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STABILITY RESULTS OF POPOV-TYPE FOR
INFINITE-DIMENSIONAL SYSTEMS WITH
APPLICATIONS TO INTEGRAL CONTROL

R. F. CURTAIN, H. LOGEMANN AND O. STAFFANS

1. Introduction

Absolute stability problems and their relations to positive-real conditions have
played a prominent role in systems and control theory and have led to a number
of important stability criteria for unity feedback controls applied to linear
dynamical systems subject to static input or output non-linearities, see [1, 13, 14,
23, 34, 39] for the finite-dimensional and [3, 6, 9, 18, 22, 34, 38] for the infinite-
dimensional case, to mention just a few references. In this paper we study an
absolute stability problem for the feedback system shown in Figure 1.

r u N y
T ® G |

FIGURE 1.

The input-output operator G is linear, shift-invariant and bounded from
L*(R,, U) into itself and ¢: U — U is a locally Lipschitz non-linearity, where
U is a real separable Hilbert space. It is well known that G can be represented by
a transfer function G which is analytic and bounded on the open right-half of the
complex plane. For simplicity we assume in the introduction that G admits an
analytic extension to an open neighbourhood of O (this assumption will be
weakened in §§2-4). In §2 we show that if r: R, — U is continuous, then the
feedback system in Figure 1 has a unique continuous solution u# which can be
continued as long as it remains bounded. In fact, the existence and uniqueness
result in §2 (Lemma 2.1) is more general in the sense that it allows for
unbounded G and time-varying ¢. The main result in § 3 (Theorem 3.1) shows in
particular that if G(0) is invertible and if there exist a linear bounded self-adjoint
operator P: U — U, a linear, bounded, invertible operator Q: U — U with
0G(0) = [0G(0)]" =0 and numbers ¢ =0 and & >0 such that

1 1
P+3 <qG(iw) + 0G(iw) + ¢G™(iw) — in*(iw)Q*) =¢gl, foraa weR,

then for any r of the form r = r; + r, with r, € W"*(R,, U) and r, € U and for
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any locally Lipschitz gradient field ¢: U — U corresponding to a non-negative
potential and such that

(¢(v), 0v) = (¢(v), Pp(v)), forall ve U,

the solution u of the feedback system shown in Figure 1 exists on R, (no finite
escape-time), u,y €LY(R,U), ¢oucL*(R,,U), lim,_,e¢(u(t)) =0 and,
under certain extra assumptions, u(z) and y(¢) converge as t — c0. Moreover, it
is shown in §3 that if the above positive-real condition for G holds with g =0,
then we can allow the non-linearity ¢ to be time-varying (Theorem 3.3). If 0 =1
and P = (1/a)l for some a € (0, ], then the above inequality involving ¢ is
equivalent to the standard sector condition

(o(v), p(v) —av) <0, foralveU,
which in turn is equivalent to
lle(v) —jav|| <1ia|v|, forallveU.

We emphasize that in contrast to previous results in the literature, the two main
results in § 3 (Theorems 3.1 and 3.3) consider feedback systems, where the linear
part contains an integrator (meaning in particular that the linear system is not input-
output stable) and where at the same time the lower gain inf,cy || (v)||/| 2| of
the non-linearity ¢ is allowed to be equal to zero (which, for example, is the case
for bounded non-linearities such as saturation). One of the motivations for
studying this situation is its importance in §4, where we use the absolute stability
results from § 3 to develop an input-output theory of low-gain integral control in
the presence of input non-linearities. The low-gain integral control problem has its
roots in control engineering, where it is often required that the output y of a
system tracks a constant reference signal p, that is, the error e(t) :=y(t) —p
should be small in some sense for large 7. It is well known that for exponentially
stable time-invariant single-input single-output systems with positive steady-state
gain (that is, G(0)>0) this can be achieved by feeding the error into an
integrator with sufficiently small positive gain parameter and then closing the
feedback loop. In §4 we develop generalizations of this result to linear systems
subject to input and/or output non-linearities.

It is assumed in § 4 that G, G and ¢ are as before, but in a single-input—single-
output context (that is, U = R). Consider the feedback system shown in Figure 2,
where p € R is a constant, k € R is a gain parameter and g: R, — R is an output
disturbance signal.
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FIGURE 2.

Setting 7(t) := u(0) +k [3(p — g(7))d7 and z:=k(y—g), one sees clearly
that Figure 2 and Figure 3 are equivalent in the sense that the signal u solves the
feedback system in Figure 2 if and only if u solves the feedback system in
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Figure 3. This shows that the feedback system in Figure 2 can be reduced to that
in Figure 1.

FIGURE 3.

The objective is to find a constant k™ € (0, o] in terms of the ‘system data’ G
and ¢ such that for all k € (0, k™) the tracking error e(7) becomes small in some
sense as f— 00, One of the main results in §4 (Theorem 4.1) shows that if
G(0)>0, g€ L*(R,, R) with r+ [jg(7)dr € L*(R,, R) + R, ¢ is non-decreas-
ing and globally Lipschitz with Lipschitz constant A >0 and p/G(0) € im ¢, then
the limit lim,_ o u(r) =: u® exists and ¢ o u — o(u”), e € L*(R., R), provided
that k € (0, 1/|Nf(G)]|), where

f(G) = sup{esse'u%f Re[(g+ 1/iw)G(iw)]}.
g=0 ©

Under mild extra assumptions, the tracking error e(¢) converges to 0 as ¢ — oo.
Furthermore, in the other main contribution of §4 (Theorem 4.4), we prove that a
similar result holds for a generalized version of the feedback scheme in Figure 2
which allows for a time-varying gain and non-linearities in the input as well as in
the output. Finally, §5 is devoted to applications of the input-output results in
§§3 and 4 to the class of well-posed state-space systems which are documented,
for example, in [7, 26, 27, 29, 30, 31, 32, 35, 36]. We remark that the class of
well-posed, linear, infinite-dimensional systems is rather general: it includes most
distributed parameter systems and all time-delay systems (retarded and neutral)
which are of interest in applications.

NoTATION. Let X be a real or complex Banach space; if X is real, then its
complexification is denoted by X.; if X is a real Hilbert space with an inner
product (-, -), then (-, -) extends in a natural way to a (complex) inner product
on X, and we shall use the same symbol (-, -) for the original inner product and
its extension. A set S X is called a sphere centred at z € X if there exists n =0
such that S = {xe€X|||x —z|| =n}. For 7=0, S, denotes the operator of the
right-shift by 7 on Lf (R,,X), where R, :=[0,00). For 0<7<7" <00, the
truncation operator P: L} ([0, 7%), X) — LP(R,, X) is given by (P,u)(t) = u(t)
if t€[0,7] and (P,u)(r) =0 if t>7. For « € R, we define the exponentially
weighted L”-space LE(R,, X):={feL} (R, X)|f(-)exp(—a+)eL’(R,,X)}
and endow it with the norm [|f]|, o = (fo ||e7°”f(t)||pdt)l/". For an arbitrary
interval JcR,, C (J, X) denotes the space of all continuous functions defined on
J with values in X; W"2(R_, X) denotes the space of all functions f € L*(R_, X)
for which there exists g € L*(R,, X) such that f(¢) —f(0) = [ g(s)ds for all
t€R_. For a function f: R, — X and a subset Z C X, we say that f(¢) approaches

Z as t — oo if
dist(f(¢), Z) = ian||f(t) —z|]|—0 ast— oo
z€
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If lim,_,  f(¢) exists, we denote this limit by f*, that is, f* :=lim,_, , f(¢). We
say that a (strongly) measurable function f: R, — X has an essential limit at oo if
there exists [ € X such that esssup,~,||f(7) — || tends to 0 as t — oo and we write
esslim,_, . f(t) = [ (a routine exercise shows that esslim,_, f(¢) =/ if and only
if there exists a function f: R, — X such that f(z) = f(z) for almost all t€ R
and lim,_ , f(¢) =1). For a« € R, let H*(C,, X) denote the Hardy—Lebesgue
space of square-integrable holomorphic functions defined in C, with values in X,
where C,:={s€C|Res>a}; H*(C,,X) denotes the space of bounded
holomorphic functions defined on C, with values in X. We use %#(X;,X,) to
denote the space of bounded linear operators from a Banach space X; to a Banach
space X,; we write #(X) for #(X,X). Let A: dom(A)cX — X be a densely
defined linear operator, where dom(A) denotes the domain of A. The resolvent set
of A is denoted by res(A); X, denotes the space dom(A) endowed with the graph
norm of A, whilst X_; denotes the completion of X with respect to the norm
lxll_y = ||(a —A)'x||, where «cres(A) (different choices of « lead to
equivalent norms) and || -|| denotes the norm on X. Clearly, X; c X cX_; and
the canonical injections are bounded and dense. If A generates a strongly
continuous semigroup T = (T,),~, on X, then T restricts to a strongly continuous
semigroup on X; and extends to a strongly continuous semigroup on X_; with the
exponential growth constant being the same on all three spaces. Correspondingly,
A restricts to a generator on X; and extends to a generator on X_;. We shall use
the same symbol T (respectively, A) for the original semigroup (respectively,
generator) and the associated restrictions and extensions: with this convention, we
may write A € #(X, X_;) (considered as a generator on X_;, the domain of A is
X). The Laplace transform is denoted by .

2. Existence and uniqueness of solutions to the feedback system
Throughout this section, let U be a real Hilbert space and let
G: LIZOC(R+’ U) _>L1200<R+’ U)

be a linear, continuous and causal operator, where we regard the space L, (R, U) as
a Fréchet space with its topology given by the family of seminorms u — ||P,u/| 2,
with n € N. Recall that G is called causal if P.GP, =P,.G for all 7€ R,. Note
that a linear operator G: Ly (R, U) — L. (R,, U) is continuous and causal if
and only if for every 7 € R there exists a constant v, = 0 such that

| P, Gul|2 <v,||P,ull2 forallueLi (R,,U).

Consider the Volterra equation

u(t) =r(t) — At(G(ga ou))(r)dr, fort=0, (2.1)

which describes the feedback system shown in Figure 1. In (2.1), r: R, — U is the
input of the feedback system (or forcing function), ¢: R, XU — U is a time-
dependent non-linearity, and ¢ o u denotes the function ¢ — (¢, u(t)). Let J be a
time-interval of the form J = [0, T| (for 0 < T < ) orJ = [0, T) (for 0 < T < ). In
order to define the concept of a solution of (2.1) on J, we need to give a meaning
to Go for v € LE.([0, T), U) if T is finite (recall that G operates on L -functions
defined on the whole time-axis R ). This can be done as follows: we define an
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operator Gy: L ([0, T), U) — L ([0, T), U) by setting
(Gro)(t) = (GP,v)(t), forO<r<r7<T.

Since G is causal, this definition does not depend on the choice of 7 and so Gy is
well defined. Note that G7(L*([0,T), U)) cL*([0,T), U) for finite 7. In the
following we will not distinguish between G and G and we drop the subscript 7.

A function u:J— U is called a solution of (2.1) on J, if the function
t— o(t,u(t)) is in Ly (J, U) (so that G(¢ o u) is defined on the interval J) and
(2.1) holds for all € J (for almost all ¢ € J if r(r) is only defined for a.a. r=0
or if we consider r as an equivalence class of functions coinciding almost
everywhere). If r is continuous, then so is the right-hand side of (2.1), and hence
any solution u of (2.1) is then necessarily continuous.

The following lemma shows that if r is continuous and ¢ satisfies certain standard
regularity conditions (including a Lipschitz-type condition), then (2.1) has a unique
continuous solution which can be continued as long as it remains bounded.

LEmMMA 2.1. Let G: Ly (R,,U) — LE.(R,, U) be a linear, continuous and
causal operator, let r€ C(R.,U), and let ¢: R.xU—U be such that
t+— ¢(t, v) is measurable for every v € U, t+— ¢(t,0) is in L. (R, U), and for
every bounded set V C U there exists Ny € L. (R, R) such that

t — t
wp 20— el )]
v,weV ||‘Z)—W||

< A\y(t), aa t=0. (2.2)

Then the Volterra equation (2.1) has a unique continuous solution defined on
a maximal interval of existence [0,T), where 0<T <oo. If T<oo, then
limsup, _ 7 [|u(1)]] = co.

Proof. We will be brief: for more details we refer the reader to the proofs of
similar results in [12, § 12.2; 19, Appendix].

Step 1. Existence, uniqueness and extension on small intervals.

We use the standard ‘method of steps’ which is described in quite some detail
in [12, §12.2]. The crucial part of this step of the proof is an argument which
shows that every continuous solution u on a closed finite interval [0, 7] can be
extended to a continuous solution defined on [0, 7+ ] for some £ > 0. Let 7= 0,
and let u € C([0, 7], U) be a solution of (2.1) on [0, 7] (if 7 =0, we simply take
u(0) = r(0)). Let £ >0, let n := ||u(7)|| + 1, and set

€, :={veC([0,7+¢], U)lov(t) = u(t) for r € [0, 7]

and ||o(t)|| <7 for f € [1, 7+ €]}

Endowed with the metric (uy, u) — sup,c [, -1 [l 11(t) —u(t)||, €, is a complete
metric space. Using the continuity of r, the fact that 7 — ¢(z, 0) is in LIZOC([R{+, U),
the Lipschitz-type condition (2.2), and the linearity, continuity and causality of G,
it is a routine exercise to show that there exists € > 0 such that for all € € (0, 8*]
the operator defined by the right-hand side of (2.1) is a strict contraction, mapping
%, into itself. Hence, for ¢ € (0, £*], this contraction has a unique fixed point
v, € €., and this means, in particular, that v := v,- is a continuous solution
which extends the solution u defined on [0, 7] to the larger interval [0, 7+ &].
Moreover, if w: [0, 7+ &*] — U is another function with this property, then w is
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continuous and so there exists &€ (0,&"] such that wlj ,,, €%,. By the
uniqueness of the fixed point in %, it follows that

w(t) = v,(t) = v(t), forall r€|0, 7+ &l

Step 2. Extended uniqueness.

Let u; and u, be two continuous solutions of (2.1) on [0, 7] and [0, 7,], where
0<7 <7,. We claim that u,(t) =u,(¢r) for all t+€[0, 7{]. Seeking a contra-
diction, suppose that there exists ¢ € [0, 7;] such that u(¢) # u, (). Defining

t* = inf{t c [0, Tl] | Ml(t) 7é u2(t)},

we find from an application of Step 1 (with 7=0) that " > 0. Furthermore,
ui(t*) = u,(t*) (by the continuity of u; and u,) and so, by supposition, t* < 7;.
Applying Step 1 with 7 replaced by ¢ shows that there exists & >0 such that
u(t) = uy(t) for all t € [0, t" + &, contradicting the definition of ¢*.

Step 3. Maximal interval of existence.

Let 7 c R, be the set of all 7> 0 such that there exists a solution u” of (2.1) on
the interval [0, 7]. Set T := sup .7 and define a function u: [0, T) — R by setting

u(t)=u’(t), forre]0, 7], where 7€ .7.

By Step 2 the function u is well defined and is the unique continuous solution of
(2.1) on the interval [0,T). If T <oo, then u must be unbounded, because
otherwise the limit of the right-hand side of (2.1) as # T T would be finite and u
could be extended to a continuous solution of (2.1) on the closed interval [0, T,
which by Step 1 could be extended beyond 7', contradicting the definition of 7.
O

3. Stability results of Popov-type

Throughout this section, let U be a real separable Hilbert space and let
G € A(L*(R_, U)) be a shift-invariant operator, that is, $,G = GS, for all 7= 0.
Since the operator G is shift-invariant, it is causal, and so G can be extended to a linear,
continuous, shift-invariant (and hence causal) operator mapping L%OC(R +, U) into
itself. We shall use the same symbol G to denote the original operator on L*(R ., U)
and its shift-invariant extension to Li.(R,,U). As is well known, a shift-
invariant operator G € Z(L*(R ., U)) has a transfer function G € H*(C,, #(U.))
in the sense that

(2(Gu))(s) = G(s)L(u)(s), foralluecL*(R,,U), and all s € C,.

Since U is separable, G has strong non-tangential limits at almost every point iw
on the imaginary axis (see [25, Theorem B, p.85]) and this limit is denoted by
G (iw) (whenever it exists). We introduce the following assumption.

(A) The limit G(0) := lim,_,( yec, G(s) exists and

LG - 6(0)

N

lim sup < 00,

s—0,5€Cy

We first consider the feedback system shown in Figure 1 for a class of time-
independent non-linearities ¢, so-called gradient fields, a concept which we now
define. For a C'-function ®: U — R, let ®": U — U™ denote the derivative of &.
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Using the Riesz representation theorem, we define the gradient V&: U — U of ® by
(V®)(v), w) = [(®")(v)](w), forallweU.

For all v € U we have ||(V®)(2)| = ||(®'(v)||, and therefore, by the C'-property
of &, the gradient V® is continuous. As usual, a function ¢: U — U is called a
gradient field if there exists a C !_function ®: U — R (sometimes called the
potential) such that ¢ = V&.

Before we state the main result of this section, a stability criterion of Popov-type
in an input-output context, it is useful to note that if r € W"*(R., U) + U, then
r® =1lim,_ o () exists and r — r® € W"3(R_, U) (since r—ve W"3(R,, U)
for some v € U, and so the function r — v and its derivative are in L*(R,, U),
implying that lim, _, ,, r(t) = v = r™).

THEOREM 3.1. Let G B(L*(R,,U)) be a shift-invariant operator with
transfer function G satisfying Assumption (A) with G(0) invertible, and let
¢: U — U be a locally Lipschitz continuous gradient of a non-negative C 1—function
®: U — R. Assume that there exist self-adjoint P € B(U), invertible Q € B(U)
with QG (0) = [0G(0)]" =0, and numbers q =0 and € >0 such that

(e(v), Qv) = (¢(v), Pe(v)), forallveU, (3.1)
and

w

1 1
P+3 <qG(iw) +E 0G(iw) + qG™(iw) — iG*(iw)Q*> =el, foraa. weR.

(3.2)
Moreover, let r € W"*(R,, U) + U. Then the following statements hold.

(1) The solution u of (2.1) exists on R, (no finite escape-time) and there exists
a constant K = 0 (which depends only on G(0), Q, q and &, but not on r) such that

lull o+ [lie] g2 + 0 o ull 2+ (e © w), Qu)ll,)' "

[eowimar

+ sup

t=0

< Kn, (3.3)

where
=/ ®(r0) + [r= | + [l =% 2 + 7] 2 (3.4)

(2) The following limits exist:

lim (¢ o u)(t) =0, lim <u(t) +G(0) /Ot (po u)(T)dT> =r%,

o RN (3.5)
lim @ew@. im0 w(). Quir))dr

in particular, u®™ :=1im, _, ,, u(t) exists if and only if lim, _,  [o(¢ © u)(7) d exists,
in which case ¢(u*) =0 and

t

G(0) lim (pou)(r)dr=r"—u". (3.6)

t— 00 0
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(3) There exists a sphere Sc U centred at 0, such that the solution u of
(2.1) satisfies

gg&aWMJﬂwmeﬂ*”$=0; (3.7)

in particular, if dimU = 1, then lim, o u(t) and lim, . [ (¢ © u)(7)d7 exist.
(4) Under the extra assumptions
(B) every closed and bounded subset of ¢ ' ({0}) is compact,
(©) ¢ '({0}) N G(0)[QG(0)]""/%S is a finite set for any sphere SC U centred
at zero,
(D) inf,cy || ¢(v)|| >0 for any bounded, closed and non-empty set V. U which
does not intersect ¢~ ' ({0}),

the existence of the limits lim, _, o, u(t) and lim,_ » [g (¢ © u)(7)d is guaranteed.
(5) Under the extra assumption
(E) esslim,_, (Go)(t) =0 for all ve C(R,,U)NL*(R.,U) with v(t)—0

as t — oo,

we have esslim,_, (G(p o u))(t) =0 and esslim,_, ,(it(t) — i(t)) = 0.

Note that Assumption (C) is always true if dimU =1, and that Assumptions
(B) and (D) always hold if dim U < 0. In particular, if dim U < oo, then it follows
from statement (4) that lim,_ . u(f) exists, provided every bounded set Vc U
contains at most finitely many zeros of ¢. If dim U < o0, a sufficient condition for
Assumption (E) to hold is that the convolution kernel of G is a bounded matrix-
valued measure.

Before proving Theorem 3.1, we state a slightly simplified version of this result
(where P and Q are scalars and P=0) in the form of a corollary which is
convenient in the context of applications of Theorem 3.1 to integral control. To
this end, for a € R, U {0}, let S (a) denote the set of all functions ¢: U — U
satisfying the sector condition

1
(¢(0)2) =~ [lo(@)|” forallve, (3.8)

where 1/00 :=0. We claim that for any gradient field ¢: U — U belonging to
% (a) there exists a non-negative C'-potential vanishing at zero. To prove this
claim, let ®: U — R be the unique C'-function with ®(0) = 0 such that ¢ = V.
For v € U, define f: [0, 1] — U by f(t) = tv. Then

;%(¢°f)@)=<V¢(fUD,fO»:=<¢Uv%v% for all z € [0, 1],

and integration from O to 1 yields

1
@(v)—/o (p(tv), v)dt =0,

where the non-negativity follows from the sector condition on ¢.
The following result is now an immediate consequence of Theorem 3.1.

COROLLARY 3.2. Let G€ B(L*(R,,U)) be a shift-invariant operator with
transfer function G satisfying Assumption (A) with G(0) invertible and
G(0) =G"(0)=0, and let ¢: U— U be a locally Lipschitz continuous gradient
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field which belongs to ¥ (a) for some a € (0, o|. If there exist g =0 and & >0
such that

1 1 1 . 1 %/
—I+-|lg+— |G(iw)+ (g—— |G (iw)| =el, foraa weR, (3.9)
a 2 iw iw

then, for all re Wl’z(R+, U)+ U, the conclusions of Theorem 3.1 hold with
P=(1/a)l, Q=1 and &(v) := [; (o (10), v)dt.

Proof of Theorem 3.1. By Lemma 2.1, the Volterra equation (2.1) has a
unique solution u defined on a maximal interval of existence [0, T), where
0 < T < oo. Hence

u(t) + AI(G(QD o w))(r)dr = r(t), forall 1€ 0, T), (3.10)

or, equivalently,
iu(t) + (G(pou))(t) =i(t), foraa t€[0,T); u(0)=r(0). (3.11)

Let us rewrite (3.10) in a slightly more convenient form, namely
t
u(t) + (H(p o u))(t) + G(O)/ (pou)(r)dr=r(t), forallz€l0,T), (3.12)
0

where we have defined the operator H by
t

(Ho)(t) := At (Go)(7) dT—G(O)/ o(7)dr,

0

for all v € Lip.(R,, U) and all t € R, . (3.13)

It is not difficult to show that this operator is shift-invariant and that its transfer
function is given by

H(s) = (G(s) — G(0))/s, forseC,. (3.14)

From Assumption (A) and from the fact that G € H*(C,, #(U,)), we conclude
that H € H®(C,, #(U.)), and hence H € Z(L*(R,, U)).
We multiply (3.11) by ¢, multiply (3.12) by Q, and add the results to obtain

Git) + Qult) + Gy gl o 0)0) + 0G(0) [ (oo u)(n)dr

=qi(t)+ Qr(t), foraa.re€[0,T), (3.15)
where we have defined the operator G, , by
G,0:=q9qG+ OH.
Invoking (3.14), we see clearly that the transfer function G, , of G, ( is given by
Gy.0(s) := qG(s) + Q(G(s) — G(0))/s.

Note that, by the self-adjointness of QG(0), the ‘positive-real’ condition (3.2) can
be expressed as

P+1(Gyolio) + G, o(iw)) =el, foraa weR. (3.16)
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The most central ingredient in this proof is the ‘energy balance’ equation obtained
by replacing ¢ in (3.15) by 7, taking the inner product with (¢ o u)(7), and
integrating with respect to 7 from 0 to t€[0,7T) (here we are following the
general procedure described in [12, § 18.2]). The first term on the left-hand side

of this energy balance equation is ¢ [y{((¢ © u)(7), it(7))dr. Since ¢ is the
gradient of ® and u(0) = r(0), we conclude that

q/t (¢ o u)(r), (7)) dT = q(® o u)(t) — q®(r(0)).
0

Using the fact that QG (0) = [0G(0)]" =0, we obtain for the last term on the
left-hand side of the energy balance equation

e 0w, 06(0) [ pou)dr=1{e.r). 0G(0)p,(1).
A [ eeu)

where we have introduced the abbreviation

oult) = / (¢ o u)(r)dr. (3.17)

Keeping all the other terms in their original form, we note that the energy balance
equation becomes

s@ounn+ | (e 0 uw)(r). Qu(r))dr
+ (e 0 w)(7), Gy ol 0 0)(r)) dr + 1y (1). QG (0) e, (1))

=q®(r(0)) + At (¢ o u)(7), qir (1) + Qr(r))dr, forallte[0,T). (3.18)

Invoking Parseval’s theorem, we see from (3.16) that

/ (e 0 w)(7). Gy gle 0 w)(r)) dr

> / e o w2 dr— / (g 0 u)(r). Ple 0 u)(r)) dr, forall 1€ [0,T).
0 0

Combining this estimate with (3.18), we obtain

s@oun)+e | e 0 W) (@27 + L (g, (1), 0G(0)u(0))
- [ (¢ o uw)(r). Qu(r) — P(g o u)(r)) dr

< ¢®(r(0)) + A (¢ o u)(7), gir(7) + Qr(r))dr, forallze€[0,T). (3.19)

The inequality (3.19) can be further simplified. Since rGWI’Z([R LU+ U,

e}

r® :=1lim,_, , r(t) exists and r — r® € W"*(R,, U). Writing the integral on the
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right-hand side of (3.19) in the form
t
A ((p o u)(7), gi(7) + Q(r(1) — r%))d7 + (@, (1), Or™),

we can combine the term (¢, (1), Qr*) with the third term on the left-hand side
of (3.19) by completing the square, whilst the remaining term can be estimated as
follows (since ab < %saz +b%/ (2¢) for non-negative numbers a and b)

/ e o u)(r), g7 (1) + Q(r(r) — r=) | dr
<o [le o wlPdr
0

1 ! o
ts [ gk + Q) ~ )Pz, foratl 1€ (0.7).
0
With these further changes, (3.19) becomes

d(@o0)n) +he [ e o I dr+ RGO e0) - [GO] )
-/ (¢ 0 u)(r). Qu(r) — P(o o u)(r)) d7

=420 +52 [ lartn) + Q0 () = ™) P ar

+11110G(0)]'2[G(0))]"'+||?, forall t€ [0, T). (3.20)

By the non-negativity assumption on ® and by the ‘sector condition’ (3.1), all
terms on the left-hand side of this inequality are non-negative. Moreover, note
that the right-hand side does not depend on u. Inequality (3.20) is the key
estimate from which we shall derive the theorem.

Proof of statement (1). Inspecting (3.20), we immediately observe that for

some constant K >0 (which can be explicitly computed, and which depends only
on g, ¢, Q and G(0)),

T 1/2
(/ ||<¢ou><r>||2dr) + sup
0 0<st<T

A (g 0 u)(7). Quir) — P o w)(m) | dT<Kn®.  (3.22)

<Kn, (3.21)

[ e on@ar

where 7 is defined by (3.4). Invoking (3.1), we see that
((pou), P(pou))=<((¢ou), Qu)

= ((p o u), Qu—P(pou)) + ((¢ou), Pl¢ou)),
and so it follows from (3.21) and (3.22) that (for a suitably enlarged constant K)

A (¢ © u)(r). Qu(r)) d7 =< K>, (3.23)
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By (3.13),

t

At (G(eou))(r)dr= (H(pou))(t)+ G(O)A (pou)(r)dr, forallte|0,T).
Setting f := H(¢ o u), we have f(0) =0, and so

(e 0 )OI = [ FOIF <2 [ (). Fn)ld7. forallt€ [0.T).
Now f = G(¢ o u) — G(0)(¢p o u) and therefore

II(H(<p°M))(t)|2$2|H||(|IGII+IIG(O)II)A (¢ o u)(z)||*d7, forall 1€ [0, T).

(3.24)
Moreover, we observe that
|r® — = 2‘ / —r®ydr
<2llr—r%| 2 lli|l 2 < 772, forall re R,
with 7 given by (3.4). It follows that
7l =< (3.25)

Combining (3.11), (3.12), (3.21), (3.24) and (3.25) shows that (for a suitably
enlarged constant K)

1/2
sup |ju(t)] + (/ Il ()| dT) < Kpm. (3.26)
0=<t<T

However, this combined with Lemma 2.1 implies that T = oco. It now follows
from (3.21), (3.22), (3.23) and (3.26) that (3.3) holds.

Proof of statement (2). By (3.3), ue L*(R,,U) and i ELZ([RM, U), which
means that u is bounded and uniformly continuous. Since ¢ is locally Lipschitz
continuous, ¢ o u is also uniformly continuous. In addition, ¢ o u € L*(R,, U)
(see (3.3)), and it follows from Barbalat’s lemma that lim, _, o (¢ © u)() = 0.

By (3.12), the second limit in (3.5) is equivalent to the claim that
lim,  (H(¢ou))(t) =0. The latter follows from the fact that the function
H(p o u) belongs to L* (since H is bounded and ¢ o u € L*(R_, U)), as does its
derivative G(¢ o u) — G(0)(¢ o u). The limit lim, , (P o u)(r) exists, since, by
(3.3), the derivative (¢ o u, it) of ® o u is integrable. Furthermore, the existence
of the limit lim, _, « [ ((¢ © u)(7), Qu(7)) d7 follows from the integrability of the
integrand (see (3.3)).

By the second limit in (3.5) it is clear that u® :=lim,_, ., u(z) exists if and only
if lim; .o [y (¢ ©u)(7)d7 exists, in which case it is obvious that ¢(u”) =0
(since ¢(u(t)) — 0 as t — o) and, moreover, (3.6) holds trivially.

Proof of statement (3). Replacing ¢ by 7 in (3.11), taking the inner product
with (¢ o u)(7), and integrating from 0 to ¢ yields
t

(@ o u)(r) + / (g o u)(r), Glg 0 w)(r)) dr = B(r(0)) + / (¢ © u)(r). (r) dr.

0
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Multiplying this identity by ¢, subtracting the result from (3.18) and invoking
(3.17) gives

[ tte e o). Quie ar
+ [ Ul o u)(r). QH(p o u)(7)) dr + (1), 0G(0) ¢, (1))

= At {((pou)(r), Q(r(1) — r®)ydr + {@,(t), Or”).

Combining the last terms on the left-hand and right-hand sides by completing the
square gives

HI10G ()] (e, (1) — [G(0)] ')
=1[0G(0)]'[G(0)] ' r=|?

t

- / U o u)(r). Quir)) dr - / (¢ © u)(r). QH(p o u)(r)) dr
0 0

+ [" o o 0. 000 = yar

All the integrands on the right-hand side are in L' (R, R), and so the right-hand side
has a finite limit as 7 — co. Therefore lim, .  ||[0G(0)]'/%(¢, (1) — [G(0)] ™'+
exists. This, combined with the existence of the second limit in (3.5), implies (3.7).
Finally, if dim U = 1, then the sphere S consists of just one or two points, and hence,
by continuity, u* = lim, _, o, u(t) exists.

Proof of statement (4). Since u is bounded, there exists a closed bounded ball
W c U such that u(r) € W for all £=0. By Assumption (B), ¢ '{0} "W is
compact. Let 6 > 0. Then, by the compactness property, ‘071{0} N W is contained
in a finite union of open balls with radius 6, each ball centred at some point in
¢ {0} " W. Call this union Ws. We claim that u(r) € W; for all sufficiently large ¢.
This is trivially true if W c W;s. If not, then the set V := W\ W; is non-empty.
Moreover, V is bounded and closed with ¢~ ' ({0}) NV = 0, and so, by Assumption
(D), inf,cy ||¢(v)]] >0. We know from (3.5) that lim,_, (¢ o u)(z) = 0, and so,
also in this case, u(r) € Wy for all sufficiently large ¢+ = 0. This implies that u(t)
approaches ¢ {0} "W as t — oo, Using the compactness of ¢ {0} N W and the
continuity of u, a routine argument shows that the trajectory {u(¢)|r€ R, } of u
is precompact. Therefore, by a standard result, the w-limit set of u,

Q, :={l€U|u(ty) — [ for some sequence 7, — o0},

is non-empty, compact, connected and is approached by u(t) as r — oo. Consequently,
Q, < ¢ {0} N W. Furthermore, by (3.7), it is also true that 2, < G (0)[QG (0)]~'/2s
for some S c U centred at 0. Therefore, by Condition (C), @, is finite. Being both
finite and connected, 2, must consist of exactly one point u*, and we conclude
that u(t) — u®> as t — oo,

Proof of statement (5). The proof of statement (5) is obvious and is therefore
left to the reader. ]
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If the positive real condition (3.9) holds with g =0, then we can allow the
non-linearity ¢ to be time-varying. We use the notation ¢ o u for the function
t— (t,u(r)) in this case. In the following, we want to allow for discontinuous
and even locally unbounded functions » in the Volterra equation (2.1). Recall that
for a given forcing function r: R, — U, a function u: R, — U is called a
solution of (2.1) if ¢ ou GLIZOC(IR+, U) (guaranteeing that G(p o u) in (2.1) is
well defined) and if (2.1) holds for all r€ R, (for a.a. r€ R if r(¢) is only
defined for a.a. t € R, of if we consider r as an equivalence class of functions
coinciding a.e.). Moreover, although we allow r and u to be very irregular, it
follows from (2.1) that if u: R, — U is a solution, then the difference u(z) — r(z)
is equal to a continuous function for a.a. = 0. For this reason, we shall consider
u(t) — r(t) to be everywhere defined (and equal to [y G(¢ o u)(7) d7).

We are now in a position to state the following result, a sufficient closed-loop
stability condition of circle-criterion-type in an input-output context.

THEOREM 3.3. Let Ge B(L*(R,,U)) be a shift-invariant operator with
transfer function G satisfying Assumption (A) with G(0) invertible, and let
¢: R, xU—U be a time-varying non-linearity. Assume that there exist self-

adjoint P€ B(U), invertible Q€ B(U) with QG(0) =[0G(0)]"=0 and a
number & > 0 such that
(o(t,v), Qv) = (@(t,v), Po(t,v)), forallteR, and allve U,  (3.27)
and
P+ (0G(iw) — G (iw)Q")/(2iw) = el, for a.a. w € R. (3.28)
Let re L*(R,, U) + U, that is, r = r| + r, with r; € L*(R,, U) and r, € U, and
let u: R, — U be a solution of (2.1). Then the following statements hold.

(1) There exists a constant K (which depends only on &, Q and G(0), but not
on r) such that

=< Kn,

[ oo wiman

[t — ][ =+ @ o ull 12+ (| {(¢ © u), Qu>||Ll>”2+sug
=

(3.29)
where
n = [Irllz2+ [Irll
(2) The following limits exist:
t

lim (u(t) —r(t) + G(0) /)t(ga o u)(7) dT) =0, lim [ ((¢ou)(r), Qu(r))dr;

t— t—o00 Jq

in particular, lim, , (u(t) — r(t)) exists if and only if lim, .o [o (¢ © u)(7)dT
exists, in which case

lim (u(t) — r(t)) = —G(0) tlergo At (¢ o u)(r)dr.

t— 00

(3) There exists a sphere S c U centred at 0, such that
lim dist(u(t) = ri(1), G(0) [0G(0)]7'/28) = 0;

in particular, if dimU = 1, then lim, _, o (u(t) — r(t)) and lim, _ o [y (¢ © u)(7)dT
exist.
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(4) If we relax condition (3.27) and only require that, for some ty > 0,
(o(t,v), Qv) = (¢(t,v), Po(t, ), forall t=1tyand all ve U, (3.30)
then the left-hand side of (3.29) is still finite (but no longer bounded in terms of 1)

and statements (2) and (3) remain valid.

By taking Q=1 and P =1/a (where a € (0, ©]) in the above theorem we
obtain an analogue of Corollary 3.2.

Proof of Theorem 3.3. Taking ¢ =0 and replacing r* by r, in (3.20) and
multiplying the resulting inequality by 2 gives

e [ e o 0@ a7+ QGO (o) - GO )|
= (e o u)(r). Qu(r) — P(e o u)(r)) dr

0
=L [0t~ r)Par+ 1106 0) GO) rlP, foratl <R,
(3.31)

Statements (1)—(3) can be derived from (3.31) by arguments identical to those
used to prove the corresponding statements in Theorem 3.1.

It remains to prove statement (4). The estimate (3.31) is still valid, but the last
term on the left-hand side could have either sign. However, setting

L ZAIO |<(¢ o u)(s), QM(S) _ P(¢ o u)(s)>|ds,

we see from (3.31) that

e [l 0wl dr+ 11060 o) - GO ra)
= (o 0 u)(r). Qu(r) — P(e o u)(r)) dr

1 t
<L+—/ 10(r(x) - r2)|Pdr
€ Jo

+ 110G (0)]'/2[G(0)]'ry||%  for all £ € [tg, o0).

By (3.27), the integral ffo ((¢ o u)(s), Qu(s) — P(p o u)(s))ds is non-negative.
The rest of the proof carries over with no further changes, except that the right-
hand side of (3.29) is now bounded in terms of n and L (where the latter constant
depends on the restriction of u to [0, 7y)). O

REMARK 3.4. In Theorem 3.3 the existence of a global solution is assumed. If
r is continuous and ¢ satisfies the assumptions in Lemma 2.1, then, by the same
lemma, there exists a unique continuous solution u of (2.1) on a maximal interval
[0, T). An inspection of the proof of Theorem 3.3 shows that if (3.27) and (3.28)
hold, then T = oo: simply note that (3.31) holds for all ¢ € [0, T), implying, in
particular, that u is bounded on [0, T'), and hence T = oo, by Lemma 2.1.
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Let us make some comments on how the results that we have proved in this
section are related to the existing literature. Obviously, the development of
frequency-domain criteria for the stability of the feedback interconnection of a
linear time-invariant dynamical system and a static (possibly time-depending) non-
linearity is a classical theme in control theory, known as absolute stability theory.
In the finite-dimensional case there are a large number of results available in the
literature, many of which have been obtained by Lyapunov techniques applied to
state-space models with the so-called Kalman-Yakubovich—Popov (or positive-
real) lemma playing a crucial role; see, for example, [1, 13, 14, 15, 16, 23, 28,
34, 39] and the references therein. In the infinite-dimensional case the literature
on absolute stability problems is dominated by input-output approaches; see, for
example, [8], which gives the first treatment of the Popov criterion in a distributed
parameter context, and see the relevant chapters in the books [4, 9, 16, 21, 22, 28,
34] and the references therein. The number of absolute stability results in an
infinite-dimensional state-space setting is fairly limited (see [2, 3, 6, 11, 17, 18,
37, 38]). Some of the references, namely [2, 4, 37] and parts of [16] (see also the
forthcoming paper [5] by the authors), consider the frequency-domain condition
(3.2) (or a variation thereof) with € = 0, and, not surprisingly, the corresponding
conclusions are weaker than in Theorem 3.1: typically, under suitable regularity
assumptions on r and the impulse response of the linear system, boundedness of u
is shown, but not, for example, square-integrability of ¢ o u. These results cannot
be applied to obtain any interesting applications to low-gain integral control (see
§4) and hence they are, in a sense, not relevant in the context of the present
paper. A significant difference is that Theorems 3.1 and 3.3 consider feedback
systems where the linear part contains an integrator (that is, we are considering a
so-called critical case in the terminology of [1, 16], meaning, in particular, that
the linear system is not input-output stable) and where at the same time the lower
gain inf,cy ||¢(2)]|/]|2]| of the non-linearity ¢ is allowed to be equal to zero
(which, for example, is the case for bounded non-linearities such as saturation). In
fact, one of the motivations for studying this situation is its importance in the
application to the low-gain integral control problem in the presence of input non-
linearities of saturation type (see §4). By contrast, in most (if not all, if we ignore
the contributions which consider (3.2) with € = 0) of the input-output absolute
stability results available in the literature, the lower gain of the non-linearity is
either assumed to be positive, or, if the lower gain is allowed to be zero, the
linear part is assumed to be input-output stable (in particular, it is not allowed to
contain an integrator); see, for example, [8; 9, pp. 186—189; 16, pp.70-71; 22,
pp- 115-116; 28, pp.162-167; 34, pp.344-356]. Moreover, in all but two of
these references (the exceptions being [8] and [16, Theorem 1.17.4, p.70]) it is
assumed that the input signal r € Wl’l(R+, U) in the Popov criterion (that is,
r® =0 in Theorem 3.1) and r € L*(R., U) in the circle criterion (that is, r, = 0
in Theorem 3.3). As a consequence, these results are not applicable to the low-gain
control tracking problem nor to strongly or exponentially stable well-posed state-
space systems; see §§4 and 5. Furthermore, we remark that in the input-output
absolute stability results available in the literature the regularity assumptions
imposed on the impulse response of the linear system (where it is usually assumed
that the convolution kernel of G is a function or a bounded measure without singular
part) are more restrictive than in our results. As a relatively minor point we mention
that in our results the input space U may be infinite-dimensional, whereas in most of
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the previous contributions (to the best of our knowledge, the only exception
being [22]) it is assumed that dim U < oo or, in many cases, even dimU = 1.
Summarizing, we believe it is fair to say that Theorems 3.1 and 3.3 represent a
substantial improvement on related input-output results in the control literature.

More relevant in our context are the frequency-domain results developed in the
stability theory of integral equations. To the best of our knowledge, the most
general of such results are those given in [12], so we only compare our results to
those found in [12, §§17.5 and 18.2] (and refer the reader to [12] for further
historical comments). There are, of course, numerous differences in terminology,
and it is not always a trivial matter to spot the relevance of the results in [12,
§§17.5 and 18.2] to absolute stability problems in infinite-dimensional control
theory. Moreover, there are some obvious differences of a technical nature: in our
results we do allow U to be infinite-dimensional, whereas none of those in [12]
does. In Theorems 3.1 and 3.3 we do not require that G maps a locally bounded
function into a locally bounded function (this requirement is equivalent to the
standing assumption used in [12] that G can be written as a convolution operator
with a locally finite measure kernel). On the other hand, our assumptions that
G e A(L*(R., U)) and that (A) holds are not imposed in [12]. From a control-
theoretic point of view in general and for applications to low-gain integral control
in particular, our assumptions that G € Z(L*(R_, U)) and that (A) holds seem to
be more natural. (A small technical difference which may confuse the reader is
the fact that we include the constant € in (3.2), whereas the same constant & in
[12] appears in (3.1): to get comparable results one should take our operator P to
be equal to the operator A — €l in [12]). The most significant difference between
our results and those given in [12] is that in [12] it is assumed (as in the absolute
stability literature) that »* =0 (in Theorem 3.1) and r, = 0 (in Theorem 3.3),
excluding applications to the low-gain control tracking problem and to strongly
or exponentially stable well-posed state-space systems; see §§4 and 5. If we
ignore the differences mentioned above (and a number of other details), then parts
of statement (1) of Theorem 3.1, namely the facts that u is bounded and
pouecL*(R.,U), are reminiscent of [12, Corollary 18.2.4] (see also [12,
Theorem 18.2.1]). A similar comment applies to the relation of Theorem 3.3 and
[12, Theorem 17.5.1]. As we have already mentioned, the energy balance analysis
in the proofs of Theorems 3.1 and 3.3 is strongly inspired by the general
methodology described in [12, § 18.2].

4. Application to integral control in the presence of
input/output non-linearities

In this section we assume that dimU =1, that is, U= R. We will apply
Corollary 3.2 and Theorem 3.3 to derive results on low-gain integral control.
4.1. Integral control in the presence of input non-linearities

Consider the feedback system shown in Figure 2, where p € R is a constant, k € R
is a gain parameter, ¢: R — R is a static input non-linearity and G € Z(L*(R. , R))
is a shift-invariant operator with transfer function denoted by G. Mathematically,
Figure 2 is described by the abstract Volterra integro-differential equation

i =klp— (g +Glpou)l. u(0)=u€cR, (4.1)
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where the function g models the effect of non-zero initial conditions of the system
with input-output operator G. Of course, (4.1) is equivalent to the integral equation

u(t)=u°+kﬂ (P—g(T))dT—kAt (G(p o u))(r)dr, fort=0.

The aim in this subsection is to choose the gain parameter k such that the
tracking error

e(t):=p—(g+G(pou))=ult)/k (4.2)

becomes small in a certain sense as t — 0. For example, we might want to
achieve ‘tracking in measure’, that is, for all € > 0, the Lebesgue measure of the
set {r=1]||e(r)|=¢e} tends to 0 as r— oo, or ‘essential asymptotic tracking’,
that is, esslim,_, ,e(t) =0, or the aim might be ‘asymptotic tracking’, that is,
lim,_, , e(t) = 0. Trivially, tracking in measure is guaranteed if e € L”(R_, R) for
some p € (0, ). Obviously, by (4.2), statements about tracking can be regarded
as statements about the asymptotic behavior of the derivative it of the solution u
of (4.1).

In order to state the main result of this subsection we introduce the following
assumption.

(A") G is differentiable at zero in the sense that the limits

G(0):= %)in'qe(D G(s)
and
G'(0) := s_}})i’rsnec()(G(s) —G(0))/s

exist, and, in addition, the function s+— (G(s)— G(0)—sG'(0))/s*

belongs to H*(C,, C).
Clearly, Assumption (A’) is stronger than (A). A sufficient condition for (A") to
hold is that G admits an analytic extension to a neighbourhood of 0. If condition
(A") holds, then the constant

f(G) := sup{ess iﬂI}}fRe[(q +1/iw)G(iw)]}
qg=0 @€
satisfies —o0 < f(G) < 0.
Recall the definition of the class % (a) of sector-bounded functions; see (3.8).

Note that if a < o and dim U = 1, then a function ¢: R — R belongs to ¥(a) if
and only if

0<o(v)v<av®, forallveR. (4.3)

THEOREM 4.1. Let Ge B(L*(R_,R)) be a shift-invariant operator with
transfer function G. Assume that Assumption (A') holds with G(0) >0 and
that g e L*(R,,R) with 1+ fog(7) dre L*(R,,R)+R. Let o:R—R be
locally Lipschitz continuous and non-decreasing. Let p € R and assume that
0/G(0) € im . Under these conditions the following statements hold.

(1) Assume that ¢ — ¢(0) € F(a) for some a€ (0, ). Then there exists a
constant k™ € (0, ] (depending on G, ¢ and p) such that for all k € (0, k™), the
unique solution u of (4.1) is defined on R, (no finite escape-time), the limit
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lim, _ o u(t) =: u® exists and satisfies ¢(u”™) = p/G(0),
e=i/keL*(R,,R) and ¢ou—ou®)ecL*(R,,R).

Moreover,
esslime(r) =0,
t— 00
provided that esslim,_, g(t) =0 and G satisfies Property (E) in Theorem 3.1. If
f(G) =0, then the above conclusions are valid with k™ = co.

(2) Assume that ¢ is globally Lipschitz continuous with Lipschitz constant
N> 0. Then the conclusions of statement (1) are walid with k™ =1/|\f(G)|,
where 1/0 := .

(3) Under the assumption that f(G) >0, the conclusions of statement (1) are
valid with k™ = oo,

REMARK 4.2. (1) Theorem 4.1 ensures that the tracking error is square-
integrable and hence we have tracking in measure. If esslim,_ ,g(f) =0 and G
satisfies Property (E) in Theorem 3.1, then Theorem 4.1 guarantees essential
asymptotic tracking. Clearly, if lim,_, ,, g(¢) = 0, G satisfies Property (E) and Go
is continuous whenever v is, then we have asymptotic tracking.

(2) Note that in statement (2) of Theorem 4.1 the constant k* depends only on
G and the Lipschitz constant of ¢, but not on p.

(3) If gcLi(R,,R) for some a<0, then g€ L*(R,R) and [§g(7)dr
converges exponentially fast to fo (r)drast— 0. Thus a sufficient condition for
g to satisfy the assumption in Theorem 4.1 is that g € L: (R, R) for some a < 0.

Theorem 4.1 gives an input-output point of view of the low-gain integral
control problem with input non-linearities. The papers [18] and [19] contain
related results in a state-space setting (see [18, Theorem 4.1; 19, Theorem 3.3]).
We emphasize that Theorem 4.1 considerably improves the latter results as follows.

(i) The range of gains guaranteed to achieve tracking (specified by k*) is
larger than in [18] and [19], where, in the case of globally Lipschitz ¢ with Lipschitz
constant \ > 0, the maximal value for the gain is given by k" = 1/|\fy(G)| with
fo(G) = essinf, cgRe[G(iw)/iw]. In many situations, the dlfference 1s substantlal
as a simple example, consider the operator G given by (Gv)(r) = [y e~ (t=1) 7)dT,
for which f(G) =0 and f,(G) = —1, leading to k* = o in Theorem 4.1 and to
k*=1/Nin [18] and [19].

(i1)) Theorem 4.1 applies to strongly stable well-posed state-space systems
(see §5), whilst in [18] and [19] the underlying linear well-posed system is
assumed to be exponentially stable.

Proof of Theorem 4.1. Choose some u” € R such that ¢(u”) = p/G(0) (such
a u” exists, since, by assumption, p/G(0) € im ¢). For any k € R, it follows, from
Lemma 2.1, that (4.1) has a unique solution u# defined on a maximal interval of
existence [0, T'), where 0 < T < 0. We define a function v: [0, T) — R by setting
v :=u — u’. Moreover, we define ¢: R — R by

e(w) =e(w+u”)—ew”), foralweR.
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Then a straightforward calculation shows that v satisfies
t
o(t) =r(t) —k / (G(g ov))(r)dr, forallte|0,T), (4.4)
0

where the function r is given by

t
) =" =~k [ [s(0) + ol )(GO)r) ~ ol d (43)
0
(here 0 denotes the unit-step function). In order to apply Corollary 3.2 to equation
(4.4), we first show that
re W (R,,R) +R,
that is, r satisfies the relevant assumption in Corollary 3.2. By the assumption on

g, the function 7+ u® —u? —k Jo g(r)d7 is in W' 2(R_, R) + R. Therefore, by
(4.5), it is sufficient to show that the function

i [ et G0 )~ plar

belongs to W' ?(R,, R) + R. Recalling that ¢ (u”) = p/G(0), we may write
[ et rGoxn - slar= ([ @w1ar - 16(0)) ot

=h(t)e(u’), (4.6)
where the function £ is defined by

h(t) = At (GO)(r)dT —tG(0), forallteR,. (4.7)

Hence it is sufficient to prove that # € W' ?(R,, R) + R. We mention that h = H6,
where H is the shift-invariant operator defined by (3.13); that is, & is the step-
response of H and, correspondingly, & is the impulse response (or convolution
kernel) of H. The Laplace transforms of / and & — G'(0) are given by the functions

s (G(s) —G(0))/s and s (G(s) — G(0) —sG'(0))/s?%,

respectively, both of which, by Assumption (A), belong to H?*(Cy, C).
Consequently /2, h — G'(0) € L*(R ., R), showing that h € W' *(R_, R) + R.

Proof of statement (1). Since ¢ is non-decreasing and ¢ — ¢(0) € ¥ (a) for
some a € (0, o), a routine argument invoking (4.3) shows that there exists b € (0, o)
such that ¢ € ¥ (b). Define k* := 1/|bf(G)|, where as usual 1/0 := co. We may
assume that f(G) < oo because the case f(G) = oo is included in statement (3).
Therefore, k™ € (0, 0]. Let k € (0, k™) and set & :=1(1/b+kf(G)). Then &€ >0,
and we can choose some g > 0 such that

essiﬂr}gf Re[(¢g+ 1/iw)G(iw)] =f(G) —e/k= (e —1/b)/k.
we
Thus
1/b+Re[(g+ 1/iw)kG(iw)] =&, foraa weR,
and (3.9) holds with a replaced by » and G replaced by kG. An application of



STABILITY RESULTS OF POPOV-TYPE 799

Corollary 3.2 to (4.4) yields the facts that the solution v of (4.4) exists on R,
lim, ., v(r) exists and is finite, lim,_, (¢ © 2)(t) =0, g o v € L*(R., R), and
D E L2(R+, R). Consequently, lim, _, ,, u(t) =: u™ exists and is finite,

e(u”) = ") =p/G(0),
and
pou—ou®)eL*(R,,R), e=iu/k=9/keL*(R,,R).

Assume now that esslim, ,,g(f) =0 and that G satisfies Condition (E). To
complete the proof of statement (1), it remains to show that esslim,_ ,e(7) = 0.
By Corollary 3.2, esslim,_ o e(f) =esslim, ,o,9(¢)/k=0 if and only if
esslim, _, ,(¢) = 0. Thus it is sufficient to prove that esslim,_, ,#(f) = 0, which
in turn, by (4.5)—(4.7), is equivalent to showing that

ess lim h(t) = 0. (4.8)

To prove the latter, write the unit step function 6 as a sum 6 = 6, + 6,, where
both of these functions are continuously differentiable, 6,(0) =0 and 6,(¢) =1
for + = 1. Using the operator H defined in (3.13) and the shift-invariance of G
(which guarantees that G commutes with integration), we may write /2 in the form

hi(t) = (GO)(t) — G(0) = (HO,)(r) + (GO,)(r), forall 1= 1.

Since §, € L*(R.., R) and the convolution kernel / of H is in L*(R_ , R), it follows
that (H6,)(t) — 0 as t — co. Moreover, by Condition (E), esslim,_, ,,(G6,)(t) = 0,
yielding (4.8).

Proof of statement (2). Since ¢ is non-decreasing and globally Lipschitz with
Lipschitz constant \ > 0, it is easy to show that ¢ € &(\). Now the arguments in
the proof of statement (1) apply with b replaced by A.

Proof of statement (3). By assumption, ¢ is non-decreasing, and hence it is
clear that ¢ € (). Since f(G) >0, we can choose some g =0 such that
essinf,cgRe[(¢+ 1/iw)G(iw)] =1 f(G). This implies that, for any k > 0,

Re[(g+ 1/iw)kG(iw)] = 3kf(G) >0, foraa weR.

Therefore, (3.9) holds with a = 00, G replaced by kG, and ¢ replaced by 1kf(G).
As in the proof of statement (1), the claim now follows from Corollary 3.2. [

4.2. Integral control in the presence of input and output non-linearities

In this subsection we generalize the feedback scheme in §4.1 to allow for a
time-varying gain and non-linearities in the input as well as in the output.
Consider the feedback system shown in Figure 4, where p € R is a constant,
k: R, —R is a time-varying gain, the operator G € #(L*(R.,R)) is shift-
invariant with transfer function denoted by G, and ¢: R — R and ¢: R— R are
static input and output non-linearities, respectively.

The feedback system shown in Figure 4 is described by the abstract Volterra
integro-differential equation

i=xlp—¥(g+Gleow)) u(0)=u’eR, (4.9)
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FIGURE 4.

where the function g models the effect of non-zero initial conditions of the system
with input-output operator G. An absolutely continuous function u: [0, T) — R,
where 0 < T <oo, is called a solution of (4.9) on [0,7) if u(0)=u" and u
satisfies the differential equation in (4.9) a.e. on [0, T).

The following lemma, the proof of which can be found in the appendix of [10],
shows that under certain conditions the initial-value problem (4.9) has a unique
solution defined on R, .

LEMMA 4.3. Assume that G € B(L*(R,,R)) is shift-invariant, ¢ and ¥ are
globally Lipschitz continuous, k€ L*(R,,R), g€ L*(R.,R), and p € R. Then,
for each u® € R, the initial-value problem (4.9) has a unique solution defined on R __.

The objective in this subsection is to determine gain functions k such that the
tracking error

e(t) :==p—y(1) =p—¥(g(t) + (Gl o u))(t)) (4.10)

becomes small in a certain sense as t— oo. We introduce the set of feasible
reference values

2(G, ¢, %) = [W(G(0)) | v € im o}

It is clear that %Z(G, ¢, ¥) is an interval, provided that ¢ and Y are continuous.
The motivation for the introduction of %(G, ¢, ¥) is as follows. If asymptotic
tracking occurs, we would expect that (¢ o u)” :=1lim,_ (¢ o u)(r) exists.
Assuming that (¢ o u)” is finite and that the final-value theorem holds for
the linear system with input-output operator G, we may conclude that
lim, _, o (G(p © u))(t) = G(0)(¢ o u)”. If additionally, lim,_, , g(¢) = 0, it follows
from (4.10) that p = ¢ (G(0)(¢ o u)™) € Z(G, ¢, ¥). In fact, it has been shown in
[10] that if ¢ is continuous and monotone, then p € Z(G, ¢, ¥) is close to being a
necessary condition for asymptotic tracking insofar as, if asymptotic tracking of p
is achievable, whilst maintaining boundedness of ¢ o u together with ultimate
continuity and ultimate boundedness of w = g + G(¢ o u), then p € Z(G, ¢, ¥).

Setting

fo(G) == essei"gf Re[G(iw)/iw],

one sees clearly that if the transfer function G satisfies Assumption (A), then
—00 <f0(G> = 0

We are now in a position to state the main result of this subsection.

THEOREM 4.4. Let Ge B(L*(R.,R)) be a shift-invariant operator with
transfer function G. Assume that Assumption (A) holds with G(0) >0 and
geL*(R,,R), that o: R—R and ¥: R— R are non-decreasing and globally
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Lipschitz continuous with Lipschitz constants N1 >0 and N\, >0, p € Z(G, ¢, ¥),
and k: R, — R is measurable and bounded with

lim sup k(1) < 1/ [N N2 fo(G)], (4.11)
t— 00
where 1/0:= o0, Let u: R, — R be the unique solution of (4.9) (which exists by
Lemma 4.3). Then the following statements hold.

(1) The limit (¢ o u)* :=1im,_,  ¢(u(t)) exists and is finite and
(pou)ecL*(R,,R).

(2) The signals w=g+G(pou) and y =1y ow (see Figure 4) can be split
into w=wy+w, and y =y, +y,, where wy and y, are continuous and have
finite limits satisfying

lim w1 (1) = GO)(p o ), lim v,(1) = ¥(G(0)(p © )",

and w, y, € L*(R_., R). Under the additional assumptions that esslim,_ , g(t) = 0
and G satisfies Condition (E) in Theorem 3.1, we have

esslimw,(r) =0, ess lim y,(¢) = 0.
t— 00 — 00

(3) If k¢ L' (R, R), then lim,_ o y,(t) = p and the error signal e can be split
into e = e, + e,, where e, is continuous with lim,_, o, e,(t) = 0 and e, € L*(R,, R).
Under the additional assumptions that esslim,_,  g(t) = 0 and G satisfies Condition
(E) in Theorem 3.1, we have

esslime(r) = 0.

t— 00

(4) If p is an interior point of R(G, ¢, ¥), then u is bounded.

REMARK 4.5. (1) Statement (3) of Theorem 4.4 implies tracking in measure.
Under the assumption that esslim,_ . g(f) =0 and G satisfies Property (E) in
Theorem 3.1, statement (3) of Theorem 4.4 guarantees essential asymptotic
tracking. Moreover, if lim,_ . g(f) =0, G satisfies Property (E) and Gov is
continuous whenever v is, then we have asymptotic tracking.

(2) Note that it is not necessary to know f,(G) or the Lipschitz constants \,
and \, in order to apply Theorem 4.4. If k is chosen such that «(¢#) — 0 and
k¢ L'(R,,R) (for example, k(t) = (1+1)"7 with p e (0, 1]), then the conclu-
sions of statement (3) hold. However, from a practical point of view, gain
functions x with lim,_ , x(#) =0 might not be appropriate, since the system
essentially operates in open loop as ¢t — oco. In [20] it has been shown how
| fo(G)| (or upper bounds for |fy(G)|) can be obtained from frequency-response
experiments performed on the linear part of the plant.

(3) Under certain conditions on G, g and ¢ the global Lipschitz condition on ¢
can be relaxed. More precisely, under the extra assumptions that G € 4(L* (R, R))
(or equivalently, that G is a convolution operator with a finite measure kernel),
that g € L”(R,, R) and that ¢ is bounded (this is the case if ¢ is of saturation
type), then the conclusions of Theorem 4.4 remain valid for all non-decreasing
locally Lipschitz continuous y with the global Lipschitz constant A\, in the
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statement of Theorem 4.4 replaced by
wp @ VO
v,we[-K,K] |‘U—W|
where K := [[¢]lo + | Gllgw=@,.r) @l co-

(4) An inspection of the last part of the proof of statement (4) shows that
if (4.11) holds and if ke L'(R_, R), then the limit u® :=1lim,_ ,u(r) exists
and is finite. In this case ¥(G(0)(¢ o u)*) =¥ (G(0)p(u™)), but in general,
Y(G(0)e(u™)) # p (trivial example k = 0) and tracking is not guaranteed.

(5) If p € Z(G, ¢, ¥) is not an interior point, then u might be unbounded. A
trivial example is given by ¢ = arctan, ¢ =id, p =1G(0)7 and k¢ L' (R, R),
in which case it follows from statements (2) and (3) that (¢ o u)” :%71- and
hence lim, _, o, u(#) = oo.

Theorem 4.4 gives an input-output point of view of the low-gain integral
control problem with input non-linearities. The paper [10] contains a related result
in a state-space setting (see [10, Theorem 4.2]). We emphasize that Theorem 4.4
considerably improves the latter result in the sense that it applies to strongly
stable well-posed state-space systems (see §5), whilst in [10] it is a crucial
assumption that the underlying linear well-posed system is exponentially stable.

In order to prove Theorem 4.4, we need the following technical lemma.

vLEMMA 4.6. Let f: R— R be locally Lipschitz continuous. Define the function
f "R—R by

Then f" is Borel measurable and f" € L% (R, R). If R, — R is absolutely
continuous, then f o v is absolutely continuous and

%g 0 0)(t) = f7 (0(1))o(t), for aa R,

If f is non-decreasing and globally Lipschitz continuous with Lipschitz constant
A= 0, then
0<f"(§)<\, foralltecR.

The proof of Lemma 4.6 can be found in [19].

Proof of Theorem 4.4. Let u: R, — R be the unique solution of (4.9) (which
exists by Lemma 4.3). We shall prove Theorem 4.4 by applying Theorem 3.3 to
the equation satisfied by the input signal

w=g+G(pou)
of the output non-linearity y (see Figure 4), modified with an offset which
depends on p. Since p € Z(G, ¢, ¥), there exists ¢” € im ¢ satisfying
¥(G(0)e”) = p.
We define
wi=w—G(0)p” =g+ G(eou) —G(0)p”

, (4.12)
Y(E) =Y (E+G(0)p”?) —p, forall £€R.
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Note that J(O) = (0, and so, since ¥ is non-decreasing and globally Lipschitz with
Lipschitz constant A,,

0<y(§)e <N\, £% forall £€R. (4.13)
Using (4.9), we may write
= —k(y o w).
It follows from Lemma 4.6 that
(¢ o) (1) =" (w(®)ie(t) = —¢ 7 (w(t) k()P (1))
=—(Now)(t), foraa.reR,, (4.14)
where the function N: R, x R — R is defined by
Nt &) =" (u()k()¥(§), forall (1, £) e R xR.
By Lemma 4.6,0 < <pv(g) <\, forall £ € R, and combining this with (4.13) yields
0<N(t,£) < N \yk(1)£%, forall (1, £) € R, xR. (4.15)
By (4.14),
(pou)(t) =ou’) - /)t (Now)(r)dr, forallteR,.

We apply G to this equation and use the fact that, by shift-invariance, G
commutes with the integration operator to obtain

t
(Glpou)(t) = qp(uo)(GH)(t) —/ (G(N ow))(r)dr, foraa teR,,
0
where 0 denotes the unit-step function. Invoking (4.12) yields
t
w(t) =r(t) — / (G(Now))(r)dr, foraa.reR,, (4.16)
0

where
ri=g—G(0)e" + o(u")Go.

Proof of statement (1). Clearly, (4.16) is of the form (2.1), and so we may
apply Theorem 3.3, provided the relevant assumptions are satisfied. By (4.11),
there exists a > 0 satisfying

N N limsup k(t) <a < 1/]fo(G)|.

t— 00
Clearly, by the definition of fy(G), there exists £ >0 such that
1/a+Re[G(iw)/iw]| =¢, foraa weR.
Moreover, it follows from (4.15) that there exists 7, = 0 such that
0<N(1,£)¢ <ak? forall (t,£) € [tg, ) xR.

The above two inequalities show that (3.28) and (3.30) hold with u, ¢, Q, and P
replaced by w, N, I, and 1/a, respectively. In order to apply Theorem 3.3, it
remains to verify that r € L*(R,, R) + R. To this end note that

r=g+e’)h+G0)(eu’) - "), (4.17)
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where h is the functlon defined in (4.7). In the proof of Theorem 4.1 it was
shown that i€ L (IRQ, R). Since, by assumption, g € L*(R_, R), it follows from
(4.17) that reL ([R+, R) + R. An application of part (4) of Theorem 3.3 to
(4.16) now yields the facts that

(pou) =—(Now)eL*(R,,R),

and the limit
t

lim (¢ o u)(t) = o(u’) — lim [ (N o w)(r)dr

t— 00 — 00 0

exists and is finite, completing the proof of statement (1).

Proof of statement (2). Using the shift-invariant operator H defined in (3.13)
and the function £ defined in (4.7), a straightforward calculation yields

w=g+G(pou) =w +w,,
where
wii=H((pou))+G0)(pou), wyi=g+eu’)h

By assumption g € LZ(R+, [R) and, as was pointed out in the proof of statement
(1), we also know that i € L*(R ., R). Consequently, w, € L*(R., R) Moreover
H is a convolution operator with kernel given by i and (¢ o u)' € L*(R,, R);
hence (H(g o u)')(t) is continuous and tends to zero as t — co. Combining this
with the continuity of ¢ o u shows that w, is continuous and, by statement (1),
lim; , , w;(t) = G(0)(¢ o u)*. We obtain the required splitting of y by defining
yi:=vow; and y,:=y—y;=v¢ow—yow;. Then y, is continuous with
lim, _ o v,(t) = $(G(0)(¢ o u)*®). Furthermore, y, € L*(R,, R) because of the
global Lipschitz continuity of ¢ and the fact that w, € L*(R,, R). Under the
additional assumptions that esslim,_, ,g(#) = 0 and that G satisfies Condition (E),
we know (by (4.8)) that ess limtﬂwh(t) =0, and therefore, we may conclude that

ess lim w,(7) = esslim y,(7) =0,
— 0 t— o0
completing the proof of statement (2).

Proof of statement (3). We use the splitting y =y; +y, given in statement
(2). Seeking a contradiction, suppose that yi° :=1lim,_  y;(f) <p (the case
y® >p can be treated in an analogous way). Then & :=p —y}° > 0. We further
split y, into y, = y3 + y4, where

y3(t) == min{y,(t), ye},  ya(t) :=y2(r) —y3(r), forallzeR,.
Thus, y3(t) < 8 for all re R, and y, = XE(y2 8), where x is the indicator
function of the set E:={reR, | y,(r)>1e}. In partlcular since y, € L*(R,, R),
the set E has finite Lebesgue measure, and s0 ys € L'(R., R). Since y; < és and
lim, o y;(t) =y, by taking ¢, = 0 large enough, we have p — y,(t) — y3(t) = ie
for all t = t,. We substitute the decomposition y = y; + y3 + y4 into i = k(p — y)
to obtain

i(r) = k(1)[p — yi(7) —y3(1) — ya(r)] = ek (r) — k(1) y4(r), foraa. r=1,.
Observe that ky, € L' (R, R) since k € L*(R,, R) and y, € L' (R, R). Integrating
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the above inequality from ¢ to ¢ gives

u(t) = u(ty) +%8 /

to

t

K(T)dr—/ k(7)y4(7)dT — 00 ast— oo,
Io

Consequently, since ¢ is non-decreasing,

%= sup (v) = (¢ o )",
veR

Hence, by statement (2), y{" = ¥(G(0)@). Since p € Z(G, ¢, ¥) (by assumption)
and using the fact that ¥ is non-decreasing and G(0) > 0, we obtain

p<supZ(G, o, ¥) =¥(G(0)p) =yr,
contradicting the supposition that y{° < p. Setting ¢ = inf,cg o(v), we see that
an analogous argument shows that if y* > p, then necessarily y* = /(G(0)¢),
which likewise leads to a contradiction since p = ¢(G(0)¢). Finally, defining
e;:=p—y; and e, :=—y,, we obtain the splitting e=p—y=¢e;+e,. It
follows immediately from the properties of y; and y, that e; is continuous with
lim,_, , e;(t) =0ande, € LZ(R+, R). Moreover, using statement (2), we see that if
esslim, _,g(t) =0 and G satisfies Condition (E), then esslim,_, o e,(t) =0,
implying that esslim,_, ,e(t) = 0.

Proof of statement (4). By statement (1), the limit (¢ o u)* = lim, _, o, (¢ © u)(t)
exists and is finite. If k¢ LI(R - R), then by statements (2) and (3),
o =¥(G(0)(¢ o u)*). Unboundedness of u would imply that there exists a sequence
(v,) with lim,, _, , |,,| = oo and such that

p = lim IL(G(O)QD(‘Z)”))

n— oo

Since the function v +— ¥(G(0)¢(2)) is non-decreasing, this would in turn yield
o =supZ(G, ¢, ¥) or p =inf Z(G, ¢, V), showing that u must be bounded if p is
an interior point of Z(G, ¢, ¥). Finally, if x € Ll([RR +» R), consider the equation

w=x(p—yi—y2)
where y = y| + y,, with y; and y, as in statement (2). Since « is also in L* (R, R),
it follows that x € L*(R, R). Furthermore, y, is bounded and y, € L*(R., R).

Therefore, k(p —y, —y,) € L' (R., R), showing that i is integrable and hence u
is bounded. ]

5. Applications to well-posed state-space systems

This section is devoted to applications of the results in §§ 3 and 4 to well-posed
state-space systems. There are a number of equivalent definitions of well-posed
systems; see [7, 26, 27, 29, 30, 31, 32, 35, 36]. We will be brief in the following
and refer the reader to the above references for more details. Throughout this
section, we shall be considering a well-posed system X with state-space X, input
space U, and output space Y = U, generating operators (A, B, C), input-output
operator G, and transfer function G. Here X and U are real separable Hilbert
spaces, A is the generator of a strongly continuous semigroup T = (T,),;~, on X,
Be #(U,X_,), and C € #(X,U), where X_; and X, are the usual extrapolation
and interpolation spaces of X; see the subsection on notation at the end of the
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Introduction. The norms on X, X_; and X, are denoted by ||+ ||, ||+ |_; and ||+ ],
respectively. Moreover, the operator B is an admissible control operator for T,
that is, for each t € R there exists o; = 0 such that

t
/ T,_.Bo(r)dr
0

the operator C is an admissible observation operator for T, that is, for each
t € R, there exists 3, = 0 such that

< oy l|vl20,,0), forallve L*([0,1], U);

t 1/2
<A ||CTTZ||2dT> <8z, forall zEX,.

The control operator B is said to be bounded if it is so as a map from the input
space U to the state space X, otherwise B is said to be unbounded. The
observation operator C is said to be bounded if it can be extended continuously to
X, otherwise, C is said to be unbounded.
The so-called A-extension C, of C is defined by
Crz= _lim__ Cs(sI —A)7'z,

§— 00, 5€
with dom(C, ) consisting of all z € X for which the above limit exists. For every z € X,
T,z € dom(Cy) for a.a. 1 € R, and, if @ > (T), then Cy Tz € L2(R ., U), where
1
o(T) := Ilim " In||T,|

denotes the exponential growth constant of T. The transfer function G satisfies
1
s — S

(G(5) = G(s9)) = —C(sI = A) (sl —A)"'B,

for all s, 5o € Cyy (1), 5 7 505 (5.1)

and Ge H”(C,, #(U,)) for every w > w(T). Moreover, the input-output operator
G: LE. (R, U) — L. (R, U) is continuous and shift-invariant; for every w > w(T),
GeB(LER.,U)) and
(2(Gv))(s) = G(s)(L(v))(s), forallseC,andallveL2(R, U).

In the following, let sy€C,) be fixed, but arbitrary. For x"eX and
LS LIZOC(R+, U), let x and y denote the state and output functions of I, respectively,
corresponding to the initial condition x(0) = x” € X and the input function v. Then
x(1) = T,x" + JoT,_.Bo(r)drforallt € R, x(t) — (sof — A)"'Bo(t) € dom(Cy)
fora.a.t€ R, ,and

%(1) =Ax(t) + Bo(r), x(0)=x", foraa recR_, 52)

5.2

y(1) = Cp(x(1) — (soI —A)"'Bo(t)) + G(sy)v(r), for a.a. r=0.
Of course, the differential equation in (5.2) has to be interpreted in X_;. Note that
the second equation in (5.2) yields the following formula for the input-output
operator G:

(Go)(1) = Cy {[)t T, ,Bo(7)dr — (soI —A)"'Bo(t)| + G(so)o(t),

forall ve Ly (R,, U), aa. reR,. (53)
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In the following, we identify X and (5.2) and refer to (5.2) as a well-posed system.
The above formulas for the output, the input-output operator and the transfer
function reduce to a more recognizable form for the subclass of regular systems.
Recall that the well-posed system (5.2) is called regular if the strong limit

lim G(s)w=Dw, forallweU,

s—o0o,seR
exists. In this case, x(r) € dom(C,) for a.a. t € R, the output equation in (5.2)
and the formula (5.3) for the input-output operator simplify to

y(t) = Cyx(t) + Do(t), foraa.r=0,
and

t
(Go)(t) = CA/ T, . Bo(r)dr+ Do(t), forall ve LA (R, ,U), aa teR,,
0

respectively; moreover, (s —A) 'BU c dom(C,) for all s € res(A) and we have
G(s) = Cy(sI—A)"'B+D, forallse Co(m)-

The operator D € Z(U) is called the feedthrough operator of (5.2). It can be
shown that if B is a bounded control operator or if C is a bounded observation
operator, then (5.2) is regular.
The well-posed system (5.2) is called strongly stable if the following four
conditions are satisfied:
() G is L*-stable, that is, G¢€ %(L%[RQ, U)), or, equivalently,
GeH*(Cy, 4(U,)),
(i) T is strongly stable, that is, lim;_, , T,z =0 for all z € X;
(iii)) B is an infinite-time admissible control operator, that is, there exists o =0
such that || [° T,Bo(r)dr| < allvll 2w, vy for all v eL*(R,,U);
(iv) C is an infinite-time admissible observation operator, that is, there exists
B =0 such that ([ ||CT,z||>dr)"/? < g|z|| for all z € X,.
The system (5.2) is called exponentially stable if w(T) < 0. Obviously, exponential
stability implies strong stability. The converse is not true; for examples of partial
differential equation systems which are strongly, but not exponentially, stable, see
[6, 24, 33].
Let ¢: R, XU — U be a (time-dependent) static non-linearity, let p € U, k € R
and consider the well-posed system (5.2), with input non-linearity v = ¢ o u, in
feedback interconnection with the integrator it = k(p — y), that is,

i=Ax+B(pou), x(0)=x°

it = k[o — Cy(x — (sol = A)"'Blg o u)) = G(so)(¢ o u)], u(0)=u’€U,
(5.4)

where ¢ o u denotes the function 7+— ¢(t,u(t)). A solution of (5.4) on the
interval [0,7) (where 0<T <o0) is a continuous function [0,7)— XX U,
t+— (x(t), u(t)) such that

¢ o u€Li([0,T), U), x(t) = (soI —A)"'B(¢ o u)(t) € dom(C,)
for a.a. 1€ [0, T),
Calx = (so1 =A)"'B(¢ o u)] € Lioe ([0, T), U),
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and, for all r€[0,7),

x(1) =x"+ At (Ax(7) + B(p o u)(7)) dr,

t
u(t) = u’ +k/0 lo = Ca(x(7) = (soI = A)"'B(g o u)(r)) = G(s0) (e © u)(7)] d.
(5.5)
In order to derive existence and uniqueness results for (5.4), the following
lemma is useful.

LEMMA 5.1. Let 0< T < oo and define r € C(R,, U) by

t
r(t) = u’ + kpt — k/ CyT,x"dr.
0

A continuous function (x,u): [0, T) — Xx U is a solution of (5.4) if and only if
¢ oueLip(0,7), V),

u(t)=r(t) —k /)t (G(pou))(r)dr, foralltel0,T), (5.6)
and

x(t) =T, x" + / T,_,B(¢ o u)(7)dr, forallt€[0,T). (5.7)
0

Proof. Assume first that (x,u): [0, T) — XX U is a solution of (5.4). Then,
trivially, ¢ o u € Li..([0, T), U), and, by standard properties of well-posed systems,
it is clear that x satisfies (5.7). Hence x() — (sof — A)"'B(¢ o u)(t) € dom(C,) for
a.a. t€[0,7T) and, by (5.3),

Ca(x(1) = (soT = A)"'B(p o u)(t)) + G(s0) (¢ © u)(1)
=C\T,x° + (G(p ou))(t), foraa te[0,T). (58)
Therefore, by the second equation in (5.4),
(1) =k(p — CyT,x°) —k(G(p o u))(t), forall re|0,T),

and hence (5.6) holds. Conversely, assume that ¢ o u € L%OC([O, T), U) and that (5.6)
and (5.7) hold. Then, by standard properties of well-posed systems, x satisfies the
first equation in (5.5),

x(t) = (sl —A)"'B(p o u)(r) €dom(C,) foraa.te|0,T),

Calx— (soI —A) 'B(p o u)] € LE.([0,T), U) and (5.8) holds. It follows from
(5.6) that u satisfies the second equation in (5.5). O

The following result is an immediate consequence of Lemmas 2.1 and 5.1.

COROLLARY 5.2. Let pc U and k€ R, and let o: R, XU — U be such that
t— o(t,v) is measurable for every v € U, t+— ¢(t,0) is in Li. (R, U), and for
every bounded set VC U there exists Ny € Lo (R, R) such that (2.2) holds.
Then the initial-value problem (5.4) has a unique solution (x,u) defined on
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a maximal interval of existence [0,T), where 0<T <oo. [f T <oo, then
limsup, 7 [|u()|| = oo.

Consider (5.4) with time-independent ¢, k = 1 and p = 0, that is,
i=Ax+B(pou), x(0)=x" (59)
59
i=—Cy(x— (sl —A) 'B(p ou)) —G(sy) (¢ ou), u0)=u’ecU.
If ¢(0) =0, then for x’ =0 and u’ =0, the trivial function 7+ (0,0) is the
unique solution of (5.9), called the zero solution. It is not difficult to show that
©(0) = 0 if ¢ is the gradient of a non-negative C'-potential ® with ®(0) = 0. We
call the zero solution of (5.9) stable in the large if:

(1) for all (xo, u’) € Xx U there exists a solution of (5.9) on R, (that is,
T = o in Lemma 5.2); and

(ii) there exists a continuous, strictly increasing function »: R, — R, with
v(0) =0 and such that if (x, u) is the solution of the initial-value problem
(5.9) with initial data (x°, u”) € X x U, then

@l + (@) < p(1x°l + [«°]). forall reR,.

We call the zero solution of (5.9) globally asymptotically stable in the large if it
is stable in the large and, for all initial data (x°, u°) € X x U, the solution (x, u)
of (5.9) tends to (0, 0) as t — oo.

The following theorem gives an absolute stability result for the system (5.9). Before
stating it, we remark that if (5.2) is strongly stable, then G € H”(C,, 4(U,)) and
hence G is analytic on C,. If additionally O € res(A), then G can be analytically
extended to a neighbourhood of 0. Hence the evaluation G(0) of G(s) at s =0 is
meaningful, and (5.1) holds for s, =0 and s € Cw(T), that is,

(G(s) = G(0)) /s =C(sI —A)'A™"'B, forall s € Cyp). (5.10)

THEOREM 5.3. Assume that the well-posed system (5.2) is strongly stable,
0cres(A), and G(0) is invertible. Let ¢: U — U be a locally Lipschitz
continuous gradient of a non-negative C 1—function ®: U — R. If there exist self-
adjoint P € #(U), invertible Q € #(U) with QG(0) = [QG(0)]" =0 and num-
bers ¢ =0 and € >0 such that (3.1) and (3.2) hold, then the solution (x,u) of
(5.9) exists on R, (no finite escape-time), x € L”(R,,X), ueL*(R ., U),
poucl*(R,,U),

Jim [lx(0)] =0, Jim (¢ 0 (1) =0,

and there exists a constant K =0 (which depends only on (A, B, C), G(0), O, ¢
and &, but not on u® and xo) such that

el Loy + lluell o + e 0wl 2 < K+ [[u®] + V/2@WP)).  (5.11)

If ®(0) = 0, then the zero solution of (5.9) is stable in the large. If ¢~ ' ({0}) = {0},
¢ satisfies Condition (D) in Theorem 3.1 and ®(0) = 0, then the zero solution of
(5.9) is globally asymptotically stable in the large. If T, Oxo € X, for some tn =0
and G satisfies Condition (E) in Theorem 3.1, then esslim,_ o u(t) =0.
Furthermore, if T, 0(AxO + Bo(u®)) € X for some t, = 0 and ¢ is globally Lipschitz,
then 1 is continuous on [ty, ) and lim, _, o, i(t) = 0.
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Proof. Let (x,u) be the unique solution of (5.9) defined on the maximal
interval of existence [0, T), where 0 < T < oco. By Lemma 5.1, u satisfies

u(t) = r(t) —/0[ (Glg o w)(r)dr, forallte0,T), (5.12)

where r(t) := u’ — o C,T,x"dr. In order to apply Theorem 3.1 to (5.12), we
need to verify the relevant assumptions. Clearly, by strong stability and the fact
that O €res(A), it is clear that G satisfies Assumption (A). To show that
re WhA(R,, U) + U, note that i(t) = —C,T,x", and therefore i € L*(R,, U),
since C is infinite-time admissible. Furthermore, [; Cy T,x’dr = CA YT, — I)x°
and so
r(t) = —CT,A'x° +u® + CA'X%, forall teR,.

Again, by the infinite-time admissibility of C, it follows that the function
t+— CT,A"'x" is in L*(R, U), and we may conclude that re W"*(R,, U) + U
with 7 =1lim,_ o r(r) = u’ + CA™'x". An application of Theorem 3.1 and
Lemma 5.1 shows that 7 = co. Furthermore, by Theorem 3.1, u€ L* (R, U),
pouecL*(R.,U), lim,_ (¢ o u)(t) =0 and there exists a constant K; >0 (not
depending on r) such that

Jullz=+ll¢ o ull2 < Kin, (5.13)
where
1 =\/®(r0) + 77l + Ir = rZl g2+ 7]l 12
Now x(f) =T,x" + [o T,_,B(¢ o u)(7)d7, and thus, the strong stability of the
semigroup T, the infinite-time admissibility of B, and the fact that ¢ o u € LZ(IR+, U)
yield x € L*(R,, X), lim,_, « || x(¢)|| = 0 and
el e, ) < Ko (I12° + [l 0 u] 2) (5.14)

for some suitable constant K, >0 (not depending on x° and u”). By the infinite-
time admissibility of C, there exists a constant K; >0 (not depending on x°
and uo) such that

0 < Ks(||lx°] + [lu’l + /2 (W)). (5.15)

Combining (5.13)—(5.15) shows that there exists a constant K > 0 (not depending
on x” and u°) such that (5.11) holds. If we additionally assume that ®(0) = 0,
then it is obvious that the function

R, R, I—K(+ sup /®(v))

loll=<!

satisfies »(0) = 0 and is strictly increasing. Furthermore, it is a routine exercise to
show that » is continuous. Noting that

K+ 6l + V@) < w(||x°] + [[«°])),
we see from (5.11) that
() + [l < »(| <"l + [[u®])), forall te R,

thus establishing stability in the large. The proof of the assertion on global
asymptotic stability in the large is obvious and is therefore left to the reader.
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Under the assumption that T,Oxo € X, for some t5 =0, it follows from the strong
stability of T that

lim r(r) = — lim CcT, T, x°=0.

Hence, if T, x" € X, for some ¢y, = 0 and G satisfies Condition (E) in Theorem 3.1,
we may conclude from statement (5) of Theorem 3.1 that esslim, (7)) = 0.
Finally, assume that T,O(Axo +Bo(u")) €X for some 7,=0 and that ¢ is
globally Lipschitz with Lipschitz constant A > 0. By the infinite-time admissibility
of C and the fact that o u € L*(R., U), we have i € L*(R ., U). It is clear that
¢ o u is absolutely continuous, and a routine argument using the global Lipschitz
condition shows that ||(¢ o u)'()|| < N||it(t)|| for a.a. t € R, . Therefore

(pou) eL*(R,,U). (5.16)
We claim that it is sufficient to show that
(1) = —CyT,(x" + A™'Bo(u”)) — (H((¢ o u)))(1)
—G(0)(pou)(t), foraa reR,, (5.17)

where H is the bounded shift-invariant operator defined in (3.14). Indeed,
noting that

CAT,(x* +A7'Bo(u®)) = CAT'T,_, [T, (Ax" + Bo(u®))], for all 1 € [, o),

we find that the function 7+— C,T,(x" + A"'Bo(u")) is continuous on [z, )
and, by the strong stability of T, converges to 0 as t — 0. Moreover, the function
H((¢ o u)') +G(0)(p o u) is continuous and, using (5.16), this function and its
derivative are in LZ(R+, U), showing that it converges to 0 as ¢ — oo. It remains
to show that (5.17) holds. Now, from (5.12), it(t) = —C,T,x° — (G(¢ o u))(¢)
and a routine calculation shows that

i=f—H((eou))—G(0)(¢ o u), (5.18)
where f(1) := —C, T,x° — o (u®)((GO)(t) — G(0)) (as usual,  denotes the unit-
step function). Taking the Laplace transform of f and using (5.10), we obtain, for
all s € Cy 1),

(L)) = =C(sT = A)'x" — o(u’)(G(s) — G(0))/s
= —C(sI—A) """ +A"'Bo?)).

Consequently, (1) = —C, T,(x" + A"'Bo(u”)) for a.a. t € R, , and (5.17) follows
from (5.18). O

Absolute stability questions for state-space systems of the form (5.9) have been
addressed in [2, 3, 6, 18, 37, 38]. In [2, 3, 37, 38] single-input—single-output
systems are considered; in [2, 3] it is assumed that T is holomorphic, C is
bounded, but B is not necessarily admissible, whilst in [6, 37, 38] both operators,
B and C, are assumed to be bounded. In [6] the underlying linear system (5.2) is
assumed to be strongly stable, whilst exponential stability of the linear system is a
crucial assumption in [3, 18, 38]. The two papers [2, 37] deal with the case that
the positive-real condition (3.2) holds with € =0 and are therefore somewhat
irrelevant in the context of this paper (see also the comments on the literature at
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the end of §3). We emphasize that the positive-real condition imposed in [18] is
identical to (3.2) with ¢ = 0 and hence is considerably more restrictive than (3.2).
In [3, 6, 38] it is assumed that G satisfies G(iw)+ G"(iw) =61>0 for a.a.
w € R, which again is considerably more restrictive than (3.2). To see this, note
that if G is analytic in a neighbourhood of 0 and if QG(0) is self-adjoint, then
the function

1
iw

1 1

@~ (QG(iw) — 67(i0)Q") = — (G (iv) — G(0)) (G™(iw) - G™(0))Q"
is uniformly bounded. Consequently, if G(iw)+ G*(iw)=61>0 for a.a. w € R,
then, given any self-adjoint P € #(U), (3.2) holds for sufficiently large g = 0.
Summarizing the above comments, it is clear that Theorem 5.3 is a significant
improvement of the relevant results in [3, 6, 18, 38].

We next present an ‘internal’ version of the result on tracking by low-gain
integral control given in Theorem 4.1.

THEOREM 5.4. Assume that the well-posed system (5.2) is strongly stable,
dimU =1, 0 €res(A), and G(0) > 0. Let ¢: R — R be locally Lipschitz continuous
and non-decreasing. Let p € R and assume that p/G(0) € im ¢. Then the following
statements hold.

(1) Assume that ¢ — ¢(0) € ¥ (a) for some ac (0, 00). Then there exists a
constant k™ € (0, ] (depending on G, ¢ and p) such that for all k € (0, k™), the
unique solution (x,u) of (5.4) is defined on R, (no finite escape-time), the
limits lim,_, o, x(t) =:x% (in X) and lim,_ o u(t) =:u”™ exist and satisfy
x® =x":=—(0/G(0)A'B and ¢(u™) = p/G(0), respectively,

e=k(p—y)eL*(R,,R) and ¢ou—ou®) ecL*(R,,R).
For every k€ (0,k") and every u® € R with ¢(u”) =p/G(0), there exists a
strictly increasing continuous function v: R, — R, with v(0) = 0 and such that,

for every (x°, u’) € Xx U,

le(t) = 22|+ [fu(e) = w? | < p(||x® =27 + [|u® — u?

), forallteR,.

(5.19)
Moreover,
ess lime(r) =0,
provided that T, x° € X, for some to=0 and that G satisfies Property (E) in
Theorem 3.1. If f(G) = 0, the above conclusions are valid with k* = oo,

(2) Assume that ¢ is globally Lipschitz continuous with Lipschitz constant
N>0. Then the conclusions of statement (1) are wvalid with k* = 1/|Nf(G)|
(where 1/0 := ) and there exists a constant K >0 such that (5.19) holds with
v=Kid. If k€ (0,1/|Nf(G)]) and T, (Ax" + Bo(u")) € X for some t, =0, then
the error e is continuous on [ty, ©) and lim,_,  e(t) = 0.

(3) Under the assumption that f(G) >0, the conclusions of statement (1) are
valid with k™ = oo,
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Proof. Let (x,u) be the unique solution of (5.4) defined on the maximal

interval of existence [0, T'), where 0 < T < oco. By Lemma 5.1, u satisfies
i(t) =k[p—(g+ (G(pou))(t))], forallre|0,T), (5.20)
where g(t) := C, T, x°.

Proof of statement (1). In order to apply Theorem 4.1 to (5.20), we need to verify
the relevant assumptions. Clearly, by the strong stability and the fact that O € res(A), it
is clear that G satisfies Assumption (A’). By the infinite-time admissibility of C,
g€ L*(R_, U), and, by an argument identical to that in the proof of Theorem 5.3, the
function ¢+ [§ g(7)d7 is in L*(R., U) + U. An application of Theorem 4.1 and
Lemma 5.1 shows that there exists k* > 0 (not depending on x° and «°) such that if
ke (0,k"), then T = oo, lim,_, ., u(t) =: u” exists and satisfies ¢ (™) = p/G(0),
ecL*(R.,U)and ¢ o u—u®™ € L*(R_, U). For the rest of the proof of statement
(1) let k€ (0, k™). If T,Ox0 € X, for some ty =0, then

lim g(r) = lim CcT, , (T,x°) =0.
Hence, if T, Oxo € X, for some t5 = 0 and G satisfies Condition (E), then Theorem
4.1 guarantees that esslim,_ ,e(t) =0. To prove the remaining assertions in
statement (1), let #” € R be such that ¢(u”) = p/G(0), define z(-) :=x(+) — x°
and o(-):=u(-)—u” and set
e(w):=e(w+u”)— o), foralweR.
We claim that
;=Az+B(p o),

&= —K[Ch(z — (59 —A)'B( © v)) + G(s0) (% © v)].

where s € C,,r). The first equation in (5.21) (where, as usual, the derivative on
the left-hand side has to be interpreted in X_;) follows easily from the first
equation in (5.4). Now © = it and hence, by the second equation in (5.4),

o =k[p— Calz— (sl —A)'B(¢ ° v)) = G(s0)(# © 0)], (5.22)

(5.21)

where
p=p—Cylx* = (soI —A)"'Bo(u”)) — G(so) e (u).

Using the definition of x”, the fact that ¢(u”) = p/G(0), the resolvent equation
and (5.10) gives

p=p+e)(Clsolsol —A)'A7'B) = G(s¢))
=p+ou")(G(so) = G(0) = G(s9)) =p—p =0.
Combined with (5.22), this shows that the second equation in (5.21) holds. Since
gov=gpou—pu’)=gpou—eu”)ecL*(R.,U),

it follows from the strong stability of T, the infinite-time admissibility of B, and
the first equation in (5.21) that lim, . ||z(¢)|| = 0, showing that x(r) converges
(in X) to x” as t — oo. Note that

¢R-R,, WHAW o (8)d¢,
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is a non-negative potential for ¢ with 5(0) =0, and that (5.21) is of the form
(5.9). In order to apply Theorem 5.3 to (5.21), we need to verify the relevant
assumptions. To this end note that, exactly as in the proof of Theorem 4.1, it can
be shown that there exist b € (0, ©), ¢ =0 and & > 0 such that

e(w)w=g*(w)/b, forallweR
and
1/b+Re[(g+1/iw)kG(iw)] =€, foraa weR,

showing that (3.1) and (3.2) hold with P, Q and G replaced by 1/b, 1 and kG,
respectively. Hence, an application of Theorem 5.3 to (5.21) shows that there
exists a strictly increasing continuous function »: R, — R with »(0) =0, not
depending on z° := x* — x” and 9° := u® — 4, and such that

[z + o)l < »([Iz°]| + [[2°]), forall 1€ R,
yielding (5.19).

Proof of statement (2). It follows immediately from Theorem 4.1 that
conclusions of statement (1) are valid with k* = 1/|\f(G)|. Applying Theorem
5.3 to (5.21) shows that there exists a constant L > 0 (not depending on z~ and 2%)
such that

2@+ o) < LU°l + [[2°] + /@ (), forall 1€ R.,.

By the global Lipschitz condition,
(") <]2"| sup [g()] <A|o",

lE]<[2°|
and it follows that (5.19) holds with » = K id, for some suitable constant K > 0.
Assume now that T,O(Ax0 + Bo(u®)) € X for some 1y = 0. Since

AxX’ +Bo(u®) = A" + Bo(2°),
we have T,O(Az0 + Bg(2°)) € X. Therefore, if ke (0,k"), it follows from an
application of Theorem 5.3 to (5.21) that e = it/ k = ©/k is continuous on [, ©)

and lim, . e(f) = 0. The remaining assertions in statement (2) follow as in the
proof of statement (1) with b replaced by A.

Proof of statement (3). Statement (3) follows from Theorem 4.1 and
arguments similar to those in the proof of statement (1). |

Tracking of constant reference signals by low-gain integral control in the
context of system (5.4) has been considered in [18, 19] (in [19] it is assumed that
the well-posed system (5.2) is regular). What we mentioned in §4 in a comment
relating to Theorem 4.1 (see the paragraph after Remark 4.2) also applies to
Theorem 5.4: as compared to the relevant results in [18, 19], Theorem 5.4
provides a considerably larger range of gains achieving tracking and does not
require exponential stability of the underlying linear system.

Theorems 5.3 and 5.4 give state-space versions of Theorems 3.1 and 4.1,
respectively. Similarly, state-space versions of Theorems 3.3 and 4.4 for well-
posed linear systems can be obtained; the details are left to the reader.
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