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Abstract: Systems of nuclear type have an impulse response in 
L 1 n L 2 and a nuclear Hankel operator and are known to have 
excellent approximation properties. This class is shown to be 
closed under parallel cascade and feedback configurations. 
Similar properties are shown to hold for systems of extended 
nuclear type: those which are the sum of a system of nuclear 
type and a totally unstable finite-dimensional transfer func- 
tion. 
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Notation 

For A ~ C p x "  let 6(A) denote the largest sin- 
gular value of A. 

For 

f :  [0, oo) ---> R p × ' ,  t~"*(fij(t))l<i<_p, 
1 <<_j< m 

and q > 0 define 

I l f l l q  = )1 q 

where I f ( t )  [e := (T, id [ f , j ( t )  [ 2)1/2. It is clear that 
for all q > 0, 

Lq(O, 00; R pxm) 

:= ( f : [ 0 ,  oo ) - - - ,Rex" [  ] l f [ lq  < oo} 

is a Banach space. 
By H z we denote the usual Hardy-Lebesgue  

space on the right-half plane. 

Let Hoo(C p × " )  denote the space of all C pxm- 
valued functions which are holomorphic and 
bounded in Re(s)  > 0. Provided with the norm 

IIHII ~ = sup 6(H(s)), 
Re(s)> 0 

Ho~(C p×m) becomes a Banach space. It is a Banach 
algebra if p = m. 

The subalgebra H~  of Ho~(C) is defined in the 
following way: 

Ho~ := ( f ~  H~  13t~ < 0 : f  extends to a bounded 

holomorphic function on Re( s )  > a ).  

1. Introduction 

Infinite-dimensional linear systems which have 
a nuclear Hankel  operator have been studied in 
[4], [5] and [8]. We recall that nuclearity means 
that the sum of the singular values of the Hankel  
operator is finite. In [8] important  realisation and 
approximation properties were established for sys- 
tems of nuclear type: these are (stable) systems 
with an impulse response in L 1 A L2(0, oo; R px, ,)  
and which have a nuclear Hankel operator. It is 
the last property which explains the good ap- 
proximation behaviour of systems of nuclear type. 
They have optimal Hankel  norm approximations 
G k of MacMillan degree k which satisfy 

IIG-Gkll,~< ~ G, 
i = k + l  

and the truncated balanced approximation G b of 
degree k satisfies 

IIa-a ll 2 Z: G, 
i = k + l  

(cf. [5,8]). These excellent approximation proper- 
ties have important  implications in the design of 
robust finite-dimensional controllers (cf. [6,7]) and 
so it is natural to ask whether or not this nuclear- 
ity property is retained under parallel, cascade 
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and feedback configurations. This question is 
answered in the affirmative in Section 2. 

Nuclear systems are of necessity stable and so 
it is useful to consider unstable infinite-dimen- 
sional systems which have good L~-approxima- 
tion properties. Here we consider systems which 
are the sum of a transfer function of nuclear type 
and a totally unstable strictly proper rational one; 
we call this class systems of extended nuclear type. 
This is motivated by the fact that if G(s) is of 
extended nuclear type, then G(s + a) will be of 
nuclear type for some real positive a. In Section 3 
we show that this class is also closed under the 
algebraic operations of addition and multiplica- 
tion. Moreover we construct algebras of transfer 
functions of extended nuclear type which are 
closed under certain feedback configurations. 

2. Systems of nuclear type 

This class of systems was introduced in [8] and 
was found to have good approximation properties. 
The aim of this section is to prove that the class of 
systems of nuclear type is closed under cascade, 
parallel and feedback configurations. 

Definition 2.1. Systems of nuclear type. Consider 
the class of linear infinite-dimensional systems, 
which have an impulse response h ~ L 1 C~ 
L2(0, ~c; R P×m). The input-output  relationship 
is well-defined by the following bounded map 
from L2(0, ~ ;  R m) to L2(0, ~ ,  RP): 

y ( t )  = f o ' h ( t - s ) u ( s )  ds. (2.1) 

Its Laplace transform, G ( s ) = h ( s ) ,  is analytic 
and bounded in R e ( s ) >  0 and its Hankel oper- 
ator, F h, is a bounded compact operator from 
L2(0, ~ ;  R m) tO L2(O, oo; R p) given by 

(Fhu)( t )  = fo~h( t  + s ) u ( s )  ds. (2.2) 

If F h is nuclear, we say that the system is of 
nuclear type. 

Recall that a linear bounded operator T: H 1 
H 2 (where H 1 and H 2 are Hilbert spaces) is called 
nuclear if the sum of its singular values o i is finite: 

II T II N := ~ Oi < ~ .  (2.3) 
i = 1  

) 

Fig. 1. Parallel configuration of Corollary 2.3. 

,Y  

Let us recall some standard facts about nuclear 
operators (cf. e.g. [10]). 

Lemma 2,2. (a) I f  Fh, and Fh2 defined as in (2.2) 
are both nuclear, then so is aFh, + flFh2 for any 
scalars a and ft. Moreover 

[I aFh, + flFh2ll N < [al IlFh, II N + IBI IIFh211N. 
(2.4) 

(b) I f  H 1 and H z are two Hilbert spaces and 
K ~L#( H 1, 1-12) is nuclear, then so is KB and A K  
for any A ~£#(H2)  and B ~ (  H1). Moreover 

]]AK[] N--< IIAII I[KIIN, 

II g n  II N --< II g II N II n II- (2.5) 

An immediate consequence of Lemma 2.2 is the 
following corollary. 

Corollary 2.3. Consider the parallel configuration in 
Figure 1 where y = (G 1 + Ge)u. 

Then if G a and G 2 are of nuclear type, so is 
G 1 + G 2. 

Lemma 2.4. Consider the cascade configuration in 
Figure 2 where the transfer matrices Ga and G2 are 
of size p × q and q × m, respectively, and y =  
G1G2u. Then if G 1 and G 2 are of nuclear type so is 
GIG 2. Moreover denoting the inverse Laplace trans- 
forms of G 1 and G 2 (i.e. the impulse responses 
corresponding to G 1 and G2) by h I and h2, respec- 
tively, and setting 

£ h ( t ) : = ( h  1 * h2) ( t )  = h l ( t - s ) h 2 ( s ) d s ,  

(2.6) 

the following inequality holds: 

II/'h II N-- < IIF~, II NIIh211t + IlFh211N II hi II1- 

(2.7) 

Fig. 2. Cascade configuration of Lemma 2.4. 
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Proof. Since 

II ha * h2 Ili -< II hi II1 II h2 Iii, i = 1, 2, (2.8) 

we have h 1 * h 2 ~ L l f 3 L z ( O , ~ ; R P x " ) .  It re- 
mains to show the nuclearity of Fh: 

(Fhu)(t) 

= f f £ + ' h , ( t  + s -  u(s) as 

f0 f0 ,+, = h a ( a ) h 2 ( t + s - a ) u ( s  ) da as 

= i°~hl( a) ~_th2 ( t + s - a)u( s ) ds da 

fo' )fo + hl(a h 2 ( t + s - a ) u ( s ) d s d a  

= fo%l(t + B)ffh2(stu(s +  )ds dB 

+ f0'hl(t- )f0% (s + B)u(s) as 

=(rh,(Mh~u))(t)+(Kh,(Fh~U))(t) (2.9) 

where 

(Mhu)( t )  = fo°°h2(s)u(s+t) ds (2.10) 

and 

(KhU)(t)  = fo'hl(t - s )u(s)  ds. (2.11) 

Realizing that 

II Mh~u II 2 -~< II h2 II1 II u II 2 (2.12) 

and 

II Kh,u I12 ~ II hi II1 II u II 2 (2.13) 

and using Lemma 2.2, we obtain from (2.9) that 
F h is nuclear and the inequality (2.7) holds. [] 

The feedback configuration is harder to analyze 
and so we first consider a special case. 

Theorem 2.5. Consider a nuclear system with m 
inputs and m outputs and denote its transfer function 
by Q and its impulse response by q. Then if II q II 
< 1, the closed loop transfer function 

F = ( I - Q ) - I Q  

is in H~(C rex") and is of nuclear type. 
its impulse response f is given by 

o ~  

f ( t )  = E qr(t) 
r = l  

with 

q~+l(t) = ( tq ( t  - s)q~(s) ds, 
ao 

ql(t) = q( t ) .  

Moreover 

(2.14) 

r = 2 , 3 , 4  . . . . .  

(2.15a) 

(2.158) 

Proof. Trivially Q is holomorphic in Re ( s )>  0 
and it follows from 

II Q II ~ -< II q 111 < 1 (2.16) 

that Q ~ H~(CmX"). Moreover, since H~(C mxm) 
is a Banach algebra, we obtain from (2.16) that 
( I  - Q)- I  ~ H~(Cmxm) and hence 

F = ( I - O ) - l a E H o o ( c m x m ) .  

The operator K~ZP(L2(O, oo; Rm)) defined by 

(Ku)(t)  = fo 'q ( t -  s )u(s)  ds (2.17) 

is the time-domain map associated to the transfer 
matrix Q. The input-output  relationship in the 
time-domain for the closed-loop system is given 
by 

y = ( I -  K)-1Ku.  (2.18) 

If we notice that II K rl = II Q II ~, where II K II 
denotes the induced norm from L2(0, oo; N m) (cf. 
e.g. [9]), then it follows from (2.16) that ( I -  
K ) - I K  exists as an operator in Z~'(L2(0, ~ ;  R")) .  

The Neumann series for ( I -  K)-1  gives 

Kc,:= ( I - K ) - I K  = ~_, K r (2.19) 

and it is clear that the series in (2.19) converges in 
the uniform operator norm. Moreover it is easy to 
show that the iterates K r of K are given by 

r 

(Kru)( t )  = fo q~( t -  s )u(s)  ds, (2.20) 

where the q~ are defined as in (2.15). Thus the 
kernel corresponding to K a is 

f ( t )  = Y'~ qr(t). (2.21) 
r = l  
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That f ~  L 1 A L2(0, oo; R re×m) follows from the 

fact that q ~ L 1 (q L2(0, ~ ,  R mxm) and II q II1 < 
1- 

11fill_< Y" Ilqrl[1 < I lq l l (<  ~ ,  (2.22) 
r = l  r = l  

09 

Ufl[2  -< Ilql12+ ~ Ilqrll2 
r = 2  

-< II q I[ 2 + II q II 2 ~ II q I1( -1 < oc. (2.23) 
r = 2  

It now remains to establish the nuclearity of the 
Hankel operator associated with f .  From (2.9) in 
the proof of Lemma 2.4, it follows that 

I'qr+l = _FqrM q -F KrFq, r = 1, 2, 3 . . . . .  (2.24) 

where 

(Mqu)(t):= fo q ( s ) u ( t + s ) a s  (2.25) 

and II Mq II --< II q Ill < 1 from (2.12) 
Thus I - Mq has a bounded inverse and (2.21), 

(2.24) yield the following 

Ff = E I~q. = I +  K ~ Fq(I-Mq) -1 
r = l  r = l  

= (I  + Kcl)Fq(I - Mq) -1 (2.26) 

Lemma 2.2 (b) now completes the proof. [] 

By combining the results of Corollary 2.3, 
Lemma 2.4 and Theorem 2.5 we deduce that sys- 
tems of nuclear type are closed under more gen- 
eral feedback configurations. 

Corollary 2.6. Let G and K be transfer matrices of 
size m × p and p × m and with impulse responses g 
and k, respectively. I f  G and K are of nuclear type 
and II g * k II1 < 1, then the following closed-loop 
transfer matrices are of nuclear type: 

( I -  GK)-aGK = G ( I -  KG) - iK ,  

( I -  GK)- IG = G ( I -  KG) -1, 

K ( I -  GK) -1 = ( I -  KG)- IK.  

Proof. GK is square and of nuclear type by Lemma 
2.4 and so by Theorem 2.5, if II g * k 111 < 1, then 

( I -  GK) 1GK is also of nuclear type. Postmulti- 
plying the identity 

( I - G K ) - I = I + ( I - G K )  1GK (2.27) 

with G shows that ( I - G K ) - I G  is of nuclear 
type. Similarly premultiplying (2.27) with K yields 
that K(I  - GK)-1 is nuclear. [] 

3. Extended nuclear systems 

To allow for unstable systems we introduce the 
following class of transfer functions. 

Definition 3.1. A transfer function G is said to be 
of extended nuclear type if it admits a decomposi- 
tion of the form G = G n + Gf, where Gn is a trans- 
fer function of nuclear type and Gf is a strictly 
proper rational function with all its poles in Re(s) 
>0 .  

It should be mentioned that a transfer function 
G = G n + Gf of extended nuclear type does not 
necessarily belong to the Callier-Desoer class of 
transfer functions (cf. [1,2]), because there might 
fail to exist a number a < 0 such that G. has an 
analytic continuation to Re(s) > a. 

We remark that if G(s) is of extended nuclear 
type, then G(s + a) will be of nuclear type for all 
real positive a satisfying 

a > max(Re(X)  [ ~ is a pole of G}.  

This follows from the important characterization 
of nuclearity by Coifman and Rochberg [3]: 

A transfer matrix G(s) with entries in H 2 is of 
nuclear type if and only if it posseses a uniformly 
convergent expansion valid in R e ( s ) >  0 of the 
form 

oo 

G(s)= E A, s + h i (3.1) 
i = 1  

for some complex number k, in R e ( s ) >  0 and 
some complex matrices A i which satisy 

i=1 Re(X/---~ < oC. 

We remark that the )t, and A, are not unique. 
We show that the class of extended nuclear 

systems is closed under parallel and cascade con- 
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nections (i.e. the set of all (m×m)- t rans fer  
matrices of extended nuclear type forms an alge- 
bra). 

Lemma 3.2. Suppose that G and F are systems of 
extended nuclear type. Then 

(a) G + F is of extended nuclear type. 
(b) GF is of extended nuclear type. 

Proof. (a) This follows from Corollary 2.3. 
(b) Let G and F have decompositions G = G n 

+ Gf and F = F n + Ff according to Definition 3.1. 
Then by Lemma 2.4 it remains to prove that the 
product GnFf is of extended nuclear type, where 
G n is of nuclear type and Ff is a strictly proper 
rational function with all its poles in Re ( s )>  0. 
Appealing to the representation (3.1), we examine 
( s - a ) - l G ~ ( s )  for some a with R e ( a ) > 0 .  We 
have 

1 1 ~-. Ai 
- -  Gn(S  ) = 2., 
s - a  s - a  i = 1  S-'}-~ki 

g Ai 

/ "  ( s - a ) ( s +  hi)  i=1 

= -  ~ Ai 

i=1 (S -F ?~i)(a + )~i) 

1 ~ Ai 
+ ~ (3.2) 

s - a  ,==1 a+~ki 

Realizing that 0 < R e ( a ) <  [ X , + a [  and 0 <  
R e ( h i ) < l X i  + a [  for i = l ,  2, 3, . . . ,  we obtain 
from the convergence of ~,i~llAi [/Re()~i) that 

i=1 Re(?~,) l a + Xil Re(a)  i=1 Re(Xi) < oo 

and 

k2 k 
a ' ~ l  < Re(X,-------) < oo. 

i = 1  [ -{- x i l  i = 1  

So it follows from (3.2) via the Coifman-Roch- 
berg Theorem that ( s -  a)- lG~(s)  is of extended 
nuclear type, and this argument extends to 

1 
( s _ a ) t  ;Gn(s) 

by induction (p  = 1, 2, 3 . . . .  ). Using the partial 
fraction expansion of Ff we may conclude that 
GnFf is of extended nuclear type. [] 

Remark 3.3. The proof of Lemma 3.2(b) shows 
that a scalar transfer function of nuclear type 
remains nuclear after cancelling finitely many of 
its zeros z, in Re(s) > 0 (i = 1, 2, 3 . . . .  ) by multi- 
plication with factors of the form (s - z~) -n', where 
n i denotes the multiplicity of the zeros z,. 

The following corollary gives a characterization 
of extended nuclearity in terms of coprime factori- 
zations. 

Corollary 3.4. A transfer matrix G of size p × m is 
of extended nuclear type if  and only if it admits a 
factorization of the form G = N D -  1, where N and D 
are transfer matrices (of  size p × m and m X m, 
respectively) satisfying: 

(a) N is a transfer matrix of nuclear type. 
(b) D is a proper stable rational matrix satisfy- 

ing det(D(oo)) =g 0 and det(D(s)) =g 0 if  Re(s) < 
0. 

(c) N and D are right coprime, i.e. there exist 
matrices X and Y such that X N  + YD = 1 in Re(s) 
> 0 and the inverse Laplace transforms of the en- 
tries of X and Y belong to the convolution algebra 
R 8 + LI(O, oo) (where ~ denotes the Dirac distribu- 
tion). 

Of course, an analogous statement holds for 
left coprime factorizations. 

Proof. 'If ':  follows from the proof of Lemma 
3.2(b). 

'Only if': Write G in the form G = G  n + G f  
according to Definition 3.1. It is well known that 
there exist proper stable rational matrices M, D, 
X and Z such that D satisfies the conditions in 
(b) ,  Gf = M D -  1 and X M  + ZD = I. Setting N := 
GnD + M and Y:= Z -  XG n it follows that G =  
N D -  ~ and X N  + YD = I and it is clear that N, X 
and Y have the required properties. [] 

Finally we want to construct algebras of trans- 
fer functions of extended nuclear type which are 
closed under feedback configurations. We shall 
consider all scalar transfer functions G of the 
form 

G = G i q- Gf (3.3) 

where G i is a transfer function in H~ and Gf is a 
strictly proper rational function with all its poles 
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in Re(s) > 0. Let us denote the set of all transfer 
functions fo the form (3.3) by Jff. Moreover we 
define for k > 0, 

,A/'k := ( a ~ J F ' l  l a ( s )  l = O (  l s l - k )  as Isl ---, oo 

in Re(s)  > a for some a < 0 }. 

Theorem 3.5. (a) The set JV" forms an algebra and 
,A/" k is a subalgebra of ,A# for all k > O. 

(b) Let G~JV'~ '×p and K E , A / ' P × m ;  then if 
( I -  GK) -1 is well posed (i.e. ( I -  GK)  -1 
aV " 'xm) we have 

( 1 -  GK ) -  ' GK ~.Ar~ 'x"~, 

( I  - G K ) - I G  ~-..,V'~ "xp, 

K ( I - G K ) - ' ~ .Ar~ x m . 

(c) I f  k >  2 then all elements in ..4" k are of 
extended nuclear type. 

Remark 3.6. (a) Roughly speaking Theorem 3.5 
says that for all k >  2, JV" k is an algebra of 
transfer functions of extended nuclear type which 
is closed under feedback. 

(b) ( I -  GK)  -1 EJV ""~×m if and only if 

d e t ( I -  ( GK )(jo~ ) ) ~ 0 

for all ~ ~ R and there exists a p > 0 such that 

inf I d e t ( I -  ( G K ) ( s ) ) I  >0 .  
Isl>-p 

Re(s)>0 

(c) If in the definition of extended nuclearity 
we allow for poles on the imaginary axis, then 
Theorem 3.5 remains true if X and ./V" k are 
replaced by 

J- '= {G = G i +  G f l G i ~ n ~  and Gf is a 

strictly proper rational 

function with all its poles 

in Re(s)  > 0}, 

and 

J - k : = ( G ~ 3 - l l G ( s ) l = O ( l s l - k ) a s  Is[ ~ o o  

in Re(s)  > a for some a < 0}, 

respectively (cf. [9] for the algebra ,Y-). 

Part (a) of Theorem 3.5 is obvious and part (b) 
follows from the trivial fact that "/ffk is a ,AZ-mod- 

ule. Part (c) is a consequence of the following 
lemma. 

Lemma 3.7. I f  G is a holomorphic function on 
R e ( s ) > a  ( a < 0 )  such that [ G ( s ) ] = O ( I  s l - k )  
as Isl--,oo in R e ( s ) > f l ,  where a < /3 < O and 
k > 2, then G is of nuclear type. 

Proof. According to a theorem by Coifman and 
Rochberg proved in [3] nuclearity of G is equiv- 
alent to 

f 
+ O 0  ~ O ¢  

oojo I G " ( x + j y ) [ d x d y < o o .  (3.4) 

Choose a real number 3' satisfying fl < 3' < 0, pick 
any s in Re s > 0 and set p := - %  It follows from 
Cauchy's inequality that 

2 
I a " ( s )  I -< ~ Iz-slmax=o I a ( z )  I (3.5) 

and by assumption there exists a number M > 0 
such that 

M 
[ G ( z ) ] _ < - -  for all z 4= 0 with Re( z ) >_ /3. 

Izl k 

(3.6) 

Combining (3.5) and (3.6) yields for all s satisfy- 
ing Re(s) > 0 and Is I > 2p, 

2M 1 
I G " ( s )  I - < - -  max 

p2 Iz-sl=o Izl k 

2 M  1 < - -  

< - -  

o2 ( i s l _ p ) k  

2M 1 
p2 k 

2k+lM 1 
< - -  

o 2 Isl k" 

Using (3.7) we obtain 

f + ° ~ f ~ t G " ( x + j y )  l d x d y  
oe .'0 

= fool, ,~2 [ G " ( r e J * ) [ r d e o  dr  
JO J -~r/2 

< f2TJ2 .'o . ' -~,/21G"(r e j*) ]r dq~ dr  

oo  
2k+lM~r f r 1-k d r  

-'b p2 "20 

< ~  (for k > 2), 

(3.7) 

which is (3.4). [] 
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