l(t)¿ 1=(l0 + 6t) ∀t¿ 0 (29)

and so K(t) → ∞ as t → ∞. Therefore, by Theorem 7(ii),
statements (i)–(v) of Lemma 6 hold.
Case 2: In this case, k(t) → k̂ := 1=l̂¿ 0 as t → ∞ and

so K(t) → ∞ as t → ∞. Therefore, in order to conclude
that statements (i)–(v) of Lemma 6 hold, it remains to show
that ’(u(t)) converges to a 6nite limit as t → ∞. It su8ces
to establish that e∈L1(R+;R), in which case, by (28b), u(t),
and hence ’(u(t)), converges to a 6nite limit as t → ∞. By
boundedness of l and (27),∫ ∞

0
;(|e(t)|) dt ¡∞: (30)

First assume ’ is unbounded. Then, by hypothesis,
;(|e(t)|)¿ <|e(t)| for all t¿ 0 which, together with (30),
implies that e∈L1(R+;R). Next, assume ’ is bounded.
Then, by the Hurwitz property of A, (28a) and (28b), it fol-
lows that e is uniformly continuous. Moreover, (30) holds
and so, by BarbRalat’s Lemma (Khalil, 1996), ;(|e(t)|) → 0
as t → ∞ which, recalling that ;−1(0) = {0}, implies
that e(t) → 0 as t → ∞. Since lim inf �↓0 �−1;(�)¿ 0,
we may infer the existence of T ∈R+ and <¿ 0 such that
;(|e(t)|)¿ <|e(t)| for all t¿T which, together with (30),
implies that e∈L1(R+;R). Therefore, u(t) converges to a
6nite limit as t → ∞. Hence, the hypotheses of Lemma 6
are satis6ed and so statements (i)–(v) of Lemma 6 hold.
Finally, assume that %r ∩ O&=%r ∩&, %r ∩C(’)=∅ and

r �∈ C( ). We will show that the monotone gain k converges
to a positive value. Seeking a contradiction, suppose that the
monotone function l is unbounded (equivalently, k(t) ↓ 0 as
t → ∞). Then the hypothesis of Theorem 7(i) is satis6ed:
therefore, ’ ◦ u and x are bounded and so (29) holds for
some 6¿ 0. Therefore, K(t) → ∞ as t → ∞ and so, by
Theorem 7(ii), e(t) → 0 as t → ∞, and the convergence is
of order exp(−.K(·)) for some .¿ 0. This, together with
the fact that ; is locally Lipschitz with ;(0)=0, implies the
existence of a constant L¿ 0 such that

;(|e(t)|)6L exp(−.K(t)) ∀t ∈R+: (31)

Combining (28c) and (31), we obtain

−k̇(t)=k(t)6 Lk(t) exp(−.K(t))

= LK̇(t) exp(−.K(t)) ∀t ∈R+;

which, on integration, yields

ln(k0=k(t))6 (L=.)(1− exp(−.K(t)))6L=. ∀t ∈R+

contradicting the supposition that k(t) ↓ 0 as t → ∞.

Remark 12. Finally, we remark that, if the input nonlinear-
ity ’∈ML(�1) is bounded, then the assertions of Theorems
7 and 11 remain valid for all output nonlinearities  in M
(i.e., the sector condition on  can be removed in the case
of bounded ’). For the sake of brevity, we omit details.
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