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Chapter 1

Exercise 1.1
(a) Writing g : z1 7→ 1/(z1 + σ), then, in a sufficiently small neighbourhood of 0, g
may be approximated by the first two terms of its Taylor expansion about 0:

1

z1 + σ
= g(z1) ≈ g(0) + g′(0)z1 =

1

σ
− z1
σ2
.

Now consider the nonlinear terms in the satellite model. For (z1, z2, z3, z4, w1, w2) in
a sufficiently small neighbourhood of 0 ∈ R6, expansion and keeping only constant
and linear terms, gives

(z1 + σ)(z4 + ω)2 = z1z
2
4 + 2z1z4ω + ω2z1 + σz24 + 2ωσz4 + σω2

≈ z1ω
2 + 2ωσz4 + σω2.

1

(z1 + σ)2
≈
(
1

σ
− z1
σ2

)2

≈ 1

σ2
− 2z1

σ3
.

z2(z4 + ω)

z1 + σ
≈ z2(z4 + ω)

(
1

σ
− z1
σ2

)
≈ ωz2

σ

w2

z1 + σ
≈ w2

(
1

σ
− z1
σ2

)
≈ w2

σ
.

Therefore, for (z1, z2, z3, z4, w1, w2) in a sufficiently small neighbourhood of 0 ∈ R6,
we have

f2(z1, z4, w1) ≈ ω2z1 + 2σωz4 + σω2 − σ3ω2

(
1

σ
− z1
σ2

)
+ w1 = 3ω2z1 + 2ωσz4 + w1

f4(z1, z2, z4, w2) = −2ωz2
σ

+
w2

σ
.

(b) With u = (u1, u2) = 0, we have

fu(t, z) = f0(t, z1, z2, z3, z4) =
(
z2, f2(z1, z4, 0), z3, f4(z1, z2, z4, 0)

)
.

For the putative solution x = (x1, x2, x3, x4), we have

ẋ1(t) = 0 = x2(t), ẋ2(t) = 0 = σε(ε+ ω)2 − σ3ω2

σ2
ε

= f2(x1(t), x2(t), x4(t), 0)

ẋ3(t) = ε = x4(t), ẋ4(t) = 0 = f4(x1(t), x2(t), x4(t), 0),

and so x is indeed a solution of the nonlinear system.

(c) Let δ > 0 be arbitrary. Noting that

σε = σ

(
ω

ω + ε

)2/3

,

we may choose ε > 0 sufficiently small so that

(σε − σ)2 + ε2 < δ2.



2 Solutions to Exercises

Define ξ = (ξ1, ξ2, ξ3, ξ4) := (σε − σ, 0, 0, ε). Then ∥ξ∥ < δ and, by part (b), t 7→
x(t) = (σε − σ, 0, εt, ε) is a solution with initial data x(0) = ξ. Moreover, ∥x(t)∥ > εt
for all t ≥ 0 and so ∥x(t)∥ → ∞ as t→ ∞.

Exercise 1.2
(a) Let x : I → RN be a solution. By the chain rule (Proposition A.34), the derivative
(E ◦ x)′ of the composition E ◦ x satisfies

(E ◦ x)′(t) = ⟨(∇E)(x(t)), ẋ(t)⟩ = ⟨(∇E)(x(t)), f(x(t))⟩ = 0 , ∀ t ∈ I .

Consequently, there exists γ ∈ R such that E(x(t)) = (E ◦ x)(t) = γ for all t ∈ I.

(b) ⟨(∇E)(z), f(z)⟩ = −g(z1)z2 + z2g(z1) = 0 for all z ∈ R2.

(c) Applying part (b) with g given by g(s) = −b sin s shows that

E(z) = E(z1, z2) = b

∫ z1

0

sin s ds = b(1− cos z1) + z22/2

is a first integral.

(d) (∇E)(z) = (∇E)(z1, z2) =
(
d− c/z1 , b− a/z2

)
and so

⟨(∇E)(z1, z2),
(
z1(−a+ bz2), z2(c− dz1)

)
⟩

= ac− bcz2 − adz1 + bdz1z2 − ac+ adz1 + bcz2 − bdz1z2

= 0 , ∀(z1, z2) ∈ (0,∞)× (0,∞) .

(e) Assume E : G→ R is a first integral for (1.12). We have seen that the image of any
solution of (1.12) is contained in some level set of E. Therefore, in principle, a study
of the level sets of a first integral can provide insight into the qualitative behaviour of
solutions of (1.12). For any constant function E, trivially we have ⟨(∇E)(z), f(z)⟩ = 0
for all z ∈ G and, moreover, G is the only non-empty level set E. Therefore, if
non-constancy is removed from the definition of a first integral, then every constant
function is a first integral and the result in (a) above does not provide any useful
information.

Exercise 1.3
In parts (a)-(d), it is assumed that k(ξ) ̸= 0.

(a) K′(z) = 1/k(z) ̸= 0 for all z ∈ U . Therefore, K : U → K(U) is strictly monotone
and so has an inverse function K−1 : K(U) → U . Moreover, K(U) is an open interval
containing 0 and K−1(0) = ξ.

(b) SinceH is continuous withH(τ) = 0, there exists ε > 0 such that I := (τ−ε, τ+ε)
is contained in J and H(I) is contained in K(U).

(c) Differentiating the relation K(x(t)) = H(t) for all t ∈ I gives K′(x(t))ẋ(t) = h(t)
for all t ∈ I. Since K′ = 1/k, we have ẋ(t) = k(x(t))h(t) for all t ∈ I. Moreover,
x(τ) = K−1(H(τ)) = K−1(0) = ξ and so x : I → G, t 7→ K−1(H(t)) is a solution
of the initial-value problem. Assume x1, x2 : I → G are two solutions of the initial-
value problem. Then K(x1(t)) = H(t) = K(x2(t)) for all t ∈ I and so x1(t) =
K−1(K(x2(t))) = x2(t) for all t ∈ I.

(d) Set J := R, I := (−1, 1), U := (0,∞), k(x) = z3 for all z ∈ U and h(t) := t for all
t ∈ J . Define K : U → K(U) by K(z) :=

∫ z

1
ds/k(s) = (1− z−2)/2 for all z ∈ U and

define H : J → R by H(t) :=
∫ t

0
h(s)ds = t2/2 for all t ∈ J . Then K(U) = (−∞, 1/2),

H(I) = (−1/2, 1/2) ⊂ K(U) and K−1 : K(U) → U is given by K−1(z) = 1/
√
1− 2z.

By parts (a)-(c), it follows that x : I → R, t 7→ K−1(H(t)) = 1/
√
1− t2, solves the



Logemann & Ryan 3

initial-value problem. Moreover, since x(t) → ∞ as t→ ±1, the solution x is maximal.

In parts (e) and (f) below, it is assumed that k(ξ) = 0.

(e) First, we prove that x(t) = ξ for all t ∈ I with t ≥ τ . Suppose that this claim
is false. Then there exists I∗ = (σ, ρ) ⊂ I such that σ ≥ τ , x(σ) = ξ, x(ρ) ̸= ξ and
x(t) ∈ (ξ − δ, ξ) ∪ (ξ, ξ + δ) for all t ∈ I∗. Set c := (ρ− σ)maxt∈[σ,ρ] |h(t)|. Since, for
all t ∈ I∗, ẋ(t) = k(x(t))h(t) and k(x(t)) ̸= 0, we have

c ≥
∫ ρ

r

|h(t)|dt ≥
∣∣∣∣∫ ρ

r

h(t)dt

∣∣∣∣ = ∣∣∣∣∫ ρ

r

ẋ(t)

k(x(t))
dt

∣∣∣∣ =
∣∣∣∣∣
∫ x(ρ)

x(r)

ds

k(s)

∣∣∣∣∣ ∀ r ∈ I∗ .

Observe that either x(t) ∈ (ξ, ξ + δ) for all t ∈ I∗ or x(t) ∈ (ξ − δ, ξ) for all t ∈ I∗.
If the former is the case, then x(ρ) > ξ and passing to the limit r → σ (and so
x(r) ↓ x(σ) = ξ) yields a contradiction to the second of properties (1.16). If the latter
is the case, then x(ρ) < ξ and passing to the limit r → σ (and so x(r) ↑ x(σ) = ξ)
yields a contradiction to the first of properties (1.16). We may now conclude that
x(t) = ξ for all t ∈ I with t ≥ τ .
The above argument applies mutatis mutandis to conclude that x(t) = ξ for all t ∈ I
with t ≤ τ .

(f) The function k fails to satisfy properties (1.16).

Exercise 1.4
(a) Let x : J → R be a solution of (1.18). We first show that x(t) = 0 for all t ∈
J with t ≥ τ . Suppose otherwise, then there exists I = (σ, ρ) ⊂ J with σ ≥ τ ,
x(σ) = 0 and x(t) ̸= 0 for all t ∈ I. Define α := (ρ − σ)maxt∈[σ,ρ] |a(t)|. Observe
that (d/dt)(ln |x(t)|) = ẋ(t)/x(t) = a(t) for all points t ∈ I at which a is continuous.
Therefore, ∣∣ ln |x(ρ)/x(s)|∣∣ = ∣∣∣∣∫ ρ

s

a(t)dt

∣∣∣∣ ≤ ∫ ρ

s

|a(t)|dt ≤ α ∀ s ∈ (σ, ρ)

which is impossible since, by choosing s sufficiently close to σ, x(s) can be made
arbitrarily close to x(σ) = 0 and so the term on the left can be made arbitrarily
large. Therefore, x(t) = 0 for all t ∈ J with t ≥ τ .
The above argument applies mutatis mutandis to conclude that x(t) = 0 for all t ∈ J
with t ≤ τ .

(b) Clearly, x(τ) = ξ and, invoking Theorem A.30, we have ẋ(t) = a(t)x(t) at all
points t of continuity of a. Therefore, x is a solution. Suppose y : J → R is also a
solution, and write z := x − y. Then z(τ) = ξ − ξ = 0 and ż(t) = ẋ(t) − ẏ(t) =
a(t)(x(t)−y(t)) = a(t)z(t). By the result in (a), the zero function is the only solution
on J of the initial-value problem: ż(t) = a(t)z(t), z(0) = 0. Therefore, y(t) = x(t) for
all t ∈ J and so x is the unique maximal solution.

(c) By properties of the exponential function, sufficiency of the condition is clear. We

proceed to prove necessity and argue by contraposition. Assume that
∫ t

τ
a(s)ds ̸→ −∞

as t→ ∞. Then there exist α ∈ R and a sequence (tn) in R, with tn → ∞ as n→ ∞,

such that
∫ tn
τ
a(s)ds ≥ α for all n ∈ N. Therefore, |x(tn)| ≥ eα|ξ| > 0 for all n ∈ N

and so, for ξ ̸= 0, x(t) ̸→ 0 as t→ ∞.

(d) Define A :=
∫ T

0
a(s)ds, B :=

∫ T

0
|a(s)|ds and C :=

∣∣∫ τ

0
a(s)ds

∣∣. Observe that, for
every integer m, ∫ mT

0

a(s)ds = mA and

∫ (m+1)T

mT

|a(s)|ds = B.



4 Solutions to Exercises

Let (tn) be any sequence in R with tn → ∞ as n → ∞. For each n ∈ N, there exists
a unique integer mn such that mnT ≤ tn < (mn +1)T . Clearly, mn → ∞ as n→ ∞.
Now ∫ tn

τ

a(s)ds =

(∫ 0

τ

+

∫ mnT

0

+

∫ tn

mnT

)
a(s)ds

Therefore, mnA − B − C ≤
∫ tn
τ
a(s)ds ≤ mnA + B + C for all n ∈ N and so∫ tn

τ
a(s)ds→ −∞ as n→ ∞ if, and only if,A < 0. We may now infer that

∫ t

τ
a(s)ds→

−∞, as t→ ∞ if, and only if, A < 0. Invoking the result in (c) completes the proof.

Exercise 1.5
Let K ⊂ J be a compact interval containing τ and let E ⊂ K be the finite set of
points t ∈ K at which either a or b (possibly both) fails to be differentiable. Write

K̂ := K\E. Multiplying both sides of the differential equation by µ, we have

(µx)′(t) = µ(t)ẋ(t)+µ̇(t)x(t) = µ(t)
(
a(t)x(t)+b(t)

)
−µ(t)a(t)x(t) = µ(t)b(t) ∀ t ∈ K̂,

which, on integration and imposing the condition x(τ) = ξ, gives∫ t

τ

µ(s)b(s)ds = µ(t)x(t)− µ(τ)x(τ) = µ(t)x(t)− ξ ∀ t ∈ K.

Thus, we arrive at a candidate solution x : K → R of the initial-value problem:

x(t) =
1

µ(t)

(
ξ +

∫ t

τ

µ(s)b(s)ds

)
∀ t ∈ K.

To verify that x is indeed a solution, simply note that x(τ) = ξ and, invoking the
(generalized) fundamental theorem of calculus,

ẋ(t) =
a(t)

µ(t)

(
ξ +

∫ t

τ

µ(s)b(s)ds

)
+
µ(t)b(t)

µ(t)
= a(t)x(t) + b(t) ∀ t ∈ K̂.

Since K ⊂ J is arbitrary, we may conclude that the function

J → R, t 7→ x(t) := a(t)µ−1(t)

(
ξ +

∫ t

τ

µ−1(s)b(s)ds

)
solves the initial-value problem. Assume y : J → R is also a solution of the initial-value
problem. Write e = x− y and so e solves the problem

ė(t) = a(t)e(t), e(τ) = 0.

By part (a) of Exercise 1.4, we may infer that e = 0 and so y = x. Therefore, x is the
unique solution on J of the initial-value problem.

Exercise 1.6
Write w(0) = w0 and q(0) = q0. On [0, ts), we have

ẇ(t) = (a− µ)w(t), q̇(t) = −νq(t), (w(0), q(0)) = (w0, q0),

and so w(t) = e(a−µ)tw0 and q(t) = e−νtq0 for all t ∈ [0, ts). Write w∗ := e(a−µ)tsw0

and q∗ := e−νtsq0. Then, on [ts, 1], we have

ẇ(t) = −µw(t), q̇(t) = −νq(t) + bw(t), (w(ts), q(ts)) = (w∗, q∗),
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and so, for all t ∈ [ts, 1], we have

w(t) = e−mu(t−ts)w∗ = e−µteatsw0,

q(t) = e−ν(t−ts)q∗ +

∫ t

ts

e−ν(t−s)be−µseatsw0ds

= e−νt

(
q0 +

bw0eats

µ− ν

(
e−(µ−ν)ts − e−(µ−ν)t))

The optimal control maximizes q(1) and so (noting that bw0/(µ−ν) > 0) the param-
eter ts should be such that the function

g : (0, 1) → (0,∞), τ 7→ eaτ
(
e−(µ−ν)τ − e−(µ−ν))

attains its maximum at τ = ts. A straightforward calculation reveals that the first
derivative g′(τ) is zero if, and only if,

τ = ts := 1− ln(a/(a+ µ− ν))

µ− ν
.

Moreover, the second derivative g′′ is negative valued. Therefore, g attains its maxi-
mum at τ = ts.



6 Solutions to Exercises

Chapter 2

Exercise 2.1
Set ξ = 1 and define A : [−1, 1] → R by

A(t) :=

{
0, −1 ≤ t < 0,
1, 0 ≤ t ≤ 1.

Exercise 2.2
Let J = R and N = 2. Let a : R → F be any piecewise continuous function with the
property that the set E of points at which it fails to be continuous is non-empty.
Define A : R → F2×2 and ξ ∈ F2 by

A(t) :=

(
0 1
0 a(t)

)
, ξ :=

(
1
0

)
.

Then the initial-value problem ẋ(t) = A(t)x(t), x(0) = ξ has constant solution x : R →
F2, t 7→ x(t) = ξ, whilst A fails to be continuous at each σ ∈ E.

Exercise 2.3
Let x : Jx → FN be a solution of ẋ(t) = A(t)x(t). Then there exists τ ∈ Jx such that

x(t)− x(τ) =

∫ t

τ

A(σ)x(σ)dσ ∀ t ∈ Jx.

Let t1, t2 ∈ Jx be arbitrary. Then

x(t2)− x(t1) = x(t2)− x(τ)−
(
x(t1)− x(τ)

)
=

(∫ t2

τ

−
∫ t1

τ

)
A(σ)x(σ)dσ

=

∫ t2

t1

A(σ)x(σ)dσ.

Exercise 2.4
Observe that M2(t, s)−M1(t, s) =

∫ t

s
A(σ)dσ for all (t, s) ∈ J × J and, for all n ∈ N,

Mn+2(t, s)−Mn+1(t, s) =

∫ t

s

A(σ)
[
Mn+1(σ, s)−Mn(σ, s)

]
dσ ∀ (t, s) ∈ J × J.

The result (2.3) follows by induction.
Assume that for, some n ∈ N, the equality in (2.4) holds for all (t, s) ∈ J × J . Then∫ t

s

∫ σ1

s

· · ·
∫ σn

s

dσn+1 · · ·dσ2dσ1 =

∫ t

s

(σ1 − s)n

n!
dσ1

=
1

n!

∫ t−s

0

σndσ =
(t− s)n+1

(n+ 1)!
∀ (t, s) ∈ J × J.

Since
∫ t

s
dσ1 = t− s for all (t, s) ∈ J × J , (2.4) follows by induction.

Exercise 2.5
The result follows from the Peano-Baker series (2.6) if it can be shown that, for all
n ∈ N,

1

n!

(∫ t

τ

A(σ)dσ

)n

=∫ t

τ

A(σ1)

∫ σ2

τ

A(σ2) · · ·
∫ σn−1

τ

A(σn)dσn · · ·dσ2dσ1 ∀ t, τ ∈ R. (∗)
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Clearly, (∗) holds for n = 1. Let n ∈ N and assume that (∗) holds. Observe that com-

mutativity of A(t) and A(σ) for all t, σ implies commutativity of A(t) and
∫ t

τ
A(σ)dσ

which, in conjunction with the product rule for differentiation and Theorem A.30,
gives

d

dt

(∫ t

τ

A(σ)dσ

)n+1

= (n+ 1)A(t)

(∫ t

τ

A(σ)dσ

)n

at all points t of continuity of A. Integrating and dividing by (n+ 1)!, we have

1

(n+ 1)!

(∫ t

τ

A(σ)dσ

)n+1

=

∫ t

τ

A(σ)
1

n!

(∫ σ

τ

A(ρ)dρ

)n

dσ

=

∫ t

τ

A(σ)

∫ σ

τ

A(σ1) · · ·
∫ σn−1

τ

A(σn)dσn · · ·dσ1dσ.

By induction, it follows that (∗) holds for all n ∈ N.

Exercise 2.6
We have(

G(s) exp
(
−H(s)

))′
=
(
G′(s)−H ′(s)G(s)

)
exp

(
−H(s)

)
≥ 0 ∀ s ∈ [t, τ ]

which, on integration, gives

c = G(τ) ≥ G(t) exp
(
−H(t)

)
.

Hence, we arrive at the requisite inequality

g(t) ≤ G(t) ≤ c exp
(
H(t)

)
= c exp

(∫ τ

t

h(s)ds

)
= c exp

(∣∣∣∣∫ t

τ

h(s)ds

∣∣∣∣) .
Exercise 2.7
Let τ ∈ J be arbitrary. Consider the initial-value problems ẋ(t) = A(t)x(t), x(τ) = ξ,

and ˙̃x(t) = Ã(t)x̃(t), x̃(τ) = ξ̃. The unique solutions on J are given, respectively, by

x(t) = Φ(t, τ)ξ and x̃(t) = Φ̃(t, τ)ξ̃ for all t ∈ J . Now,

d

dt
⟨x̃(t), x(t)⟩ = ⟨Ã(t)x̃(t), x(t)⟩+ ⟨x̃(t), A(t)x(t)⟩ = ⟨

(
Ã(t) +A∗(t)

)
x̃(t), x(t)⟩ = 0

for all points t ∈ J at which A is continuous. Therefore, ⟨x̃(t), x(t)⟩ = ⟨ξ̃, ξ⟩ for all
t ∈ J and so

⟨ξ̃, ξ⟩ = ⟨Φ̃(t, τ)ξ̃, Φ(t, τ)ξ⟩ = ⟨Φ∗(t, τ)Φ̃(t, τ)ξ̃, ξ⟩ ∀ t ∈ J.

Since ξ̃, ξ ∈ FN and τ ∈ J are arbitrary, we may now infer that Φ∗(t, τ)Φ̃(t, τ) = I

for all (t, τ) ∈ J × J . Therefore, Φ∗(t, τ) = Φ̃−1(t, τ) = Φ̃(τ, t) for all (t, τ) ∈ J × J ,
whence the required result.

Exercise 2.8
Let F = R, N = 2, J = [0, 1] and define y1, y2 ∈ C(J,FN ) by

y1(t) :=

(
1
0

)
∀ t ∈ J, y2(t) :=

(
1 + t
0

)
∀ t ∈ J.

Then y1 and y2 are linearly independent. However, y2(t) = (1 + t)y1(t) for all t ∈ J
and so the vectors y1(t), y2(t) ∈ R2 fail to be linearly independent for all t ∈ J .



8 Solutions to Exercises

Exercise 2.9

By inspection, we see that ψ1 : t 7→
(
1
0

)
is a solution. Written componentwise, the

system of differential equations is: ẋ1(t) = x2(t), ẋ2(t) = 2tx2(t). By separation of

variables, we find that t 7→ et
2

satisfies the second equation and so

ψ2 : t 7→

(∫ t

0
es

2

ds

et
2

)

is a solution. Evidently ψ1 and ψ2 are linearly independent. Writing Ψ =
(
ψ1 ψ2

)
,

the transition matrix function Φ is given by

Φ(t, τ) = Ψ(t)Ψ−1(τ) =

(
1
∫ t

0
es

2

ds

0 et
2

)(
1 −e−τ2 ∫ τ

0
es

2

ds

0 e−τ2

)

=

(
1 e−τ2 ∫ t

τ
es

2

ds

0 et
2−τ2

)
∀ (t, τ) ∈ R× R.

Exercise 2.10
(1) For all k ∈ N, P k = diag(pk1 , . . . , p

k
N ) and so

exp(P ) =

∞∑
k=0

P k/k! = diag

(
∞∑

k=0

pk1/k!, . . . ,

∞∑
k=0

pkN/k!

)
= diag

(
ep1 , . . . , epN

)
.

(2) (exp(P ))∗ =
(∑∞

k=0 P
k/k!

)∗
=
∑∞

k=0(P
∗)k/k! = exp(P ∗).

(3) By Corollary 2.3, (d/dt) exp(Pt) = P exp(Pt). Moreover,

P exp(Pt) = P

∞∑
k=0

(Pt)k/k! =

(
∞∑

k=0

(Pt)k/k!

)
P = exp(Pt)P.

Exercise 2.11
Let F = R, N = 2 and consider the non-commuting matrices

P =

(
1 0
0 0

)
, Q =

(
0 1
0 0

)
.

In this case,

P +Q =

(
1 1
0 0

)
, with (P +Q)n = P +Q ∀n ∈ N,

and so

exp(P +Q) =

∞∑
k=0

1

k!
(P +Q)k = I +

(
∞∑

k=1

1

k!

)
(P +Q) = I + (e− 1)(P +Q)

=

(
e e− 1
0 1

)
.

Therefore,

exp(P ) exp(Q) = exp(P )(I +Q) =

(
e 0
0 1

)(
1 1
0 1

)
=

(
e e
0 1

)
̸= exp(P +Q).
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Exercise 2.12
Let {v1, . . . , vK} be a basis of V . Since V is closed under complex conjugation, it
follows that {v̄1, . . . , v̄K} is also a basis of V . Therefore,

V = span{v1, . . . , vK , v̄1, . . . , v̄K} = span{Re v1, . . . ,Re vK , Im v1, . . . , Im vK}

and so the family {Re v1, . . . ,Re vK , Im v1, . . . , Im vK} of vectors in RN contains a
basis.

Exercise 2.13
Let x : Jx → FN be a solution of ẋ(t) = A(t)x(t)+ b(t). Then there exists τ ∈ Jx such
that

x(t)− x(τ) =

∫ t

τ

(
A(σ)x(σ) + b(σ)

)
dσ ∀ t ∈ Jx.

Let t1, t2 ∈ Jx be arbitrary. Then

x(t2)−x(t1) = x(t2)−x(τ)−
(
x(t1)−x(τ)

)
=

(∫ t2

τ

−
∫ t1

τ

)(
A(σ)x(σ)+ b(σ)

)
dσ

=

∫ t2

t1

(
A(σ)x(σ) + b(σ)

)
dσ.

Exercise 2.14
Let Sih denote the set of all solutions of ẋ(t) = A(t)x(t)+b(t) and let y ∈ Sih. Assume
z ∈ Sih and write x := z−y. Then ẋ(t) = ż(t)−ẏ(t) = A(t)z(t)+b(t)−A(t)y(t)−b(t) =
A(t)(z(t) − y(t)) = A(t)x(t) at every t ∈ J which is not a point of discontinuity of
A or b. Therefore, x ∈ Shom and so z ∈ y + Shom. This establishes the inclusion
Sih ⊂ y + Shom. To establish the reverse inclusion, assume z ∈ y + Shom. Then
z = y+x for some x ∈ Shom and so ż(t) = A(t)y(t)+ b(t)+A(t)x(t) = A(t)z(t)+ b(t)
at every t ∈ J which is not a point of discontinuity of A or b. Therefore, z ∈ Sih.

Exercise 2.15
Let P(n) denote the statement

“Φ(t+ np, τ) = Φ(t, 0)Φn(p.0)Φ(0, τ) ∀ (t, τ) ∈ R× R”

We already know that Φ(t+ p, τ) = Φ(t, 0)Φ(p, 0)Φ(0, τ) for all (t, τ) ∈ R×R, and so
P(1) is a true statement. Assume n ∈ N and P(n) true. Then

Φ(t+ (n+ 1)p, τ) = Φ(t+ p+ np, τ) = Φ(t+ p, 0)Φn(p, 0)Φ(0, τ)

= Φ(t, 0)Φ(p, 0)Φ(0, 0)Φn(p, 0)Φ(0, τ)

= Φ(t, 0)Φn+1(p, 0)Φ(0, τ) ∀ (t, τ) ∈ R× R

and so P(n+ 1) is true. By induction, it follows that P(n) is true for all n ∈ N.

Exercise 2.16
Note initially that, since Φ(p, 0) is invertible, 0 ̸∈ σ(Φ(p, 0)) and so, for the function
f : z 7→ zn, we have f ′(µ) ̸= 0 for all µ ∈ σ(Φ(p, 0)). Therefore, by the spectral
mapping theorem (Theorem 2.19),

ker(Φn(p, 0)− I) = ker(Φ(p, 0)− λI).

(a) Let x : R → FN be a non-zero solution (and so, in particular, x(0) ̸= 0). Assume
x(0) ∈ ker(Φ(p, 0)− λI). Then Φn(p, 0)x(0) = λnx(0) = x(0) and so, invoking (2.32),
we have, for all t ∈ R,

x(t+ np) = Φ(t+ np, 0)x(0) = Φ(t, 0)Φn(p, 0)x(0) = Φ(t, 0)x(0) = x(t).
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Therefore, x is np-periodic.
Conversely, assume that x is np-periodic. Then x(np) = Φ(np, 0)x(0) = x(0). By
(2.32), we have Φ(np, 0) = Φn(p, 0). Therefore, (Φn(p, 0) − I)x(0) = 0 and so x(0) ∈
ker(Φn(p, 0)− I) = ker(Φ(p, 0)− λI).

(b) That Snp is a vector space is clear. Let B be a basis of ker(Φ(p, 0)− I). For z ∈ B,
let xz denote the np-periodic solution t 7→ Φ(t, 0)z. By part (a), the set {xz : z ∈ B}
is a basis for Snp, whence the result.

Exercise 2.17
Sufficiency. Assume that λ is an eigenvalue of Φ(p, 0) and λn = µ. Let v ∈ CN be an
associated eigenvector and so Φn(p, 0)v = λnv = µv. Define x by x(t) := Φ(t, 0)v for
all t ∈ R. Invoking (2.32), with τ = 0, gives

x(t+ np) = Φ(t+ np, 0)v = Φ(t, 0)Φn(p, 0)v = µΦ(t, 0)v = µx(t) ∀ t ∈ R.

Necessity. Assume that x is a non-zero solution of (2.30), with the property x(t+np) =
µx(t) for all t ∈ R. Write v := x(0) ̸= 0. Invoking (2.32), with τ = 0, we have

µΦ(t, 0)v = µx(t) = x(t+ np) = Φ(t+ np, 0)v = Φ(t, 0)Φn(p, 0)v,

and thus, Φ(t, 0)
(
Φn(p, 0)− µI

)
v = 0. Consequently

(
Φn(p, 0)− µI

)
v = 0 and so µ is

an eigenvalue of Φn(p, 0). By Theorem 2.19 (with f(z) = zn),

σ(Φn(p, 0)) =
{
λn : λ ∈ σ(Φ(p, 0))

}
.

Therefore, Φ(p, 0) has an eigenvalue λ with the property that λn = µ.

Exercise 2.18
For convenience, write

A(t) =

(
A1 0
0 a(t)

)
with A1 :=

(
0 1/2

−1/2 0

)
and a(t) = 1 + sin t.

It is straightforward to verify that

exp(A1t) =

(
cos(t/2) sin(t/2)
− sin(t/2) cos(t/2)

)
∀t ∈ R.

Moreover, from Example 2.18, we know that the transition function φ generated by
a is such that φ(t, 0) = exp(1− cos t+ t) for all t ∈ R. Therefore,

Φ(t, 0) =

(
exp(A1t) 0

0 φ(t, 0)

)
=

 cos(t/2) sin(t/2) 0
− sin(t/2) cos(t/2) 0

0 0 exp(1− cos t+ t)

 .

For p = 2π, we immediately see that the spectrum of Φ(p, 0) is {−1, ep}. Also,

Φ(p, 0) + I =

0 0 0
0 0 0
0 0 ep + 1


Let ξ be any non-zero vector in ker

(
Φ(p, 0) + I

)
, then ξ =

ξ1ξ2
0

 with ξ1 and ξ2 not

both zero. Then the solution of the initial-value problem ẋ(t) = A(t)x(t), x(0) = ξ, is

t 7→ Φ(t, 0)ξ =

 cos(t/2)ξ1 + sin(t/2)ξ2
− sin(t/2)ξ1 + cos(t/2)ξ2

0





Logemann & Ryan 11

which is evidently non-constant and of period π.

Exercise 2.19
Necessity. Assume that (2.33) has a p-periodic solution x. Write ξ := x(0). Then

ξ = x(p) = Φ(p, 0)ξ +

∫ p

0

Φ(p, s)b(s)ds = Φ(p, 0)ξ + η

whence η =
(
I − Φ(p, 0)

)
ξ and so η ∈ im

(
I − Φ(p, 0)

)
.

Sufficiency. Assume that η ∈ im
(
I − Φ(p, 0)

)
. Let ξ ∈ FN be such that η =

(
I −

Φ(p, 0)
)
ξ and define x : R → FN by

x(t) = Φ(t, 0)ξ +

∫ t

0

Φ(t, s)b(s)ds ∀ t ∈ R.

Clearly, x is a solution of (2.33). We will show that x is p-periodic. Invoking (2.31),
(2.32) and periodicity of b, we have Φ(t+p, s) = Φ(t, 0)Φ(p, s) and Φ(t+p, s+p)b(s+
p) = Φ(t, s)b(s) for all t, s ∈ R. Therefore,

x(t+ p) = Φ(t+ p, 0)ξ +

∫ t+p

0

Φ(t+ p, s)b(s)ds

= Φ(t, 0)

(
Φ(p, 0)ξ +

∫ p

0

Φ(p, s)b(s)ds

)
+

∫ t+p

p

Φ(t+ p, s)b(s)ds

= Φ(t, 0)
(
Φ(p, 0)ξ + η

)
+

∫ t

0

Φ(t+ p, s+ p)b(s+ p)ds

= Φ(t, 0)ξ +

∫ t

0

Φ(t, s)b(s)ds = x(t) ∀ t ∈ R

and so x is p-periodic.

Exercise 2.20 Let H = I ∈ C2×2, the 2 × 2 identity matris. Then σ(H) = {1}.
The eigenvalue 1 has algebraic multiplicity 2, coincident with its geometric multi-

plicity. The matrix G =

(
0 0
0 e2πi

)
is a logarithm (but not the principal logarithm)

of H, with σ(G) = {0, e2πi}. The eigenvalue λ = 1 of H has principal logarithm
Logλ = 0 ∈ σ(G). However, the latter eigenvalue of G has algebraic multiplicity 1,
coincident with its geometric multiplicity.

Exercise 2.21
We first show that φ1 is periodic of period 2. The function φ1 is the unique solution
of ÿ(t) + a(t)y(t) = 0 with initial data y(0) = 1, ẏ(0) = 0. Therefore, on [0, τ ], we
have

(φ1(t), φ̇1(t)) =
(
cos(ωt),−ω sin(ωt)

)
=
(
cos(πt/τ), (π/τ) sin(πt/τ)

)
.

Thus,
(
φ1(τ), φ̇1(τ)

)
= (−1, 0). On [τ, 1], we have (φ1(t), φ̇1(t)) = (−1, 0). In partic-

ular, (φ1(1), φ̇1(1)) = (−1, 0). An analogous calculation on the interval [1, 2] gives(
φ1(2), φ̇1(2)

)
= (1, 0) =

(
φ1(0), φ̇1(0)

)
.

We may now conclude that φ1 is periodic of period 2.
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Now consider the function φ2, which is the unique solution of ÿ(t)+a(t)y(t) = 0 with
initial data y(0) = 0, ẏ(0) = 1. We claim that(

φ2(n), φ̇2(n)
)
=
(
(−1)nn(1− τ) , (−1)n

)
∀n ∈ N.

On [0, τ ], we have(
φ2(t), φ̇2(t)

)
= (sin(ωt)/ω , cos(ωt)

)
=
(
τ sin(πt/τ)/π , cos(πt/τ)

)
.

Thus,
(
φ2(τ), φ̇2(τ)) = (0,−1) and so(

φ2(t) , φ̇2(t)
)
=
(
φ2(τ) + φ̇2(τ)(t− τ) , φ̇2(τ)

)
=
(
− (t− τ) , −1

)
∀ t ∈ [τ, 1].

In particular,
(
φ1(1), φ̇2(1)

)
=
(
− (1 − τ),−1

)
and so the claim holds for n = 1.

Assume m ∈ N and the claim holds with n = m. On [m,m+ τ ], we have

φ2(t) = φ2(m) cos(ω(t−m)) + (φ̇2(m)/ω) sin(ω(t−m))

φ̇2(t) = −ωφ2(m) sin(ω(t−m)) , φ̇1(m) cos(ω(t−m).

Thus,
(
φ2(m+τ) , φ̇2(m+τ)

)
=
(
−φ2(m) , −φ̇2(m)

)
=
(
(−1)m+1m(1−τ) , (−1)m+1

)
and so, for all t ∈ [m+ τ,m+ 1].

φ2(t) = φ2(m+ τ) + φ̇2(m+ τ)(t−m− τ) = (−1)m+1(m(1− τ) + (t−m− τ)
)

φ̇2(t) = φ̇2(m+ τ) = (−1)m+1.

In particular,(
φ2(m+ 1), φ̇2(m+ 1)

)
=
(
(−1)m+1(m+ 1)(1− τ) , (−1)m+1)

and so the claim holds with n = m+ 1. By induction, it follows that the claim holds
for all n ∈ N and so φ2 is unbounded with φ2(n) = (−1)n(1− τ) for all n ∈ N.

Exercies 2.22 The functions φ1 and φ2 are the unique solutions of ÿ(t) = −a(t)y(t)
with respective initial data φ1(0) = 1, φ̇1(0) = 0 and φ2(0) = 0, φ̇2(0) = 1. Define ψ1

and ψ2 by ψ1(t) := φ1(−t) and ψ2(t) := φ2(−t) for all t ∈ R. Then, since a is even, we

have ψ̈(t) = φ̈(−t) = −a(−t)φ1(−t) = −a(t)ψ1(t) and, similarly, ψ̈2(t) = −a(t)ψ(t).
Therefore, φ1 and ψ2 are the unique solutions of ÿ(t) = −a(t)y(t) with respective

initial data ψ(0) = 1, ψ̇1(0) = 0 and ψ2(0) = 0, ψ̇2(0) = −1. We may now infer that,
for all t ∈ R, φ1(t) = ψ1(t) = φ1(−t) and φ2(t) = −ψ2(t) = −φ2(−t). It follows that

Φ(−p, 0) =
(
φ1(−p) φ2(−p)
φ̇1(−p) φ̇2(−p)

)
=

(
φ1(p) −φ2(p)
−φ̇(p) φ̇2(p)

)
.

Also, since Φ(t, τ) = Φ(t+ p, τp) for all t, τ ∈ R and setting (t, τ) = (−p, 0), we have
Φ(−p, 0) = Φ(0, p) = Φ−1(p, 0). Recalling that detΦ(p, 0) = 1, we may conclude that(

φ1(p) φ2(p)
φ̇1(p) φ̇2(p)

)
= Φ(p, 0) = Φ−1(−p, 0)

=

(
φ1(p) −φ2(p)
−φ̇1(p) φ̇2(p)

)−1

=

(
φ̇2(p) φ2(p)
φ̇1(p) φ1(p)

)
and so φ1(p) = φ̇2(p). Therefore, γ =

(
φ1(p) + φ̇2(p)

)
/2 = φ1(p).
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Exercise 2.23 ∫ 2π

0

trA(s)ds =

∫ 2π

0

(
2 + sin s− cos s

)
ds = 4π > 0.

An application of Corollary 2.33 (with p = 2π) shows that there exists a solution
which is unbounded on R+.

Exercise 2.24

For the putative solution x we find ẋ(t) = et/2
(
sin t− cos t/2
cos t+ sin t/2

)
for all t and

A(t)x(t) = et/2
(

−1 + 3(cos t)2/2 1− 3 sin t cos t/2
−1− 3 sin t cos t/2 −1 + 3(sin t)2/2

)(
− cos t
sin t

)
= et/2

(
sin t− cos t/2
cos t+ sin t/2

)
= ẋ(t) ∀ t.

Therefore, x is indeed a solution and ∥x(t)∥ = et/2 → ∞ as t→ ∞.

Exercise 2.25

The identity (2.49) clearly holds for k = 1. Assume that (2.49) holds for some k ∈ N.
Then

Xk+1 − Y k+1 = (X + Y )(Xk − Y k) +XY k − Y Xk = X(Xk − Y k) + (X − Y )Y k

= (X − Y )Y k +

k∑
j=1

Xk+1−j(X − Y )Y j−1 =

k+1∑
j=1

Xk+1−j(X − Y )Y j−1

and so the identity holds for k + 1. The result follows by induction.
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Chapter 3

Exercise 3.1
(a) Let T > 0 and ξ1, ξ2 ∈ R be arbitrary. With input u of the form t 7→ α+ βt, with
parameters α, β ∈ R, the solution of the initial-value problem is given by

x1(t) = ξ1 + ξ2t+ αt2/2 + βt3/6, x2(t) = ξ2 + αt+ βt2/2.

Imposing the requisite soft-landing conditions, x1(T ) = 0 = x2(T ), gives a pair of
simultaneous equations for the parameters α and β:

ξ1 + ξ2T + αT 2/2 + βT 3/6 = 0 = ξ2 + αT + βT 2/2

which may be expressed in the equivalent form(
2T T 2

3T T 2

)(
α
β

)
=

(
0 −2
−6 −6T

)(
ξ1
ξ2

)
and which has unique solution given by(

α
β

)
= − 1

T 2

(
6T 6T 2 − 2T
−12 6− 12T

)(
ξ1
ξ2

)
.

(b) Let ξ > 0 be arbitrary. Under the control u,

t 7→
{

−g, 0 ≤ t ≤ S
α, S ≤ t ≤ T

,

patameterized by T > 0 and S ∈ (0, T ), we find

x2(S) = −gS, x1(S) = ξ − gS2/2

and

x2(T ) = −g(S) + α(T − S), x1(T ) = ξ1 − gS2/2− gS(T − S) + α(TS)
2/2.

Imposing the soft-landing condition x1(T ) = 0 = x2(T ), yields the unique solution

S =

√
2αξ1

g(g + α)
, T = S +

√
2gξ1

α(g + α)

Exercise 3.2
(a) Noting that

(B,AB) =

0 0 1 0
1 0 0 2ω
0 0 0 1
0 1 −2ω 0


has non-zero determinant and, since R = im C(A,B) ⊃ im (B,AB), we may conclude
that R = R4, that is, all states are reachable from 0.

(b) In this case,

C(A,B1) = (B1, AB1, A
2B1, A

3B1) =

0 1 0 0
1 0 0 0
0 0 2ω 0
0 −2ω 0 0
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and so the set of states reachable from 0 is a three-dimensional subspace:

R = span


0
1
0
0

 ,

 1
0
0

−2ω

 ,

 0
0
2ω
0


 .

Exercise 3.3
For notational convenience, write α := −(M +m)g/Ml and β = mg/M . The reach-
ability matrix is

C(A,B) := (B,AB,A2B,A3B) =
1

Ml

 0 −1 0 α
−1 0 α 0
0 l 0 β
l 0 β 0


with determinant (αl + β)2/(Ml)4 = 1/(Ml)4 > 0. Therefore, rk C(A,B) = 4 = N
and so the system is controllable.

Exercise 3.4
By Proposition 3.8, im C(A,B) is A-invariant. It immediately follows that im C(A,B)
is Ak-invariant for all k ∈ N. Let v ∈ im C(A,B) and t ∈ R. Then (tk/k!)Akv ∈
im C(A,B) for all k ∈ N. Since im C(A,B) is a subspace of RN , im C(A,B) is closed
and so exp(At)v =

∑∞
k=0(t

k/k!)Akv is in im C(A,B).

Exercise 3.5
Let ξ ∈ im C(A,B) be arbitrary. By eAT -invariance of the subspace im C(A,B) (Ex-
ercise 3.4), − exp(AT )ξ ∈ im C(A,B) and so there exists u ∈ PC([0, T ],RM ) such
that

− exp(AT )ξ = x(T ; 0, u) =

∫ T

0

exp(A(T − t))Bu(t)dt,

Therefore 0 = exp(AT )ξ+
∫ T

0
exp(A(T−t))Bu(t)dt = x(T ; ξ, u) and so ξ ∈ DT . Since

ξ ∈ im C(A,B) is arbitrary, it follows that im C(A,B) ⊂ DT .
Now let ξ ∈ DT be arbitrary. Then there exists u ∈ PC([0, T ],RM ) such that

0 = x(T ; ξ, u) = exp(AT )ξ +

∫ T

0

exp(A(T − t))Bu(t)dt

and so − exp(AT )ξ = x(T ; 0, u). Therefore, − exp(AT )ξ ∈ im C(A,B) and, by eAT -
invariance of the latter, we have ξ ∈ im C(A,B). Since ξ ∈ DT is arbitrary, it follows
that DT ⊂ im C(A,B). We may now conclude that DT = im C(A,B).

Exercise 3.6
Assume (A,B) is controllable. Let ξ̃ ∈ RN be arbitrary and set ξ := §ξ̃. By con-
trollability of (A,B), there exists u ∈ PC([0, T ],RN ) such that 0 = exp(AT )ξ +∫ T

0
exp(A(T − t))B(u(t))dt. Left multiplication by S−1 gives

0 = S−1 exp(AT )Sξ̃ +

∫ T

0

S−1 exp(A(T − t)SS−1Bu(t)dt

= exp(ÃT )ξ̃ +

∫ T

0

exp(Ã(T − t))B̃u(t)dt.
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Therefore, (Ã, B̃) is controllable. An analogous argument establishes that, if (Ã, B̃)
is controllable, then (A,B) is controllable (alternatively, simply note that this fact is
subsumed by what we have just proved).

Exercise 3.7

Recall that Ã =

(
A1 A2

0 A3

)
and B̃ =

(
B1

0

)
. Hence, ÃkB̃ =

(
Ak

1B1

0

)
for all k ∈ N.

By the Cayley-Hamilton theorem,

rk C(A1, B1) = rk (B1, A1B1, . . . , A
K−1
1 B1) = rk (B1, A1B1, . . . , A

N−1
1 B1) ,

and thus,

rk C(A1, B1) = rk

((
B1

0

)
,

(
A1B1

0

)
, . . . ,

(
AN−1

1 B1

0

))
= rk (B̃, ÃB̃, . . . , ÃN−1B̃) = rk (S−1(B,AB, . . . , AN−1B))

= rk (B,AB, . . . , AN−1B) = rk C(A,B) = K .

Therefore, by Theorem 3.6, (A1, B1) is controllable.

Exercise 3.8
For this system, we have

(
sI −A, b

)
=


s −1 0 0 0 0
0 s −1 0 0 −1
0 0 s 0 −1 0
−α 0 0 s −1 β
0 0 0 0 s 1

 .

For s ̸= 0, it is straightforward to verify that columns 1,2,3,4 and 6 are linearly
independent for all α, β ∈ R. For s = 0, columns 1,2,3,5 and 6 are linearly independent
if, and only if, α ̸= 0. Therefore, rk (sI − A,B) = 5 if, and only if, α ̸= 0 and so, by
the Hautus criterion, (A,B) is controllable for all pairs (α, β) with α ̸= 0, and (A,B)
is not controllable for all pairs (0, β).

Exercise 3.9
The matrix O(C1, A) comprises rows 1,3,5,7 of O(C,A) (as given in Exercise 3.19),
that is,

O(C1, A) =

 1 0 0 0
0 1 0 0

3ω2 0 0 2ω
0 −ω2 0 0

 .

In this case and noting that the third column is zero, detO(C1, A) = 0 and so the
system fails to be observable.
The matrix O(C2, A) comprises rows 2,4,6,8 of O(C,A), that is,

O(C2, A) =

 0 0 1 0
0 0 0 1
0 −2ω 0 0

−6ω3 0 0 −4ω2

 .

In this case, detO(C2, A) = −12ω4 ̸= 0 and so the system is observable.
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Exercise 3.10

(
sI −A
C

)
=


s −1 0 0

−3ω2 s 0 −2ω
0 0 s −1
0 2ω 0 s
1 0 0 0
0 0 1 0


Rows 1, 3, 4 and 5 are linearly independent for all s ∈ C. Therefore, the system is
observable.
Assume that only the radial measurement y1 is available, in which case C is replaced
by its first row C1 = (1 0 0 0). Then we have

(
sI −A
C1

)
=


s −1 0 0

−3ω2 s 0 −2ω
0 0 s −1
0 2ω 0 s
1 0 0 0


Noting column 3, it is clear that this matrix fails to have full rank for s = 0. Therefore,
the system with radial measurement only is not observable.
Now, assume that only the angular measurement y2 is available, in which case C is
replaced by its second row C2 = (0 0 1 0). Then we have

(
sI −A
C2

)
=


s −1 0 0

−3ω2 s 0 −2ω
0 0 s −1
0 2ω 0 s
0 0 1 0


If s ̸= 0, then it is readily verified that rows 1, 3, 4 and 5 are linearly independent,
whilst, if s = 0, then rows 1, 2, 3 and 5 are linearly independent. Therefore, the
system with angular measurement only is observable.

Exercise 3.11
Noting that

(
O(C,A)

)∗
= C(A∗, C∗) and applying the Kalman controllability de-

composition lemma (Lemma 3.10) to the pair (A∗, C∗), we may infer the existence of
T ∈ GL(N,R) such that

T−1A∗T =

(
M1 M2

0 M3

)
, T−1C∗ =

(
M4

0

)
with M1 ∈ RK×K , M4 ∈ RK×P and (M1,M4) a controllable pair.
Writing S := (T ∗)−1, A1 :=M∗

1 , A2 :=M∗
2 , A3 :=M∗

3 and C1 :=M∗
4 , we have

S−1AS = Ã =
(
T−1A∗T

)∗
=

(
A1 0
A2 A3

)
, CS =

(
T−1C∗)∗ =

(
C1, 0

)
and, by controllability of (M1,M4), we have observability of (M∗

4 ,M
∗
1 ) = (C1, A1).

Exercise 3.12
(a) By the Kalman controllability decomposition lemma (Lemma 3.10), there exists

S ∈ GL(N,R) such that the matrices Ã, B̃ and C̃ have the requisite structure and the
pair (A1, B1) is controllable. It remains to show that (C1, A1) is observable. Suppose
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otherwise. Then there exists v ̸= 0 such that C1A
k
1v = 0 for all k ∈ N0. A straight-

forward computation shows that C̃Ãk has the structure C̃Ãk =
(
C1A

k
1 , ∗

)
. Writing

ṽ :=

(
v
0

)
̸= 0, we have

C̃Ãkṽ = C1A
k
1v = 0 ∀ k ∈ N0

which contradicts observability of the pair (C̃, Ã).

(b) By the Kalman observability decomposition lemma (Lemma 3.22), there exists

S ∈ GL(N,R) such that the matrices Ã, B̃ and C̃ have the requisite structure and the
pair (C1, A1) is observable. It remains to show that (A1, B1) is controllable. Suppose
otherwise. Then there exists v ̸= 0 such that v∗B1A

k
1 = 0 for all k ∈ N0. A straight-

forward computation shows that ÃkB̃ has the structure ÃkB̃ =

(
Ak

1B1

∗

)
. Writing

ṽ :=

(
v
0

)
̸= 0, we have

ṽ∗ÃkB̃ = v∗Ak
1B1 = 0 ∀ k ∈ N0

which contradicts controllability of the pair (Ã, B̃).

Exercise 3.13

We prove the theorem using contraposition. To this end, assume that rk

(
λI −A

c

)
<

N for some λ ∈ C (an eigenvalue of A). Then there exists z ∈ CN , z ̸= 0 such that(
λI −A,

c

)
z = 0. Thus, Az = λz and Cz = 0. As a consequence,

AkCz = λkCz = 0 ∀ k ∈ N0 ,

implying that O(C,A)z = 0 Since z ̸= 0, this shows that rk C(A,B) < N . Hence, by
the rank condition for observability (Theorem 3.18), the pair (C,A) is not observable.

Conversely, assume that the pair (C,A) is not observable. If C = 0, then rk

(
sI −A
C

)
=

rk (sI − A) < N for all s ∈ σ(A). If C ̸= 0, then it follows by Kalman observability
decomposition (Lemma 3.22) that there exists S ∈ GL(N,R) such that

Ã := S−1AS =

(
A1 0
A2 A3

)
, C̃ := CS =

(
C1 , 0

)
.

where A1 ∈ RK×K , C1 ∈ RP×K and K < N . Let λ ∈ C and v ∈ CN−K be an
eigenvalue/eigenvector pair of A3. Then

v ̸= 0 , (λI −A3)v = 0.

Setting

w :=

(
0
v

)
∈ CN ,

it follows that

(λI − Ã)w =

(
λI −A1 −A2

0 λ̄I −A3

)
w = 0 , C̃w =

(
C1 , 0

)(0
v

)
= 0.
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Hence, z = Sw ̸= 0 satisfies

S−1(λI −A)z = (λI − Ã)w = 0 , Cz = C̃w = 0 ,

implying that
(λI −A)z = 0 , Cz = 0 .

Consequently,

(
λI −A
B

)
z = 0 and hence, rk

(
λI −A
C

)
< N .

Exercise 3.14
Let z ∈ O(C,A) be arbitrary. Then

0 = Cz = CAz = · · · = CAN−1z.

By the Cayley-Hamilton theorem, we also have CANz = 0. Therefore z ∈ kerC and
Az ∈ kerO(C,A). Since z ∈ ker(C,A) is arbitrary, it follows that O(C,A) is contained
in kerC and is A-invariant. Finally, let S ⊂ RN be an A-invariant subspace contained
in kerC and let z ∈ S be arbitrary. By A-invariance of S, we have Az, . . . , AN−1z ∈ S
and, since S ⊂ kerC, it follows that 0 = Cz = CAz = · · · = CAN−1z. Therefore,
z ∈ kerO(C,A) and, since z ∈ S is arbitrary, we may conclude that S ⊂ kerO(C,A).

Exercise 3.15
Obviously, the transfer function ĜK is given by ĜK(s) = C(sI − (A − BKC))−1B.
Now sI−(A−BKC) = (sI−A)(I+(sI−A)−1BKC) = (I+BKC(sI−A)−1)(sI−A),
and so

ĜK(s) = C(sI −A)−1(I +BKC(sI −A)−1)−1
B

= C
(
I + (sI −A)−1BKC

)−1
(sI −A)−1B.

Therefore,

ĜK(s)(I +KĜ(s)) = C(sI −A)−1(I +BKC(sI −A)−1)−1
B
(
I +KC(sI −A)−1B

)
= C(sI −A)−1(I +BKC(sI −A)−1)−1(

I +BKC(sI −A)−1)B
= C(sI −A)−1B = Ĝ(s)

and

(I + Ĝ(s)K)ĜK(s) =
(
I + C(sI −A)−1BK

)
C
(
I + (sI −A)−1BKC

)−1
(sI −A)−1B

= C
(
I + (sI −A)−1BKC

)(
I + (sI −A)−1BKC

)−1
(sI −A)−1B

= C(sI −A)−1B = Ĝ(s).

Exercise 3.16
In this case, ω = 1 and

ĝ(iω) = Ĝ(i) =
α

i+ β
=
α(β − i)

1 + β2
.

Invoking Proposition 3.27, we see that −π/4 is the argument of ĝ(i) in [0, 2π) and so
β = 1. Furthermore, √

2 = |ĝ(i)| = α√
1 + β2

=
α√
2
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and so α = 2.

Exercise 3.17
(a) Since R(s) is not identically equal to the zero matrix, it follows that B ̸= 0 and
C ̸= 0.
First consider the case that (A,B) is controllable and (C,A) is observable. Then there
is nothing to show: the claim follows with T = I. (To identify the triple (A,B,C)
with the block structure given in Exercise 3.17, in the latter simply disregard the last
two block rows and the last two block columns in Ã and the last two blocks in B̃ and
C̃.)
Now consider the case wherein (C,A) is observable and (A,B) is not controllable. By
the result in part (a) of Exercise 3.12, there exists T ∈ GL(N,R) such that

T−1AT =

(
A1 A2

0 A3

)
, T−1B =

(
B1

0

)
, CT = (C1, C2),

with (A1, B1) controllable and (C1, A1) observable, proving the claim in this case.(To
identify the above structure with the block structure given in Exercise 3.17, in the
latter simply disregard the third block row and third block column in Ã and the third
blocks in B̃ and C̃.)
Finally, consider the case wherein (C,A) is not observable. By the observability de-
composition lemma (Lemma 3.22), there exists S ∈ GL(N,R) such that

S−1AS =

(
A1 0
A2 A3

)
, S−1B =

(
B1

B2

)
, CS = (C1, 0),

with (C1, A1) observable. If the pair (A1, B1) is controllable, then the claim follows
with T = S. If (A1, B1) is not controllable, then, by the result in part (a) of Exercise
3.12 applied in the context of the triple (A1, B1, C1), there exists an invertible matrix
S1 such that

S−1
1 A1S1 =

(
A11 A12

0 A22

)
, S−1

1 B1 =

(
B11

0

)
, C1S1 =

(
C11, C12

)
where (A11, B11) is controllable and (C11, A11) is observable. Defining

T := SS̃, where S̃ :=

(
S1 0
0 I

)
,

and setting (A31, A32) = A2S1, A33 = A3 and B31 = B2, we have

T−1AT =

(
S−1
1 0
0 I

)(
A1 0
A2 A3

)(
S1 0
0 I

)
=

A11 A12 0
0 A22 0
A31 A32 A33


and

T−1B =

(
S−1
1 0
0 I

)(
B1

B2

)
=

B11

0
B31

 , CT =
(
C1, 0

)(S1 0
0 I

)
=
(
C11, C12, 0

)
with (A11, B11) controllable and (C11, A11) observable.

(b) A straightforward calculation reveals that

CAkB = (CT )(T−1AkT )(T−1B) = C11A
k
11B11 ∀ k ∈ N0.
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Therefore,
C exp(At)B = C11 exp(A11t)B11 ∀ t ∈ R,

and applying Laplace transform gives

R(s) = C(sI −A)−1B = C11(sI −A11)
−1B11.

Therefore, (A11, B11, C11) is a realization of R.

Exercise 3.18
If (A,B) is not controllable, then there exists z ∈ RN such that z ̸= 0 and z∗C(A,B) =
0. Let S−1 ∈ GL(N,R) be such that z∗ is the N -th row of S−1. Then

S−1B =

(
B1

0

)
, where B1 ∈ R(N−1)×M .

Partition the matrices S−1AS and CS accordingly, that is,

S−1AS =

(
A1 A2

A3 A4

)
, CS =

(
C1 C2

)
,

where A1 ∈ R(N−1)×(N−1) and C1 ∈ RP×(N−1). Since z∗AkB = 0 for all k ∈ N0, it
follows that the last row of S−1AkB is equal to zero for all k ∈ N0. Combining this
with a routine calculation then shows that

(S−1AS)k(S−1B) = S−1AkB =

(
Ak

1B1

0

)
∀ k ∈ N0,

and CAkB = (CS)(S−1AS)k(S−1B) = C1A
k
1B1 for all k ∈ N0. This in turn leads to

CeAtB =

∞∑
k=0

tk

k!
CAkB =

∞∑
k=0

tk

k!
C1A

k
1B1 ∀ t ∈ R.

Applying Laplace transform yields,

R(s) = C(sI −A)−1B = C1(sI −A1)
−1B1.

Thus (A1, B1, C1) is a realization of R. The dimension of this realization is N − 1,
showing that the realization (A,B,C) is not minimal.

Exercise 3.19
(a) The claim follows immediately from the relations

ẋ1 = A1x1 +B1C2x2, ẋ2 = A2x2 +B2u, y = C1x1.

(b) Note that the inverse of

sI −A =

(
sI −A1 −B1C2

0 sI −A2

)
is given by

(sI −A)−1 =

(
(sI −A1)

−1 (sI −A1)
−1B1C2(sI −A2)

−1

0 (sI −A2)
−1

)
.
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Therefore,

Ĝ(s) = C(sI −A)−1B

= (C1, 0)

(
(sI −A1)

−1 (sI −A1)
−1B1C2(sI −A2)

−1

0 (sI −A2)
−1

)(
0
B2

)
= C1(sI −A1)

−1B1C2(sI −A2)
−1B2 = Ĝ1(s)Ĝ2(s).

(c) For j = 1, 2, write Ĝj = nj/dj , where nj and dj are coprime polynomials. It
follows from Proposition 3.29 and Theorem 3.30 that the degree of dj is equal to Nj .

Moreover, note that the dimension of the realization (A,B,C) of Ĝ1Ĝ2 is equal to

N1 +N2 and Ĝ1Ĝ2 = n1n2/(d1d2).
If the realization (A,B,C) is minimal, then, by Proposition 3.29, n1 and d2 are co-
prime and, furthermore, n2 and d1 are coprime, or, equivalently, there is no pole/zero

cancellation in the product Ĝ1Ĝ2.

Conversely, assume that there is no pole/zero cancellation in the product Ĝ1Ĝ2. Then,
the polynomials n1n2 and d1d2 are coprime. Since the degree of d1d2 is equal to
N1+N2, another application of Proposition 3.29 shows that the realization (A,B,C)
is minimal.
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Chapter 4

Exercise 4.1
Let a, b ∈ Iz be arbitrary and, without loss of generality, assume a ≤ b. To conclude
that Iz is an interval it suffices to show that [a, b] ⊂ Iz. Since Iz := ∪y∈T Iy, there
exist ya, yb ∈ T such that a ∈ Iya and b ∈ Iyb . Since T is totally ordered, either
ya ⪯ yb or yb ⪯ ya. In the former case, Iya ⊂ Iyb and so [a, b] ⊂ Iyb ⊂ Iz. In the latter
case, Iyb ⊂ Iya and so [a, b] ⊂ Iya ⊂ Iz.
We proceed to show that z is well defined. Let t ∈ Iz be arbitrary. Then t ∈ Iy for
some y ∈ T . Define v := y(t). Assume ŷ ∈ T is such that t ∈ Iŷ and define v̂ := ŷ(t).
Since T is totally ordered, either y ⪯ ŷ or ŷ ⪯ y. In each case, y(t) = ŷ(t). Therefore,
with each t ∈ Iz, we may associate a unique element z(t) of G given by z(t) = y(t),
where y is any element of T such that t ∈ Iy. The function z : Iz → G, so defined,
has the property

z|Iy = y ∀ y ∈ T
and is the only function with that property.

Exercise 4.2
For ξ ̸= 0, separation of variables yields∫ x

ξ

ds

s2
=

∫ t

τ

ds =⇒
[
−1

s

]x
ξ

= t− τ =⇒ 1

x
=

1

ξ
+ τ − t .

(i) For (τ, ξ) = (0, 1), we obtain

x(t) =
1

1− t
,

with maximal interval of existence (−∞, 1).
(iii) For (τ, ξ) = (1, 1), we obtain

x(t) =
1

2− t
,

with maximal interval of existence (−∞, 2).
(ii) Clearly, in this case, R → R, t 7→ 0 is a maximal solution, with maximal interval
of existence equal to R.

Exercise 4.3
For ξ ̸= 0, separation of variables gives∫ x(t)

ξ

ds

s2
=

∫ t

τ

s3ds =⇒
[
−1

s

]x(t)
ξ

=

[
1

4
s4
]t
τ

=⇒ 1

x(t)
− 1

ξ
=

1

4
(τ4 − t4) .

Consequently,

1

x(t)
=

4 + ξ(τ4 − t4)

4ξ
=⇒ x(t) =

4ξ

4 + ξ(τ4 − t4)
.

(a) For (τ, ξ) ∈ R× (0,∞), the maximal interval of existence is bounded and is given
by (

− (τ4 + 4/ξ)1/4, (τ4 + 4/ξ)1/4
)
.

(b) For (τ, ξ) such that ξ ∈ (−4/τ4, 0), the maximal interval of existence is R.
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Exercise 4.4
Seeking a contradiction, suppose that f(x∞) ̸= 0. Setting λ := f(x∞), it follows that
λ has at least one component, λj say, which is not equal to zero: λj ̸= 0. Since

lim
t→∞

ẋ(t) = lim
t→∞

f(x(t)) = λ ,

we have limt→∞ ẋj(t) = λj ̸= 0. Hence

lim
t→∞

xj(t) =

{
∞ , if λj > 0
−∞ , if λj < 0 ,

contradicting the assumption that limt→∞ x(t) = x∞.

Exercise 4.5
Let I ⊂ J be an interval with τ ∈ I and let x : I → G be a solution of the non-
autonomous initial-value problem, that is,

ẋ(t) = f(t, x(t)) ∀ t ∈ I, x(τ) = ξ .

Set I− := I − τ = {t− τ : t ∈ I} and define y : I− → I ×G ⊂ RN+1 by

y(t) := (t+ τ, x(t+ τ)) .

Note that 0 ∈ I−, since τ ∈ I. Differentiation of y gives

ẏ(t) = (1, ẋ(t+ τ)) = (1, f(t+ τ, x(t+ τ))) = g(t+ τ, x(t+ τ))) = g(y(t)) .

Moreover, y(0) = (τ, x(τ)) = (τ, ξ). We conclude that that y satisfies the autonomous
initial-value problem, that is,

ẏ(t) = g(y(t)) ∀ t ∈ I−, y(0) = (τ, ξ).

Conversely, let I ⊂ R be an interval with 0 ∈ I and let y : I → J ×G be a solution of
the autonomous initial-value problem, that is,

ẏ(t) = g(y(t)) ∀ t ∈ I, y(0) = (τ, ξ) .

Writing y(t) = (y1(t), y2(t)) ∈ R× RN , we have that

ẏ1(t) = 1 ∀ t ∈ I, y1(0) = τ .

Hence, y1(t) = t + τ for all t ∈ I. Set I+ := I + τ = {t + τ : t ∈ I} ⊂ J and define
x : I+ → G ⊂ RN by x(t) := y2(t− τ). Then, for all t ∈ I+,

ẋ(t) = ẏ2(t− τ) = f(y1(t− τ), y2(t− τ)) = f(t, x(t)) .

Finally, x(τ) = y2(0) = ξ. Thus, we may conclude that x solves the non-autonomous
initial-value problem.

Exercise 4.6
Observe that, if {inf I, sup I} ∩ (J\I) ̸= ∅, then J\I ̸= ∅ and so I ̸= J . Conversely,
assume I ̸= J . Then, J\I ̸= ∅ and so there exists γ ∈ J with γ ̸= I. Write α := inf I
and ω := sup I. Then, either (i) γ ≥ ω or (ii) γ ≤ α. If (i) holds with γ = ω, then
ω ̸∈ I and so ω ∈ J\I. If (i) holds with γ > ω, then, since I is relatively open in J ,
we again have ω ̸∈ I and so ω ∈ J\I. If (ii) holds, then analogous reasoning shows
that α ∈ J\I. Therefore, {α, ω} ∩ (J\I) ̸= ∅.
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Exercise 4.7
Let x, y ∈ RN . Let ε > 0 be arbitrary. Then there exists v ∈ V such that dist(y, V ) ≥
∥y − v∥ − ε. Therefore,

dist(x, V ) ≤ ∥x− v∥ ≤ ∥x− y∥+ ∥y − v∥ ≤ ∥x− y∥+ dist(y, V ) + ε

and so, since ε > 0 is arbitrary, dist(x, V ) − dist(y, V ) ≤ ∥x − y∥. Repeating this
argument, with the roles of x and y interchanged, yields the second requisite inequality

dist(y, V )− dist(x, V ) ≤ ∥x− y∥.

Exercise 4.8
(a) Let τ ∈ I. Then, by the variation of parameters formula,

x(t) = eA(t−τ)x(τ) +

∫ t

τ

eA(t−s)b(s, x(s))ds , ∀ t ∈ I .

Let α, β ∈ R be such that τ ∈ (α, β) ⊂ I (since τ ∈ I and I, as a maximal interval of
existence, is open, such α and β exist). Then, setting

K := max{∥eAσ∥ : α− β ≤ σ ≤ β − α} <∞ ,

we obtain

∥x(t)∥ ≤ ∥eA(t−τ)∥∥x(τ)∥+
∣∣∣∣∫ t

τ

∥eA(t−s)∥∥b(s, x(s))∥ds
∣∣∣∣

≤ K∥x(τ)∥+
∣∣∣∣∫ t

τ

Kγ(s)∥x(s)∥ds
∣∣∣∣ , ∀ t ∈ (α, β) .

Setting c := K∥x(τ)∥, an application of Gronwall’s lemma yields

∥x(t)∥ ≤ c exp

(
K

∣∣∣∣∫ t

τ

γ(s)ds

∣∣∣∣) ≤ c exp

(
K

∫ β

α

γ(s)ds

)
<∞ , ∀ t ∈ (α, β) .

Setting α∗ := inf I, β∗ := sup I, it follows that α∗ = −∞ and β∗ = ∞, because
otherwise, if, for example, β∗ < ∞, the above argument would apply with β = β∗

and so x would be bounded on (τ, β∗), which, by Theorem 4.11, is impossible.
(b) By the variation of parameters formula,

x(t) = eAtx(0) +

∫ t

0

eA(t−s)b(s, x(s))ds , ∀ t ≥ 0 ,

and so

∥x(t)∥ ≤Meµt∥x(0)∥+
∫ t

0

Meµ(t−s)γ(s)∥x(s)∥ds ∀ t ≥ 0.

Therefore,

∥x(t)∥e−µt ≤M∥x(0)∥+
∫ t

0

Mγ(s)∥x(s)∥e−µsds ∀ t ≥ 0 .

By Gronwall’s lemma,

∥x(t)∥e−µt ≤M∥x(0)∥ exp
(
M

∫ t

0

γ(s)ds

)
, ∀ t ≥ 0 ,
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and so,

∥x(t)∥ ≤M∥x(0)∥ exp
(
µt+M

∫ t

0

γ(s)ds

)
, ∀ t ≥ 0 . (∗)

(c) If µ < 0 and there exists T > 0 such that

sup
t≥T

(
1

t

∫ t

0

γ(s)ds

)
<

|µ|
M

, (∗∗)

then

µt+M

∫ t

0

γ(s)ds = t

(
µ+M

1

t

∫ t

0

γ(s)ds

)
→ −∞ as t→ ∞ ,

and thus x(t) → 0 as t→ ∞, by (∗). The existence of a number T > 0 such that (∗∗)
holds, is guaranteed, for example, if the improper Riemann integral

∫∞
0
γ(s)ds of γ

converges or if supt≥t∗ γ(t) < |µ|/M for some t∗ > 0.

Exercise 4.9
Let ε > 0.
(a) For z ∈ (0, ε),

|g(z)− g(0)|
|z − 0| =

√
z

z
=

1√
z
→ ∞ as z ↓ 0 .

It follows that the function g is not Lipschitz on R.
(b) For z ∈ (0, ε),

|g(z)− g(0)|
|z − 0| =

∣∣∣∣z ln zz
∣∣∣∣ = | ln z| → ∞ as z ↓ 0 .

It follows that g is not Lipschitz on R.

Exercise 4.10
Let z ∈ V and choose ε > 0 such that U := {w ∈ RQ : ∥w − z∥ ≤ ε} ⊂ V . It follows
from the continuity of the first order partial derivatives of g and compactness of U
that

γ := max
1≤i, j≤N

(
sup
w∈U

|∂igj(w)|
)
<∞ ,

wherein ∂igj denotes the partial derivative of component j of g with respect to argu-
ment i.
Let z1, z2 ∈ U and define hj : [0, 1] → R by

hj(t) = gj((1− t)z1 + tz2) , ∀ t ∈ [0, 1] .

Note that
ḣj(t) = ⟨(∇gj)((1− t)z1 + tz2), z2 − z1⟩ , ∀ t ∈ [0, 1] ,

and so, by the Cauchy-Schwarz inequality,

|ḣj(t)| ≤ ∥(∇gj)((1− t)z1 + tz2)∥∥z2 − z1∥ ≤ γ
√
Q∥z2 − z1∥ , ∀t ∈ [0, 1] .

By the mean-value theorem of differentiation, there exists τ ∈ [0, 1] such that

|gj(z2)− gj(z1)| = |hj(1)− hj(0)| = |ḣj(τ)| .
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Hence, |gj(z2)− gj(z1)| ≤ γ
√
Q∥z2 − z1∥, and thus,

∥g(z2)− g(z1)∥ ≤ γ
√
MQ∥z2 − z1∥ .

This holds for all z1, z2 ∈ U and the claim follows.

Exercise 4.11
We show that f is continuously differentiable. It follows then, from Proposition 4.14,
that f is locally Lipschitz. Clearly,

f ′(z) =
1

z
cos z − 1

z2
sin z , if z > 0 and f ′(z) = 0 , if z < 0 .

It remains to show that f is differentiable at 0 and that f ′ is continuous at 0. To this
end, we use l’Hôpital’s rule to obtain,

lim
z↓0

f(z)− f(0)

z − 0
= lim

z↓0

sin z − z

z2
= lim

z↓0

1

2

cos z − 1

z
=

1

2
cos′ 0 = 0 .

Moreover,

lim
z↑0

f(z)− f(0)

z
= lim

z↑0

1− 1

z
= 0 .

Therefore, f ′(0) = 0. Clearly, f ′ is left-continuous at 0 and, since

lim
z↓0

f ′(z) = lim
z↓0

z cos z − sin z

z2
= lim

z↓0

1

2

cos z − z sin z − cos z

z
= − lim

z↓0

1

2
sin z = 0 ,

we conclude that f ′ is also right-continuous at 0. Hence, f ′ is continuous at 0, showing
that f ′ is continuously differentiable.

Exercise 4.12
(a) Let (t0, z0) ∈ J × G be arbitrary. The hypotheses ensure that there exist neigh-
bourhoods J0 and G0 ⊂ G of t0 and z0, respectively, and a constant L2 ≥ 0 such that
J0 ∩ J and G0 are compact, C := cl{(f1(t), f2(z)) : (t, z) ∈ (J0 ∩ J)×G0} ⊂ D and

∥f2(x)− f2(y)∥ ≤ L2∥x− y∥ ∀x, y ∈ G0.

By compactness of J0 ∩ J and G0, piecewise continuity of f1 and continuity of f2,
there exists K > 0 such that ∥(f1(t), f2(z))∥ ≤ K for all (t, z) ∈ (J0 ∩ J) × G0.
Therefore, the set C is compact. By Corollary 4.16, there exists L3 ≥ 0 such that

∥f3(s, u)− f3(s, v)∥ ≤ L3∥u− v∥ ∀ (s, u), (s, v) ∈ C.

Defining L := L3L2, we have, for all (t, x), (t, y) ∈ (J0 ∩ J)×G0,

∥f(t, x)− f(t, y)∥ = ∥f3(f1(t), f2(x))− f3(f1(t), f2(y))∥
≤ L3∥f2(x)− f2(y)∥ ≤ L∥x− y∥ ,

and so f is locally Lipschitz with respect to its second argument.
Finally, let y : J → G be continuous. By piecewise continuity of f1 and continuity of
f2 and f3, it immediately follows that the function t 7→ f(t, y(t)) = f3(f1(t), f2(y(t)))
is piecewise continuous. Therefore, f satisfies Assumption A.
(b) Let f be given by f(t, z) := g(z) + k(t)h(z), where g, h : RN → RN are locally
Lipschitz and k : R → R is piecewise continuous. Defining the piecewise continuous
function f1 := k, the locally Lipschitz function f2 := (g, h) : RN → R2N and the
continuous function f3 : R × R2N → RN by f3(r, s) = f3(r, (s1, s2)) := s1 + rs2, we
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see that f3 is locally Lipschitz in its second argument s = (s1, s2) and f(t, z) =
f3(f1(t), f2(z)). By Proposition 4.20, f satisfies Assumption A.

Exercise 4.13
Let (τ, ξ), (σ, η), (ρ, θ) ∈ J×G be arbitrary. Since ψ(τ, τ, ξ) = ξ, it follows that (τ, ξ) ∼
(τ, ξ) and so the relation ∼ is reflexive. Next, assume (τ, ξ) ∼ (σ, η) and so ψ(σ, τ, ξ) =
η. By Theorem 4.26, we have I(τ, ξ) = I(σ, η) and ψ(τ, σ, η) = ψ(τ, σ, ψ(σ, τ, ξ)) =
ψ(τ, τ, ξ) = ξ. Therefore, (σ, η) ∼ (τ, ξ) and so the relation ∼ is symmetric. Finally,
assume (τ, ξ) ∼ (σ, η) and (σ, η) ∼ (ρ, θ). Then ψ(σ, τ, ξ) = η and ψ(ρ, σ, η) = θ.
Hence,

ψ(ρ, τ, ξ) = ψ(ρ, σ, ψ(σ, τ, ξ)) = ψ(ρ, σ, η) = θ

and so (τ, ξ) ∼ (ρ, θ). Therefore, the reflexive and symmetric relation ∼ is also tran-
sitive and so is an equivalence relation.
Let G denote the graph of the maximal solution ψ(·, τ, ξ), that is, G := {(t, ψ(t, τ, ξ)) :
t ∈ I(τ, ξ)}. Observe that

(τ, ξ) ∼ (σ, η) ⇔ ψ(σ, τ, ξ) = η ⇔ (σ, η) ∈ G

and so the equivalence class of (τ, ξ) coincides with G.

Exercise 4.14
In Example 4.32, for the initial-value problem ẋ(t) = A(t)x(t), x(τ) = ξ, A p-periodic,
the following equivalence was established:

∃ np-periodic solution

⇔ 1 is an eigenvalue of Φn(p, 0) and Φ(τ, 0)ξ is an associated eigenvector.

We use this equivalence to prove Proposition 2.20.

First, assume that there exists a np-periodic solution of ẋ(t) = A(t)x(t). Then, by
the above equivalence

1 ∈ σ
(
Φn(p, 0)

)
= {λn : λ ∈ σ

(
Φ(p, 0)}

and so Φ(p, 0) has an eigenvalue λ with λn = 1.

Now, assume that Φ(p, 0) has an eigenvalue λ with λn = 1. Let ξ be an associated
eigenvector. Then Φn(p, 0)ξ = λnξ = ξ and so 1 is an eigenvalue of Φn(p, 0) with
associated eigenvector ξ. By the above equivalence, it follows that t 7→ Φ(t, 0)ξ is a
np-periodic solution.

Exercise 4.15
Consider the differential equation ẋ = x(1 − x) with initial condition x(0) = ξ.
Separation of variables gives∫ x

ξ

ds

s(1− s)
=

∫ t

0

ds = t ⇒
∫ x

ξ

ds

s
+

∫ x

ξ

ds

1− s
= t ⇒ ln

x

ξ
− ln

1− x

1− ξ
= t .

Consequently,

x

ξ

1− ξ

1− x
= et ⇒ x(1− ξ + etξ) = ξet ⇒ x(t) =

ξ

ξ + (1− ξ)e−t
.

Thus φ(t, ξ) is given by

φ(t, ξ) =
ξ

ξ + (1− ξ)e−t
.
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Fr ξ ∈ R, the maximal interval of existence Iξ is

Iξ =


(
−∞, ln((ξ − 1)/ξ)

)
, ξ < 0

R, ξ ∈ [0, 1](
ln((ξ − 1)/ξ),∞

)
, ξ > 1.

Consequently, the domain D of φ is given by D = D1 ∪D2 ∪D3, where

D1 :=
∪
ξ<0

(
−∞, ln

ξ − 1

ξ

)
× {ξ}, D2 := R× [0, 1], D3 :=

∪
ξ>1

(
ln
ξ − 1

ξ
,∞
)
× {ξ}.

t

ξ

D

Exercise 4.15: sketch of the domain D of the local flow φ

Exercise 4.16
For (ξ1, ξ2) = ξ, consider the initial-value problem ẋ = f(x), x(0) = ξ. If ξ = 0, then
it is clear that φ(t, ξ) = φ(t, 0) = 0 for all t ∈ R. Assume ξ ̸= 0. A straightforward
calculation gives the polar form of the initial-value problem

ṙ = r(1− r2), θ̇ = −1, (r(0), θ(0)) = (ρ, σ),

where ρ = ∥ξ∥, ξ1 = ρ cosσ, and ξ2 = ρ sinσ. Clearly, θ(t) = σ − t.
Assume ρ = 1, then, from the first of the differential equations, it is clear that r(t) = 1
for all t and so the solution of the original initial-value problem is given componentwise
by

x1(t) = ρ cos(t− σ) = ρ
(
cosσ cos t+ sinσ sin t

)
= ξ1 cos t+ ξ2 sin t

x2(t) = ρ sin(σ − t) = ρ
(
sinσ cos t− cosσ sin t

)
= −ξ1 sin t+ ξ2 cos t

for all t ∈ R. Writing R(t) =

(
cos t sin t
− sin t cos t

)
, it follows that

φ(t, ξ) = R(t)ξ ∀ t ∈ R , ∀ ξ ∈ R2 , ∥ξ∥ = 1.

We proceed to resolve the cases of ρ > 1 and ρ < 1. Observe that, if ρ > 1, then
r(t) > 1 for all t and, if ρ < 1, then r(t) < 1 for all t. Therefore, in each case
(1− r(t))/(1− ρ) > 0 for all t. Separating variables in the differential equation for r,
we have

t =

∫ t

0

ds =

∫ r(t)

ρ

ds

s(1− s2)
=

∫ r(t)

ρ

(
1

s
+

1

2(1− s)
− 1

2(1 + s)

)
ds ,
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and so

t = ln
r(t)

ρ
− 1

2
ln

1− r(t)

1− ρ
− 1

2
ln

1 + r(t)

1 + ρ
=⇒ r(t) = ρ

(
ρ2 + (1− ρ2)e−2t)−1/2

.

Consequently,

φ(t, ξ) =
(
∥ξ∥2 + (1− ∥ξ∥2)e−2t)−1/2

R(t)ξ ∀ t ∈ Iξ.

If ρ = ∥ξ∥ < 1, then we may infer that Iξ = R. Furthermore, if ρ = ∥ξ∥ > 1, then the
above expression for φ(t, ξ) has a singularity: the maximal interval of existence of the
solution is given by Iξ = (αξ,∞) with

αξ := − ln
(
∥ξ∥/

√
∥ξ∥2 − 1

)
.

Assembling the four cases (viz. ξ = 0, 0 < ∥ξ∥ < 1, ∥ξ∥ = 1 and ∥ξ∥ > 1) treated
above, we may infer that the local flow φ : D → R2 has domain

D := {(t.ξ) ∈ R× R2 : ∥ξ∥2 + (1− ∥ξ∥2)e−2t > 0}

and is given by

φ(t, ξ) :=
(
∥ξ∥2 + (1− ∥ξ∥2)

)−1/2
R(t)ξ ∀ (t, ξ) ∈ D.

Exercise 4.17
We will show that G := {Φt : t ∈ R} satisfies the axioms of a commutative group.
Closure. Φs, Φt ∈ G =⇒ Φs ◦ Φt = Φs+t ∈ G.
Associativity. For all Φr, Φs, Φt ∈ G, we have(

Φr ◦ Φs

)
◦ Φt = Φr+s ◦ Φt = Φr+s+t = Φr ◦ Φs+t = Φr ◦

(
Φs ◦ Φt

)
.

Identity element. I = Φ0 ∈ G, Φ0 ◦ Φt = Φt = Φt ◦ Φ0 for all Φt ∈ G.
Inverse element. For each Φt ∈ G, Φ−t ∈ G and

Φt ◦ Φ−t = Φ0 = I = Φ−t ◦ Φt.

Commutativity. For all ΦsΦt ∈ G,

Φs ◦ Φt = Φs+t = Φt+s = Φt ◦ Φs.

Exercise 4.18
Let ξ, η, θ ∈ G be arbitrary. Since ξ ∈ O(ξ), it follows that ξ ∼ ξ and so the relation ∼
is reflexive. Next, assume ξ ∼ η and so φ(τ, ξ) = η for some τ ∈ Iξ. Invoking Theorem
4.35, we have −τ ∈ Iξ − τ = Iη and φ(−τ, η) = φ(−τ, φ(τ, ξ)) = ξ and so η ∼ ξ.
Therefore, the relation ∼ is symmetric. Assume ξ ∼ η and η ∼ θ. Then φ(τ, ξ) = η
for some τ ∈ Iξ and φ(σ, η) = θ for some σ ∈ Iη = Iξ − τ . Then σ + τ ∈ Iξ and
φ(σ + τ, ξ) = φ(σ, φ(τ, ξ)) = φ(σ, η) = θ and so ξ ∼ θ. Therefore, the reflexive and
symmetric relation ∼ is also transitive and so is an equivalence relation.
Finally, observe that

ξ ∼ η ⇔
(
∃ τ ∈ Iξ : φ(τ, ξ) = η

)
⇔ η ∈ O(ξ),

and so the equivalence class of ξ coincides with O(ξ).

Exercise 4.19
Write Iξ ∩ [0,∞) = [0, ωξ). First assume that z ∈ Ω(ξ). Then there exists a sequence
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(tn) in [0, ωξ) such that tn → ωξ and φ(tn, ξ) → z as n→ ∞. For arbitrary τ ∈ [0, ωξ)
we have that

tn ∈ (τ, ωξ) , for all suffciently large n.

Consequently, since Iφ(τ,ξ) = Iξ − τ (by Proposition 3.2), we obtain that φ(tn −
τ, φ(τ, ξ)) ∈ O+(φ(τ, ξ)) for all sufficiently large n and, moreover,

φ(tn − τ, φ(τ, ξ)) = φ(tn, ξ) → z as n→ ∞ .

Therefore, z ∈ O+(φ(τ, ξ)). This holds for every τ ∈ [0, ωξ) and thus,

z ∈
∩

τ∈[0,ωξ)

O+(φ(τ, ξ)) .

Conversely, let us now assume that

z ∈
∩

τ∈[0,ωξ)

O+(φ(τ, ξ)) .

Let (τn) be a sequence in [0, ωξ) such that τn → ωξ as n→ ∞. Then, for each n ∈ N,
there exists σn ∈ [0, ωξ − τn) = Iφ(τn,ξ) ∩ [0,∞) such that

∥φ(σn, φ(τn, ξ))− z∥ ≤ 1

n
, ∀n ∈ N .

Since φ(σn + τn, ξ) = φ(σn, φ(τn, ξ)), it follows that φ(σn + τn, ξ) → z as n → ∞,
showing that z ∈ Ω(ξ).

The same argument applies mutatis mutandis to conclude that

A(ξ) =
∩

τ∈Iξ∩(−∞,0]

O−(φ(τ, ξ)).

Exercise 4.20
Let ξ ∈ G. Since the hypotheses of Theorem 4.38 hold, Ω(ξ) is non-empty, compact
and is approached by φ(t, ξ) as t → ∞. Assume that S ⊂ RN is non-empty and
closed, and is approached by φ(t, ξ) as t→ ∞. Seeking a contradiction, suppose that
Ω(ξ) ̸⊂ S. Then there exists z ∈ Ω(ξ) with z ̸∈ S. Since S is closed, it follows that
ε := dist(z, S) > 0. Since z ∈ Ω(ξ), there exists (tn), with tn → ∞ as n → ∞, such
that φ(tn, ξ) → z as n→ ∞. By continuity of the map u 7→ dist(u, S) (recall Exercise
4.7), we have dist(φ(tn, ξ), S) ≥ ε/2 for all sufficiently large n. This contradicts the
fact that dist(φ(t, ξ), S) → 0 as t→ ∞. Therefore, Ω(ξ) ⊂ S.

Exercise 4.21
It is straightforward to verify that f(z) = 0 if, and only if, z = 0. Thus, the compact
annulus A := {z ∈ R2 : 1 ≤ ∥z∥ ≤ 3} contains no equilibrium points. The circle
C1 := {z ∈ R2 : ∥z∥ = 1} forms the inner boundary of A and

⟨z, f(z)⟩ = g((z)∥z∥2 = (3 + 2z1 − ∥z∥2)∥z∥2 ≥ 3− 2|z1| − ∥z∥2)∥z∥2 ≥ 0 ∀ z ∈ C1.

The circle C3 := {z ∈ R2 : ∥z∥ = 3} forma the outer boundary of A and

⟨z, f(z)⟩ = g((z)∥z∥2 = (3 + 2z1 − ∥z∥2)∥z∥2 ≤ 3 + 2|z1| − ∥z∥2)∥z∥2 ≤ 0 ∀ z ∈ C3.

Therefore, the vector f(z) is not directed outward at any point z of the boundary
of A. Thus, every ξ ∈ A has semiorbit O+(ξ) is the compact set A and soΩ(ξ) is
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a non-empty subset of A; moreover, since A contains no equilibrium points, Ω(ξ)
contains no equilibrium points. Therefore, by Theorem 4.46, for every ξ ∈ A, Ω(ξ) is
the orbit of a periodic point.

Exercise 4.22
(a) By the fundamental theorem of calculus, D is continuously differentiable. More-
over,

D(−u) =
∫ −u

0

d(v)dv = −
∫ u

0

d(v)dv = −D(u) ∀u ∈ R

and so D is an odd function. Since D′(0) = d(0) < 0, there exists ε > 0 such that
D(u) < 0 for all u ∈ (0, ε) and, since D(u) → ∞ as u → ∞, there exists E > ε such
that D(u) > 0 for all u > E. By continuity of D, the set Z := {u ∈ [ε,E] : D(u) = 0}
is non-empty, and the requisite properties hold for a := inf Z and b := supZ.
(b) By direct calculation we obtain ẋ1(t) = ẏ(t) = x2(t)−D(y(t)) = x2(t)−D(x1(t))
and ẋ2(t) = ÿ(t) + d(y(t))ẏ(t) = −y(t) = −x1(t).
(c) Note that, if (z1, z2) = z ∈ R2 is such that ∥z∥ = a, then |z1| ≤ a and so
z1D(z1) ≤ 0. Therefore,

∥z∥ = a =⇒ ⟨z, f(z)⟩ = z1z2 − z1D(z1)− z1z2 = −z1D(z1) ≥ 0

and so the vector f(z) does not point into the disc of radius a centred at 0 at any
point z of its boundary. Therefore the exterior of the open disc of radius a centred at
0 is positively invariant under the (local) flow.
(d) For (z1, z2) = (0, γ), we have z21 + 2z22 = 2(b2 + c2 + 4m2) = 2(c2 + 4m2 +
3b2/2) − b2 = 2r21 − b2 and so (0, γ) ∈ E1 ⊂ Γ . For (z1, z2) = (0,−γ), we have
2z21 + z22 = b2 + c2 + 4m2 = r22 + b2 and so (0,−γ) ∈ E2 ⊂ Γ .
(e) We first investigate the nature of f on Γ = E1 ∪ C1 ∪ ∪L ∪ C2 ∪ E2. Let z =
(z1, z2) ∈ E1. Then the vector n = (z1, 2z2) is an outward pointing normal to Γ ∗.
Moreover, ⟨n, f(z)⟩ = z1z2−z1D(z1)−2z1z2 = −z1z2−z1D(z1) ≤ −|z1|(|z2|−m) ≤ 0.
Now, let z = (z1, z2) ∈ C1 ∪ C2. Then z is an outward pointing normal to Γ ∗ and
⟨z, f(z)⟩ = −z1D(z1) ≤ 0. Next, let z = (z1, z2) ∈ L. Then the vector n = (1, 0) is an
outward pointing normal to Γ ∗ and ⟨n, f(z)⟩ = z2 −D(z1) = z2 −D(c) ≤ 0. Finally,
let z = (z1, z2) ∈ E2. Then the vector n = (2z1, z2) is an outward pointing normal to
Γ ∗ and ⟨n, f(z)⟩ = 2z1z2 − 2z1D(z1)− z1z2 ≤ −|z1|(|z2| −m) ≤ 0. By symmetry, the
above analysis may be extended to the entire closed curve Γ ∗ to conclude that, at
all points z ∈ Γ ∗ the vector f(z) is not outward pointing. This fact, in conjunction
with the result in part (c), implies that the annular region A is positively invariant
under the (local) flow. Moreover, A contains no equilibrium point. By the Poincaré-
Bendixson theorem, we may infer the existence of a periodic solution x = (x1, x2)
of (4.38) with orbit in A. Therefore, y = x1 is a periodic solution of the Liénard
equation (4.37).
(f) By part (e), the system (4.38) has a periodic solution (x1, x2) inA. Since ẋ2 = −x1,
there exists τ > 0 such that x1(τ) = 0. Setting v := x2(τ) ∈ [−γ,−a]∪ [a, γ], consider
the solution y of the Liénard equation (4.37) satisfying y(0) = 0 and ẏ(0) = v. Then
(y1, y2) given by

y1 = y, y2 = ẏ +D(y),

solves system (4.38) and satisfies y1(0) = 0 = x1(τ) and y2(0) = v = x2(τ). Conse-
quently, (y1(t), y2(t)) = (x1(t+ τ), x2(t+ τ)) for all t ∈ R and so, the function y = y1
is periodic.

Exercise 4.23
First observe that the system has precisely one critical point 0 ∈ G. By part (b) of
Exercise 1.1, we may deduce that

E : G→ R+, z = (z1, z2) 7→ (1− cos z1 + z22/2
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is a first integral. Clearly E(ξ) > E(0) = 0 for all ξ ∈ G\{0}. Let cos−1 : [−1, 1] →
[0, π] denote the inverse of the function cos |[0,π]. Let α ∈ (0, 2) be arbitrary. Set

a := cos−1(1− α). Define γ0 : [0, 1] → [−a, a] by

γ0(t) :=

{
a(4t− 1), 0 ≤ t ≤ 1/2

a(3− 4t), 1/2 < t ≤ 1.

Now define γ1 : [−a, a] → [0, 2), t 7→
√

2(α− 1 + cos t) and finally define γ : [0, 1] →
G by

γ(t) :=

{ (
γ0(t), γ1(t)

)
, 0 ≤ t ≤ 1/2(

γ0(t),−γ1(t)
)
, 1/2 < t ≤ 1.

Then the level set E−1(α) is non-empty and is given by

E−1(α) = {z ∈ G : E(z) = α} = {γ(t) : t ∈ [0, 1]}

and is evidently a closed Jordan curve. Moreover, ∪α∈(0,2)E
−1(α) = G\{0}. Let

ξ ∈ G\{0} be arbitrary and set α = E(ξ). Then, by Proposition 4.54, O(ξ) = E−1(α)
is a periodic orbit.
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Chapter 5

Exercise 5.1
In this case, G := (−1,∞)× (−1,∞) and f : G→ R2 is given by

f(z) = f(z1, z2) :=
(
(z1 + 1)z2 , −z1(z2 + 1)

)
.

Set U := {(z1, z2) ∈ R2 : z21 + z22 < 1} and define V : U → R by

V (z) = V (z1, z2) := z1 + z2 − ln(z1 + 1)− ln(z2 + 1) .

Clearly, V (0) = 0. Moreover, since ln(s + 1) < s for all s ∈ (−1, 1) \ {0}, we have
V (z) > 0 for all z ∈ U \ {0}. Furthermore,

(∇V )(z) = (∇V )(z1, z2) =

(
z1

z1 + 1
,

z2
z2 + 1

)
,

and so Vf (z) = Vf (z1, z2) = z1z2 − z1z2 = 0 for all z ∈ U . It now follows from
Theorem 5.2 that the equilibrium 0 is stable.

Exercise 5.2
By hypothesis, there exists ε > 0 such that

g(w)

w
< 1 , ∀w ∈ (−ε, ε) \ {0} .

Define U := R× (−ε, ε) and consider

V : U → R , z = (z1, z2) 7→ z21 + z22 .

Then V (0) = 0 and V (z) > 0 for all z ∈ U \{0}. Moreover, setting f(z) = f(z1, z2) :=
(z2,−z1 − z2 + g(z2)), it follows that

⟨(∇V )(z), f(z)⟩ = 2z1z2 + 2z2(−z1 − z2 + g(z2)) = 2z22

(
g(z2)

z2
− 1

)
≤ 0 , ∀z ∈ U .

By Theorem 5.2, the equilibrium 0 is stable.

Exercise 5.3
Define f : R2 → R2 by f(z) = f(z1, z2) := (z2, b sin z1). Set U := (−π, π) × R and
define V : U → R by V (z) = V (z1, z2) := z1z2. Let z = (z1, z2) ∈ U be such that
V (z) = z1z2 > 0. Then, z1 ̸= 0, z2 ̸= 0 and so Vf (z) = z22 + bz1 sin z1 > 0. Therefore,
hypothesis (1) of Theorem 5.7 holds. Let δ > 0 be arbitrary and set θ := min{δ, π}/2.
For ξ := (θ, θ), we have ξ ∈ U , ∥ξ∥ < δ and V (ξ) = θ2 > 0. Therefore, hypothesis (2)
of Theorem 5.7 also holds and so (0, 0) is an unstable equilibrium.

Exercise 5.4
(a) Define h : R+ → R by

h(t) =

{
2 cos t2 − sin t2

t2
, t > 0 ,

1, t = 0 .

Then, h is continuous on R+ and, clearly, h(t) does not converge to 0 as t → ∞.
Moreover, ∫ t

0

h(s)ds =
sin s2

s

∣∣∣∣t
0

=
1

t
sin t2 ,
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showing that
∫ t

0
h(s)ds→ 0 as t→ ∞.

Note that, by Lemma 5.9, the function h cannot be uniformly continuous. To show
this directly (that this, without appealing to Barbălat’s lemma), define

sn :=
√
2nπ and tn :=

√
(2n+ 1/2)π; ∀n ∈ N .

Then
lim

n→∞
(sn − tn) = 0 and lim

n→∞
(h(sn)− h(tn)) = 2 ,

showing that h is not uniformly continuous.

Exercise 5.5
Let ξ = (ξ1, ξ2) ∈ G = R2 and write φ(t, ξ) := (x(t), y(t)) for all t ∈ [0, ωξ) := Iξ∩R+.
Then

xẋ = x3 tanh(x)(1− y) = ẏ(1− y) = ẏ − yẏ .

Integration yields x2(t)− ξ21 = 2y(t)− 2ξ2 − y2(t)+ ξ22 for all t ∈ [0, ωξ). Rearranging,
we have

0 ≤ x2(t) = ∥ξ∥2 − 2ξ2 + 2y(t)− y2(t) ∀ t ∈ [0, ωξ) ,

whence boundedness of y and x. Therefore, by Theorem 4.11, ωξ = ∞ and O+(ξ)
is bounded. Moreover, since ẏ(t) = x3(t) tanh(x(t)) ≥ 0 for all t ∈ [0, ωξ), y is non-
decreasing. Combining this with the fact that y is bounded shows that limt→∞ y(t) =:
λ exists and is finite. Consequently,

lim
t→∞

∫ t

0

x3(s) tanh(x(s))ds = lim
t→∞

(y(t)− ξ2) = λ− ξ2 .

By the integral-invariance principle (Theorem 5.10) with U = R2 and g given by
g(z) = g(z1, z2) = z31 tanh(z1) for all z ∈ R2, it follows that limt→∞ x(t) = 0. Note
that any point of the form (0, z2) is an equilibrium point and thus, g−1(0) = {(0, z2) :
z2 ∈ R} is an invariant set.

Exercise 5.6
If the hypothesis “Vf (z) ≤ 0 for all z ∈ U” is replaced by “Vf (z) ≥ 0 for all z ∈ U”,
then inspection of the proof of Theorem 5.12 reveals that the same argument applies
with only one modification, namely, the phrase “V ◦ x is non-increasing” should be
replaced by “V ◦ x is non-decreasing. There is no anomaly: note that there is no
requirement that V be sign definite; the crucial ingredient is that limt→∞ V (x(t))
should exist and be finite.

Exercise 5.7
As in Example 5.3, introducing the function f : R2 → R2 given by f(z) = f(z1, z2) :=
(z2 , −b sin z1−az2), the system may be expressed in the form ẋ = f(x). Let φ denote
the local flow generated by f . Define the vertical strip S := (−π, π)×R. By Example
5.3, the function V : S → R given by

V (z) = V (z1, z2) := z22 + 2b(1− cos z1).

is a Lyapunov function with Vf (z1, z2) = −2az22 ≤ 0 for all (z1, z2) ∈ S, and so, the
equilibrium 0 is stable. Consequently, there exists a neighbourhood U ⊂ S of 0 such
that, for every ξ ∈ U , the the closure of the semi-orbit O+(ξ) is contained in S. By
Theorem 5.12, it follows that, for every ξ ∈ U , R+ ⊂ Iξ, and moreover, as t → ∞,
φ(t, ξ) approaches the largest invariant setM in V −1

f (0) = {z = (z1, z2) ∈ S : z2 = 0}.
Let z = (z1, 0) be an arbitrary point of M and write (x1(t), x2(t)) = φ(t, z) for all t ∈



36 Solutions to Exercises

Iz. Obviously, x2(t) = 0 for all t ∈ R. Therefore, 0 = ẋ2(t) = −ax2(t)− b sinx1(t) =
−b sinx1(t) for all t ∈ R. Since x1(t) ∈ (−π, π) for all t ∈ R, it follows that x1(t) = 0
for all t ∈ R. In particular, 0 = x1(0) = z1 and so, z = 0. Therefore M = {0} and
thus, φ(t, ξ) → 0 as t→ ∞.

Exercise 5.8
With V : R2 → R and f : R2 → R2 given by

V (z) = V (z1, z2) := z21 + z22 = ∥z∥2

and
f(z) = f(z1, z2) :=

(
z2 − z31(a1 + b1z

2
1) , −z1 − z32(a2 + b2z

2
2)
)
,

respectively, we have that

Vf (z) = ⟨(∇V )(z), f(z)⟩ = −2z41(a1 + b1z
2
1)− 2z42(a2 + b2z

2
2) ≤ 0 ∀ z ∈ R2.

Therefore,
d

dt
V (φ(t, ξ)) = Vf (φ(t, ξ)) ≤ 0 , ∀t ∈ [0, ωξ) ,

where ωξ = sup Iξ. Consequently,

∥φ(t, ξ)∥ ≤ ∥φ(0, ξ)∥ = ∥ξ∥ , ∀t ∈ [0, ωξ).

Therefore, O+(ξ) is compact. By Theorem 5.12 (with U = R2), we may infer that
ωξ = ∞ and, since V −1

f (0) = {0}, we have φ(t, ξ) → 0 as t→ ∞.

Exercise 5.9
Set x(·) := φ(·, ξ). By continuity of V and compactness of cl(O+(ξ)), V is bounded on
O+(ξ) and so the function V ◦x is bounded. Since (d/dt)(V ◦x))(t) = Vf (x(t)) ≤ 0 for
all t ∈ R+, V ◦ x is non-increasing. We conclude that the limit limt→∞ V (x(t)) =: λ
exists and is finite. Let z ∈ Ω(ξ) be arbitrary. Then there exists a sequence (tn) in
R+ such that tn → ∞ and x(tn) → z as n → ∞. By continuity of V , it follows that
V (z) = λ. Consequently,

V (z) = λ ∀z ∈ Ω(ξ). (∗)
By invariance of Ω(ξ), if z ∈ Ω(ξ), then φ(t, z) ∈ Ω(ξ) for all t ∈ R and so V (φ(t, z)) =
λ for all t ∈ R. Therefore, Vf (φ(t, z)) = 0 for all t ∈ R. Since φ(0, z) = z and z is an
arbitrary point of Ω(ξ), it follows that

Vf (z) = 0 ∀ z ∈ Ω(ξ), (∗∗)

and so Ω(ξ) ⊂ V −1
f (0). The claim now follows because, by Theorem 4.38, Ω(ξ) is

invariant and x(t) approaches Ω(ξ) as t→ ∞.
Comment. It might be tempting to conclude from (∗) that (∇V )(z) = 0 for all

z ∈ Ω(ξ), which then immediately would yield (∗∗). However, this conclusion is not
correct: the set Ω(ξ) is not open and therefore (∗) does not imply that (∇V )(z) = 0 for
all z ∈ Ω(ξ). (The invalidity of the conclusion is illustrated by the following simple
example: if V (z) = ∥z∥2 and Ω(ξ) = {z ∈ RN : ∥z∥ = 1}, then V (z) = 1 for all
z ∈ Ω(ξ), but (∇V )(z) = 2z ̸= 0 for all z ∈ Ω(ξ).)

Exercise 5.10
(a) For r0, θ0 ∈ (0,∞) × [0, 2π), let r(· ; r0) and θ(· ; θ0) denote the unique maximal
solutions of the initial-value problems

ṙ = r(1− r) , r(0) = r0 and θ̇ = sin2(θ/2) , θ(0) = θ0 ,
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respectively. Invoking separation of variables, a routine calculation shows that

r(t; r0) =
r0

r0 + (1− r0)e−t
∀ t ≥ 0,

and hence, limt→∞ r(t; r0) = 1.
If θ0 = 0, then θ(t; θ0) = θ(t; 0) = 0 for all t ∈ R and the claim in part (i) follows.
Assume now that θ0 ∈ (0, 2π). Then, θ(t; θ0) < 2π for all t ≥ 0, because otherwise
there would exist τ > 0 such that θ(τ ; θ0) = 2π, in which case the initial-value
problem

θ̇(t) = sin2(θ(t)/2) , θ(t0) = 2π

would have two solutions on R, namely, θ(· ; θ0) and θ(·) = 2π, contradicting unique-
ness. Since θ(· ; θ0) is strictly increasing and θ(t; θ) ∈ [θ0, 2π) for all t ≥ 0, it follows
that θ∗ := limt→∞ θ(t; θ0) exists and is contained in (θ0, 2π]. Suppose θ∗ < 2π. Then,
c := sin2(θ∗/2) > 0 and, for all t > 0 sufficiently large, (d/dt)θ(t; θ0) ≥ c/2 > 0 which
contradicts the fact that θ(t; θ0) ∈ [θ0, 2π) for all t ≥ 0. Therefore, limt→∞ θ(t; θ0) =
2π. Since

ψ(t; (r0, θ0)) = (r(t; r0), θ(t; θ0)) ∀ t ≥ 0,

the claim in part (ii) now follows.

(b) Writing x = r cos θ and y = r sin θ, a straightforward calculation gives the system

ẋ = g(x, y)x− h(x, y)y, ẏ = g(x, y)y + h(x, y)x

on R2\{(0, 0)}. The point (1, 0) is an equilibrium of this system. Denoting the corre-
sponding local flow by ψc, it follows from (a) that
• limt→∞ ψc(t, (x

0, y0)) = (1, 0) for all (x0, y0) ∈ R2 \ {(0, 0)};
• ∥ψc(t, (cos θ

0, sin θ0))∥ = 1 for all t ≥ 0 and all θ0 ∈ [0, 2π);
• for each n ∈ N, there exists tn > 0 such that ψc(tn, (cos(1/n), sin(1/n))) = (−1, 0).

(c) Applying the coordinate transformation x 7→ x+1 to the system in (b) yields the
equivalent system

ẋ = g(x+ 1, y)(x+ 1)− h(x+ 1, y)y, ẏ = g(x+ 1, y)y + h(x+ 1, y)(x+ 1)

on G := R2\{(−1, 0)}, with equilibrium (0, 0). Let φ denote the local flow generated
by this system. Then, for all (x0, y0) ∈ G, φ(t, (x0, y0)) = ψc(t, (x

0 + 1, y0)) − (1, 0)
and limt→∞ φ(t, (x0, y0)) = 0. Therefore, the equilibrium is globally attractive. To
see that the equilibrium is not stable, define ξn :=

(
cos(1/n) − 1, sin(1/n)

)
. Then

there exists δ > 0 such that, for all ξ ∈ G with ∥ξ∥ ≤ δ, ∥φ(t, ξ)∥ ≤ 1 for all t ≥ 0.
For n ∈ N, define ξn :=

(
cos(1/n) − 1, sin(1/n)

)
and observe that, by the result in

the third bullet item in (b),

∥φ(tn, ξn)∥ = ∥ψc(tn, (cos(1/n), sin(1/n)))− (1, 0)∥ = ∥(−2, 0)∥ = 2.

Since ξn → (0, 0) as n→ ∞, it follows that the equilibrium (0, 0) is not stable.

Exercise 5.11
The planar system in Example 5.4 is encompassed by Example 5.16 with g : R2 → R
given by g(z) = g(z1, z2) := z31 + z2 − z2|z2|. Define U := (−1, 1) × (−1, 1) and
observe that z1g(z1, 0) = z41 > 0 for all z1 ̸= 0 and ∂2g(z1, z2) = 1 − |z2| > 0 for all
(z1, z2) ∈ U . Therefore, by Example 5.16, we may deduce that the equilibrium 0 ∈ R2

is asymptotically stable.
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Exercise 5.12
(a) The Liénard system is of the form (5.8) with g : R2 → R given by g(z) = g(z1, z2) =
k(z1)+d(z1)z2. By assumption, there exists ε > 0 such that z1k(z1) > 0 and d(z1) > 0
for all z1 ∈ (−ε, ε) \ {0}. Define U := (−ε, ε)× (−ε, ε). Then z1g(z1, 0) = z1k(z1) > 0
for all z1 ∈ (−ε, ε) \ {0} and ∂2g(z1, z2) = d(z1) > 0 for all (z1, z2) ∈ U with
z1z2 ̸= 0. Therefore, by the result in Example 5.16, 0 ∈ R2 is an asymptotically
stable equilibrium.

(b) Define K : (−ε, ε) → R by K(z1) :=
∫ z1
0
k(s)ds. Observe that, by hypothesis (a),

k(s) ≥ 0 for all s ∈ [0, ε) and k(s) ≤ 0 for all s ∈ (−ε, 0) which, together with
continuity of k and hypothesis (b), ensures that K(z1) > 0 for all z1 ∈ (−ε, ε) \ {0}.
Set U := (−ε, ε)× (−ε, ε) and define V : U → R by V (z) = V (z1, z2) := K(z1)+z

2
2/2.

Define f : R2 → R2 by f(z) = f(z1, z2) :=
(
z2,−g(z))

)
=
(
z2,−k(z2) − d(z1)z2)

)
, in

which case, the Liénard system may be expressed in the form ẋ = f(x). We may now
infer that V (0) = 0, V (z) > 0 for all z ∈ U \ {0} and

Vf (z) = Vf (z2, z2) = k(z1)z2 + z2
(
− k(z1)− d(z1)z2

)
= −z22d(z1) ≤ 0 ∀ z ∈ U.

By Theorem 5.2 (with G = R2), it follows that 0 is a stable equilibrium.
Finally, set d = 0 and let k be the identity map. In this case, the Liénard system
reduces to the harmonic oscillator ÿ+y = 0. Hypotheses (i) and (ii) clearly hold and so
the equilibrium 0 is stable but is not asymptotically stable since (maximal) solutions
of the harmonic oscillator have the property that ∥(y(t), ẏ(t))∥ = ∥(y(0), ẏ(0))∥ for
all t ∈ R.

Exercise 5.13
Let U and V be as in Corollary 5.17. Stability of the equilibrium 0 is an immediate
consequence of Theorem 5.2. The remaining issue is to establish attractivity. Let ε > 0
be such that B(0, ε) ⊂ U . By stability, there exists δ > 0 such that, if ξ ∈ B(0, δ), then
x(t) ∈ B(0, ε) for all t ∈ R+ and for every maximal solution x with x(0) = ξ. Let x be
any such solution. By boundedness of x and continuity of f , we may infer boundedness
of ẋ and so x is uniformly continuous. Since Vf (x(t)) ≤ 0 for all t ∈ R+, it follows
that V ◦x is bounded (0 ≤ V (x(t)) ≤ V (ξ) for all t ∈ R+) and non-increasing. Hence,
V ◦ x converges, in particular, there exists c ∈ [0, V (ξ)] such that V (x(t)) → c as
t→ ∞. Therefore,

lim
t→∞

∫ t

0

Vf (x(s))ds = lim
t→∞

V (x(t))− V (ξ) = c− V (ξ).

Furthermore, by continuity of Vf , together with uniform continuity and boundedness
of x, Vf ◦ x is uniformly continuous. By Barbălat’s lemma (Lemma 5.9), we may
conclude that Vf (x(t)) → 0 as t→ ∞. Seeking a contradiction, suppose that x(t) ̸→ 0
as t → ∞. Then there exist θ ∈ (0, ε) and a sequence (tn) in R+ with tn → ∞
as n → ∞ and ∥x(tn)∥ ≥ θ. By continuity and negativity of Vf on the annulus
A := {z ∈ U : θ ≤ ∥z∥ ≤ ε}, there exists µ > 0 such that Vf (z) ≤ −µ for all z ∈ A.
Therefore, Vf (x(tn)) ≤ −µ for all n ∈ N, which contradicts the fact that Vf (x(t)) → 0
as t→ ∞.

Exercise 5.14
By attractivity of the equilibrium, there exists ε > 0 such that

lim
t→∞

φ(t, ζ) = 0 ∀ ζ ∈ B(0, 2ε). (∗)

Let ξ ∈ A be arbitrary. It suffices to show that ξ has a neighbourhood U contained
in A. Since ξ ∈ A, there exists T ≥ 0 such that (T, η) ∈ dom(φ) and ∥φ(T, ξ)∥ ≤ ε.
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By openness of dom(φ) and continuity of φ (see Theorem 4.34), there exists δ > 0
such that

∥φ(T, η)− φ(T, ξ)∥ ≤ ε ∀ η ∈ U := B(ξ, δ).
Therefore,

∥φ(T, η)∥ ≤ ∥φ(T, η)− φ(T, ξ)∥+ ∥φ(T, ξ)∥ ≤ 2ε ∀ η ∈ U.

By (∗), it follows that

lim
t→∞

φ(t+ T, η) = lim
t→∞

φ(t, φ(T, η)) = 0 ∀ η ∈ U.

Therefore, the neighbourhood U of ξ is contained in A. Since ξ ∈ A is arbitrary, it
follows that A is an open set.

Exercise 5.15
First, assume that V : RN → R+ is radially unbounded. Let c ∈ R+ be arbitrary and
set Σc := {z ∈ RN : V (z) ≤ c}. Clearly, Σc is a closed set. The set Σc is also bounded
as, otherwise, there must exist a sequence (zn) in Σc with ∥zn∥ → ∞ as n → ∞
and so, by radial unboundedness, V (zn) → ∞ as n → ∞, which is impossible since
V (zn) ≤ c for all n ∈ N. Therefore, Σc is closed and bounded, and so is compact.

Now, assume that Σc is compact for all c ∈ R+. Suppose that V is not radially
unbounded. Then there exists c ∈ R+ and a sequence (zn) in RN with ∥zn∥ → ∞ as
n → ∞ and V (zn) ≤ c for all n ∈ N. Therefore, (zn) is an unbounded sequence in
Σc, which contradicts compactness of Σ + c. Therefore, V is radially unbounded.

Exercise 5.16
The Lorenz system is of the form ẋ = f(x), with continuously differentiable f : R3 →
R3 given by

f(z) = f(z1, z2, z3) :=
(
σ(z2 − z1), rz1 − z2 − z1z3, z1z2 − bz3

)
with σ > 0, b > 0 and 0 < r < 1. Consider the function V : R3 → R given by
V (z) = V (z1, z2, z3) := rz21+σz

2
2+σz

2
3 . Clearly, V (0) = 0, V (z) > 0 for all z ∈ R3\{0}

and V is radially unbounded. Moreover,

Vf (z1, z2, z3) = 2rσz1(z2 − z1) + 2σz2(rz1 − z2 − z1z3) + 2σz3(z1z2 − bz3)

= −2σ(rz21 − 2rz1z2 + z22)− 2bσz23 ∀(z1, z2, z3) ∈ R3,

Since 0 < r < 1, we may choose ρ such that 0 < r < ρ < 1. Write µ := min{r(1 −
ρ), (1− r/ρ)}. Then, µ > 0 and, since 2z1z2 ≤ ρz21 + z22/ρ, we have

rz21 − 2rz1z2 + z22 ≥ r(1− ρ)z21 + (1− r/ρ)z22 ≥ µ
(
z21 + z22

)
.

Therefore,

Vf (z) = Vf (z1, z2, z3) ≤ −2σ
(
µz21 + µz22 + bz23

)
≤ 0 ∀ z ∈ R3

Moreover, V −1
f (0) = {0}. Hence, by Theorem 5.22, the equilibrium 0 is globally

asymptotically stable.

Exercise 5.17
(a) A routine calculation gives (∇V )(z1, z2) = 2

(
z1 , z2(1 + z22)

−2
)
for all (z1, z2) ∈

R2.
If z21z

2
2 ≥ 1, then

Vf (z1, z2) = 2
(
− z21 + z22(1 + z22)

−2) = 2(1 + z22)
−2((1− z21z

2
2)z

2
2 − z21 − 2z21z

2
2

)
< 0.
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If z21z
2
2 < 1 and (z1, z2) ̸= 0, then

Vf (z1, z2) = 2
(
− z21 + (2z21z

4
2 − z22)(1 + z22)

−2)
= 2(1 + z22)

−2((z21z22 − 1)z22 − z21 − 2z21z
2
2

)
< 0.

Clearly, V (0) = 0 and V (z) > 0 for all z ∈ R2 \ {0}. By Corollary 5.17, it follows that
the equilibrium 0 is asymptotically stable.

(b) Let ξ = (ξ1, ξ2) ∈ R2 be such that ξ21ξ
2
2 ≥ 1. Then x : R → R2 given by

x(t) = (x1(t), x2(t)) = (e−tξ1, e
tξ2)

solves the initial-value problem ẋ = f(x), x(0) = ξ. Indeed, x(0) = ξ. Also, ẋ1 = −x1,
ẋ2 = x2 and x21(t)x

2
2(t) = ξ21ξ

2
2 ≥ 1, showing that ẋ = f(x). Since |x2(t)| → ∞ as

t→ ∞, we may conclude that 0 is not globally asymptotically stable.

(c) Setting zn = (0, n), it follows that ∥zn∥ = n → ∞ and V (zn) = n2/(1 + n2) → 1
as n→ ∞. Hence, V is not radially unbounded.

Exercise 5.18
Write M =

(
Mij

)
, where Mij denotes the entry in row i and column j of M . Then,

for k = 1, . . . , N ,

q(z) =

N∑
i=1

N∑
j=1

Mijzizj =
∑
i ̸=k

∑
j ̸=k

Mijzizj +
∑
j ̸=k

Mkjzkzj +
∑
i ̸=k

Mikzizk +Mkkz
2
k

and so

(∂kq)(z) =
∑
j ̸=k

Mkjzj +
∑
i ̸=k

Mikzi + 2Mkkzk =
N∑

j=1

Mkjzj +
N∑
i=1

Mikzi

= k-th component of (M +M∗)z.

Therefore, (∇q)(z) = (M +M∗)z for all z ∈ RN .

Exercise 5.19

The system is of the form ẋ = Ax with A =

(
0 1
−1 −1

)
.

(a) Setting Q = I, we seek P =

(
p1 p2
p2 p3

)
such that PA + A∗P + I = 0. Direct

calculation gives 0 = −2p2 + 1 = p1 − p2 − p3 = 2(p2 − p3) + 1, whence

P =

(
3/2 1/2
1/2 1

)
.

Defining V : R2 → R+ by V (z) := ⟨z, Pz⟩, we have

⟨∇V (z), Az⟩ = 2⟨Pz,Az⟩ = ⟨(PA+A∗P )z, z⟩ = −⟨z, z⟩ = −∥z∥2 ∀ z ∈ R2.

Therefore, the derivative of V along non-zero solutions is negative.

(b) With V : R2 → R+ given by V (z) = ∥z∥2, we find

⟨∇V (z), Az⟩ = 2⟨z,Az⟩ = −2z2 ∀ z =

(
z1
z2

)
∈ R2.
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Therefore, V qualifies as a Lyapunov function. However, in contrast with part (a),
the derivative of V along non-zero solutions is only non-positive.

Exercise 5.20
The system is of the form ẋ = Ax+ h(x) with

A =

−2 1 0
0 −1 4
0 0 −1

 and h : R3 → R3, z =

z1z2
z3

 7→

 z21 |z3|
z1 sin z3

z1z2 − z2z3

 .

Clearly, σ(A) = {−1,−2} and so A is Hurwitz. Let ε > 0 be arbitrary. Choose δ > 0

sufficiently small so that δ
√
δ2 + 5 < ε. Then, for all z =

z1z2
z3

 ∈ R3, we have

∥z∥ < δ =⇒ ∥h(z)∥
∥z∥ =

√
z41z

2
3 + z21 sin

2 z3 + (z1z2 − z2z3)2

δ2

<

√
δ6 + δ4 + 4δ4

δ2
= δ
√
δ2 + 5 < ε.

Therefore, limz→0 h(z)/∥z∥ = 0 and so, by Theorem 5.27, 0 is an asymptotically
stable equilibrium.

Exercise 5.21
Let ψ : R → R be continuously differentiable with ψ(0) = 0 and ψ′(0) ∈ (α, β). The
feedback system is given by ẋ = f(x), where f : R2 → R2 is given by

f(z) := Az − bψ(c∗z) ∀ z ∈ R2.

Clearly, f is continuously differentiable and f(0) = 0. Moreover,

Ã := (Df)(0) = A− ψ′(0)bc∗ = A− kbc∗

and, since k ∈ (α, β), it follows that Ã is Hurwitx. By Corollary 5.29, we may infer
that 0 is an asymptotically stable equilibrium.

Exercise 5.22
Define f : R3 → R3 by

f(z) =
(
f1(z1, z2, z3), f2(z1, z2, z3), f3(z1, z2, z3)

)
=
(
− 2z1 + z21 |z3|+ z2 , z1 sin z3 − z2 + 4z3 , z1z2 − z2z3 − z3

)
.

A straightforward calculation reveals that all (nine) first partial derivatives ∂ifj(0)
exist. However, f is not differentiable at points (z1, z2, 0) with z1 ̸= 0 and so the
hypotheses of Corollary 5.29 fail to hold.

Exercise 5.23
The Lorenz system is of the form ẋ = f(x), with continuously differentiable f : R3 →
R3 given by

f(z) = f(z1, z2, z3) :=
(
σ(z2 − z1), rz1 − z2 − z1z3, z1z2 − bz3

)
.

Therefore,

A := (Df)(0) =

−σ σ 0
r −1 0
0 0 −b
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with characteristic polynomial given by (λ+ b)(λ2 + (σ+1)λ+ σ(1− r)). Given that
σ > 0 and r > 1, it immediately follows that A has a positive eigenvalue. Therefore,
by Theorem 5.31, 0 is an unstable equilibrium of the Lorenz system.

Exercise 5.24
As in Exercise 5.16, define V : R3 → R by V (0z) = V (z1, z2, z3) := rz21 + σz22 + σz23 .
Writing a1 := min{r, σ} > 0 and a2 := max{r, σ}, we have a1∥z∥2 ≤ V (z) ≤ a2∥z∥2
for all z ∈ R3. Furthermore, by the calculation in the solution to Exercise 5.16, we
have Vf (z) ≤ −a3∥z∥2 for all z ∈ R3, where a3 := 2σmin{µ, b} > 0. Therefore, by
Theorem 5.35, 0 is an exponentially stable equilibrium.

Exercise 5.25
Let u : R+ → RM be piecewise continuous with u(t) → u∞ ∈ R as t → ∞. Let
ξ ∈ RN be arbitrary and let x : R+ → RN be the solution of the initial-value problem
ẋ = Ax+ bu, x(0) = ξ. Define w : R+ → RN by w(t) := x(t) +A−1Bu∞. Then,

ẇ(t)ẋ(t) = Ax(t) +Bu(t) = Aw(t) +B(u(t)− u∞) ∀ t ∈ R+\E

where E is the set of points at which u fails to be differentiable. Thus, writing θ :=
ξ + A−1Bu∞ and v(·) := u(·) − u∞, we see that w solves the initial-value problem
ẇ = Aw + Bv, w(0) = θ. Since A is Hurwitz and v(t) → 0 as t → ∞, the 0-CICS
property holds and so Ax(t) +A−1Bu∞ = w(t) → 0 as t→ ∞.

Exercise 5.26
The claim follows from a straightforward application of Proposition 4.20.

Exercise 5.27
With u = 0, the system is given by ẋ = −x|x|. The function V : R → R+, z 7→ z2

is a radially-unbounded Lyapunov function with (V ′(z))(−z|z|) = −2|z|3 < 0 for all
z ̸= 0. Therefore, the equilibrium 0 is globally asymptotically stable.

Exercise 5.28
This is a straightforward consequence of the facts that, for a, b ∈ R+, (a + b) ≤
max{2a, 2b} and max{a, b} ≤ a+ b.

Exercise 5.29
(a) & (b) Since ψ(·, 0) = 0 and g(s)s ≤ 0 for all s ∈ R+, it follows that 0 ≤ ψ(t, ξ) ≤ ξ
for all ξ ∈ R+ and all t ∈ Iξ ∩R+, where Iξ denotes the maximal interval of existence
of the solution of the initial-value problem ẋ = g(x), x(0) = ξ. Therefore, R+ ⊂ Iξ
for all ξ ∈ R+ (by Theorem 4.11) and so R+ × R+ ⊂ dom(ψ).

(c) Since g(s)s < 0 for all s > 0, we may infer that, for every, ξ > 0, ψ(·, ξ) is
decreasing and ψ(t, ξ) → 0 as t→ ∞. Moreover, if 0 ≤ ξ1 < ξ2, then ψ(t, ξ1) < ψ(t, ξ2)
for all t ∈ R+ (by Corollary 4.36). Define θ : R+ × R= → R+ by θ(r, t) := ψ(t, r).
Then, for each r > 0, θ(r, ·) is decreasing and θ(r, t) → 0 as t → ∞. Moreover, for
each t ∈ R+, θ(0, t) = 0 and, if 0 ≤ r1 < r2, then θ(r1, t) < θ(r2, t). Furthermore,
by continuity of ψ, θ(·, t) is continuous for each t ∈ R+. Therefore, for each t ∈ R+,
θ(·, t) is a K function. We may now conclude that θ is of class KL.

Exercise 5.30
Define c : R+ → R+ by

c(s) := sup{|Vf (z, w)| : ∥z∥ ≤ b1(s), ∥w∥ ≤ s} ∀ s ∈ R+

and observe that c is non-decreasing, with c(0) = 0. Moreover, b3(s) = c(s)+b2(b1(s))
for all s ∈ R+. Since b1, b2 ∈ K∞, it follows that b2◦b1 is in K∞. Therefore, to conclude
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that b3 is in K∞ it suffices to show that the function c is continuous. Continuity at
s = 0 is clear. Let s > 0 be arbitrary. We will show that c is continuous at s. Let
(sn) be a sequence in R+ with sn → s as n→ ∞. We may assume that sn > 0 for all
n ∈ N. For each n ∈ N, define ρn := min{sn, s} and σn := max{sn, s} ≥ ρn > 0. Then
|c(s) − c(sn)| = c(σn) − c(ρn) for all n ∈ N and so, to conclude that c is continuous
at s, it is sufficient to show that limn→∞

(
c(σn)− c(ρn)

)
= 0. For each n ∈ N, the set

Kn := {(z, w) : ∥z∥ ≤ b1(σn), ∥w∥ ≤ σn}

is compact which, together with continuity of (z, w) 7→ |Vf (z, w)|, ensures the exis-
tence of (yn, vn) ∈ Kn such that c(σn) = |Vf (yn, vn)|. Define sequences (zn) and (wn)
by

zn :=
b1(ρn)

b1(σn)
yn, wn :=

ρn
σn

vn

and observe that
∥zn∥ ≤ b1(ρn), ∥wn∥ ≤ ρn ∀n ∈ N.

Therefore,
|Vf (zn, wn)| ≤ c(ρn) ≤ c(σn) = |Vf (yn, vn)| ∀n ∈ N. (∗)

By boundedness of the sequence (σn), there exists σ > 0 such that σn ≤ σ for all
n ∈ N. Define K := {(z, w) : ∥z∥ ≤ b1(σ), ∥w∥ ≤ σ}. Then K is compact and is such
that (yn, vn), (zn, wn) ∈ K for all n ∈ N. Let ε > 0 be arbitrary. Since Vf is uniformly
continuous on K, there exists δ > 0 such that, for all (z, w), (y, v) ∈ K,

∥z − y∥+ ∥w − v∥ ≤ δ =⇒
∣∣|Vf (z, w)| − |Vf (y, v)|

∣∣ ≤ ε. (∗∗)

Since limn→∞ ρn = limn→∞ σn = s > 0, we may infer that, as n→ ∞,

∥zn − yn∥ =

(
1− b1(ρn)

b1(σn)

)
∥yn∥ → 0 and ∥wn − vn∥ =

(
1− ρn

σn

)
∥vn∥ → 0,

and so there exists N ∈ N such that ∥zn − yn∥ + ∥wn − vn∥ ≤ δ for all n ≥ N . The
conjunction of (∗) and (∗∗) now gives 0 ≤ c(σn) − c(ρn) ≤ ε for all n ≥ N and so
limn→∞(c(σn)− c(ρn) = 0, completing the proof.

Exercise 5.31
It is clear that a1(0) = 0 = a2(0) and that the functions a1 and a2 are non-decreasing
and are continuous at 0. Let s > 0 be arbitrary. Let (sn) be a sequence in R+ with
sn → s as n → ∞. Since s > 0, we may assume that sn > 0 for all n ∈ N. Let ε > 0
be arbitrary. We will establish continuity at s of both a1 and a2 by showing that, for
i = 1, 2, there exists N ∈ N such that

|ai(s)− ai(sn)| ≤ ε ∀n ≥ N. (†)

For each n ∈ N, define ρn := min{s, sn} > 0 and σn := max{s, sn} ≥ ρn. Clearly,
limn→∞ ρn = limn→∞ σn = s > 0 and so there exist ρ > 0 and σ > 0 such that
ρ ≤ ρn ≤ σn ≤ σ for all n ∈ N. Observe that σn/ρn ≤ σ/ρ for all n ∈ N and
σn/ρn → 1 as n → ∞. Since W is radially unbounded, there exists r ≥ ρ such that

W (y) > a1(σ) for all y with ∥y∥ > r. Write R := rσ/ρ ≥ σ and set K := B(0, R).
Since W is uniformly continuous on K, there exists δ > 0 such that, for all y, z ∈ K,

∥y − z∥ ≤ δ =⇒ |W (y)−W (z)| ≤ ε. (††)

(a) First, we prove continuity of a2 at s. By continuity of W , for each n ∈ N, there
exists yn, with ∥yn∥ ≤ σn, such that a2(σn) = sup{W (y) : ∥y∥ ≤ σn} = W (yn). For
each n ∈ N, set zn := (ρn/σn)yn. Then ∥zn∥ ≤ ρn and

0 ≤ a2(σn)− a2(ρn) ≤W (yn)−W (zn) ∀n ∈ N. (∗)
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Observe that the sequences (yn) and (zn) are in K and, since ρn/σn → 1 as n→ ∞,
we have

∥yn − zn∥ =

(
1− ρn

σn

)
∥yn∥ → 0 as n→ ∞.

In particular, there exists N ∈ N so that ∥yn − zn∥ ≤ δ for all n ≥ N which, in
conjunction with (∗) and (††), gives

|a2(s)− a2(sn)| = a2(σn)− a2(ρn) ≤ ε ∀n ≥ N.

Therefore, (†) holds for i = 2 and so a2 is continuous at s.
(b) Next, we prove that a1 is continuous at s. Recall that, for all y with ∥y∥ > r, we
have W (y) > a1(σ) ≥ a1(ρn) for all n ∈ N. Therefore,

a1(ρn) = inf{W (y) : ρn ≤ ∥y∥} = inf{W (y) : ρn ≤ ∥y∥ ≤ r} ∀n ∈ N

and so there exists a sequence (yn), such that ρn ≤ ∥yn∥ ≤ r and a1(ρn) = W (yn)
for all n ∈ N. Define the sequence (zn) by zn := (σn/ρn)yn. Then

σn ≤ σn

ρn
∥yn∥ = ∥zn∥ ≤ rσ

ρ
= R ∀n ∈ N.

Therefore,
0 ≤ a1(σn)− a1(ρn) ≤W (zn)−W (yn) ∀n ∈ N. (∗∗)

Observe that the sequences (yn) and (zn) are in K and, since σn/ρn → 1 as n→ ∞,
we have

∥yn − zn∥ =

(
σn

ρn
− 1

)
∥yn∥ → 0 as n→ ∞.

In particular, there exists N ∈ N so that ∥yn − zn∥ ≤ δ for all n ≥ N which, in
conjunction with (∗∗) and (††), gives

|a1(s)− a1(sn)| = a1(σn)− a1(ρn) ≤ ε ∀n ≥ N.

Therefore, (†) holds for i = 1 and so a1 is continuous at s.

Exercise 5.32
(a) Define V : R → R by V (z) = z2/2. Then

Vf (z, v) = −z2(1 + 2z2) + z(1 + z2)v2 = −z4 + (1 + z2)(zv2 − z2) ∀ (z, v) ∈ R× R.

Therefore, for |z| ≥ v2, we have Vf (z, v) ≤ −z4 and so, an application of Corollary
5.44 (with b1 and b2 given by b1(s) = s2 and b2(s) = s4) shows that the system is
ISS.

(b) Define V : R2 → R by V (z) = V (z1, z2) := z21/2 + z42/4. By Lemma 5.46, there
exist a1, a2 ∈ K∞ such that

a1(∥z∥) ≤ V (z) ≤ a2(∥z∥) ∀ z ∈ R2.

Moreover,

Vf (z, v) = −z21 − z42 + z1z
2
2 + z32v ≤ −z21/2− z42/2 + z32v ∀ (z, v) ∈ R2 × R.

Let µ > 0. By Young’s inequality1

z32v = (µz32)(v/µ) ≤ (µz32)
4/3/(4/3) + (v/µ)4/4 ∀ (z2, v) ∈ R× R,

1 William Henry Young (1863-1942), English. Young’s inequality says that if a, b ≥ 0
and p, q > 0 are such that 1/p+ 1/q = 1, then ab ≤ ap/p+ bq/q.
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and, setting µ = 3−3/4, we have z32v ≤ z42/4 + 27v4/4. Therefore,

Vf (z, v) ≤ −V (z) + 27v4/4 ∀ (z, v) ∈ R2 × R.

An application of Theorem 5.41 (with a3 = a1 and a4 given by a4(s) = 27s4/4) shows
that the system is ISS.

(c) Define V : R2 → R by V (z) = V (z1, z2) := ∥z∥2/2. Then

Vf (z, v) = Vf (z1, z2, v1, v2) = −z21 − z42 + z1v1 + z2v2 ∀ (z, v) ∈ R2 × R2.

For all (z1, v1), (z2, v2) ∈ R × R, z1v1 ≤ (z21 + v21)/2 and z2v2 ≤ z42/4 + 3v
4/3
2 /4 (by

Young’s inequality). Therefore, defining W1,W2 : R2 → R+ by W1(z) := z21/2+3z42/4

and W2(v) =W2(v1, v2) := v21/2 + 3v
4/3
2 /4, we have

Vf (z, v) ≤ −W1(z) +W2(v) ∀ (z, v) ∈ R2 × R2.

By Lemma 5.46, there exist a3, a4 ∈ K∞ such that

a3(∥z∥) ≤W1(z) ∀ z ∈ R2 and W2(v) ≤ a4(∥v∥) ∀ v ∈ R2.

Therefore,
Vf (z, v) ≤ −a3(∥z∥) + a4(∥v∥) ∀ (z, v) ∈ R2 × R2,

and so, by Theorem 5.41, it follows that the system is ISS.
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Chapter 6

Exercise 6.1
By direct calculation

C(Ac, bc) = (bc, Acbc, . . . , A
n−1
c bc) =


0 0 . . . 0 1
0 0 . . . 1 ∗
...

... . .
. ...

...
0 1 . . . ∗ ∗
1 ∗ . . . ∗ ∗

 ,

and so rk C(Ac, bc) = N . Hence, (Ac, bc) is controllable.

Exercise 6.2
(a) Let s ∈ S be arbitrary. Then, by property (i), Γ (s) ∼ s and so Γ (s) ∈ [s].
Therefore, every s ∈ S has at least one representative in Γ (S). Assume s1, s2 are
representatives of s ∈ S. Then s1 ∼ s2 and so, by property (ii), Γ (s1) = Γ (s2).
Therefore, every s ∈ S has precisely one representative in Γ (S).
(b) It is straightforward to verify that the requisite properties hold for ∼, namely,
reflexivity (for all (A, b) ∈ S, (A, b) ∼ (A, b)), symmetry (for all (A1, b1), (A2, b2) ∈ S,
(A1, b1) ∼ (A2, b2) implies (A2, b2) ∼ (A1, b1)), and transitivity (for all (A1, b1),
(A2, b2), (A3, b3) ∈ S, if (A1, b1) ∼ (A2, b2) and (A2, b2) ∼ (A3, b3), then (A1, b1) ∼
(A3, b3)). Therefore, ∼ is an equivalence relation.To see that Γ is a canonical form,
we show that the requisite properties (i) and (ii) hold. First note that, by Lemma
6.1, for all (A, b) ∈ S Γ (A, b) = (Ac, bc) ∼ (A, b) and so property (i) holds. Let
(A1, b1), (A2, b2) ∈ S be such that (A1, b1) ∼ (A2, b2). Then, A1 and A2 have the same
characteristic polynomial and so have the same controller form, that is, Γ (A1, b1) =
Γ (A2, b2). Thus, property (ii) also holds. Therefore, Γ is a canonical form.

Exercise 6.3
For n ∈ N, N ≥ 2, let P(N) be the statement

P(N) : PM (s) = sN +mN−1s
N−1 + · · ·+m1s+m0

The matrix m =

(
0 1

−m0 −m1

)
has characteristic polynomial

PM (s) =

∣∣∣∣ s −1
m0 s+m1

∣∣∣∣ = s2 +m1s+m0

and so P(2) is a true statement. Assume N ∈ N, N ≥ 2, and P(N) true. The
(N + 1)× (N + 1) matrix

M =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
0 0 0 · · · 0 1

−m0 −m1 −m2 · · · −mN−1 −mN


has characteristic polynomial

PM (s) =

∣∣∣∣∣∣∣∣∣∣

s −1 0 · · · 0 0
0 s −1 · · · 0 0
...

...
0 0 0 · · · s −1
m0 m1 m2 · · · mN−1 s+mN

∣∣∣∣∣∣∣∣∣∣
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which, by expansion on row 1 and invoking the truth of P(N), gives

PM (s) = s

∣∣∣∣∣∣∣∣
s −1 · · · 0 0
...

...
0 0 · · · s −1
m1 m2 · · · mN−1 s+mN

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
0 −1 · · · 0 0
...

...
0 0 · · · s −1
m0 m2 · · · mN−1 s+mN

∣∣∣∣∣∣∣∣
= s(sN +mNs

N−1 + · · ·+m2s+m1) +m0 = sN+1 +mnS
N + · · ·m1s+m0

and so P(N + 1) is a true statement. The result follows by induction.

Exercise 6.4
We first show that, for all k ∈ N,

Âk = Ak +

k−1∑
i=0

Ak−1−ibf∗Âi . (∗)

For k = 1, formula (∗) reduces to Â = A+bf∗, which is trivially true (by the definition

of Â). Assume now that formula (∗) is true for k = m. Then,

Âm+1 = ÂÂm = A(Am +

m−1∑
i=0

Am−1−ibf∗Âi) + bf∗Âm

= Am+1 +

m−1∑
i=0

Am−ibf∗Âi + bf∗Âm

= Am+1 +

m∑
i=0

Am−ibf∗Âi ,

which is (∗) for k = m+ 1. We conclude that formula (∗) is true for all k ∈ N.
Write P (z) =

∑N
n=0 anz

n, with an ∈ R, n = 1, . . . , N and aN = 1. Using (∗), we
obtain

anÂ
n = anA

n + an

n−1∑
i=0

An−1−ibf∗Âi, n = 1, . . . , N.

Therefore, there exist gn ∈ RN , n = 0, . . . , N − 1, such that

P (Â) =
N∑

n=0

anÂ
n = P (A) + bg∗0 +Abg∗1 + · · ·+AN−1bf∗

By the Cayley-Hamilton theorem, P (Â) = 0, and thus,

P (A) = −(bg∗0 +Abg∗1 + · · ·+An−2bg∗n−2 +AN−1bf∗) .

Writing G :=
(
g0, g1, · · · , gN−1, f) ∈ RN×N , the above formula for P (A) can be writ-

ten in the form P (A) = −C(A, b)G∗ and so G∗ = −C(A, b)−1P (A), where C(A, b)−1

exists by controllability. Since the last row of G∗ coincides with f∗, it follows that

f∗ = −(0, . . . , 0, 1)C(A, b)−1P (A).
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Exercise 6.5
(a) The matrix C(A, b) is given by

C(A, b) =

 0 0 2 0
0 2 0 −2
0 1 0 −4
1 0 −4 0

 .

To calculate f , the last row of C−1(A, b) is needed:

cC−1(A, b) =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0

1

6
−1

3
0

 .

The polynomial p to be assigned is given by

p(λ) = (λ+ 1)2(λ+ 2)2 = λ4 + 6λ3 + 13λ2 + 12λ+ 4 .

Now

A2 =

 ∗ ∗ ∗ ∗
0 −1 0 0
0 −2 0 0
∗ ∗ ∗ ∗

 , A3 =

 ∗ ∗ ∗ ∗
−3 0 0 −2
−6 0 0 −4
∗ ∗ ∗ ∗

 , A4 =

 ∗ ∗ ∗ ∗
0 1 0 0
0 2 0 0
∗ ∗ ∗ ∗

 ,

and thus,

p(A) =

 ∗ ∗ ∗ ∗
0 1 0 0
0 2 0 0
∗ ∗ ∗ ∗

+

 ∗ ∗ ∗ ∗
−18 0 0 −12
−36 0 0 −24

∗ ∗ ∗ ∗

+

 ∗ ∗ ∗ ∗
0 −13 0 0
0 −26 0 0
∗ ∗ ∗ ∗

+

 ∗ ∗ ∗ ∗
36 0 0 24
0 0 0 12
∗ ∗ ∗ ∗

+

 ∗ ∗ ∗ ∗
0 4 0 0
0 0 4 0
∗ ∗ ∗ ∗



=

 ∗ ∗ ∗ ∗
18 −8 0 12

−36 −24 4 −12
∗ ∗ ∗ ∗

 .

By Ackermann’s formula,

f∗ = −(0, 0, . . . , 0, 1)C−1(A, b)p(A)

=

(
0,−1

6
,
1

3
, 0

) ∗ ∗ ∗ ∗
18 −8 0 12

−36 −24 4 −12
∗ ∗ ∗ ∗


=

(
−15,−20

3
,
4

3
,−6

)
.

(b) Simply define F ∈ R2×4 by F :=

(
0
f∗

)
, in which case, A+BF = A+ bf∗ and so

σ(A+BF ) = {−1,−2}, and each eigenvalue has multiplicity 2.
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Exercise 6.6
(a) Let S ⊂ RL be a proper algebraic set. Then there exists a real polynomial Γ in
L variables, not equal to the zero polynomial, such that S = {z ∈ RL : Γ (z) = 0}.
Set Sc := RL\S. If w ∈ Sc, then Γ (w) ̸= 0 and by continuity of Γ there exists a
neighbourhood W ⊂ RL of w such that W ⊂ Sc. Consequently, Sc is open. Next we
show that Sc is dense in RL. Seeking a contradiction, suppose that Sc is not dense
in RL. Then there exists z ∈ S and an open neighbourhood Z ⊂ RL of z such that
Z ⊂ S. The polynomial Γ0 defined by Γ0(s) := Γ (s + z) for all s ∈ RL has the
property that Γ0(s) = 0 for all s ∈ Z0, where Z0 := {s− z : s ∈ Z}. Obviously, Z0 is
an open neighbourhood of 0 and it follows from repeated partial differentiation that
all coefficients of Γ0 are zero. Thus, Γ0 is the zero polynomial and so is Γ , yielding
the desired contradiction.

(b) We prove the claim by induction over L. Trivially, the claim is true for L = 1.
Let S be a proper algebraic set in RL+1. Then there exists a non-zero polynomial Γ
in L+ 1 variables such that S = {z ∈ RL+1 : Γ (z) = 0}. Write Γ in the form

Γ (s1, . . . , sL+1) =

k∑
i=0

∆i(s1, . . . , sL)s
i
L+1, (∗)

where the ∆i, 0 ≤ i ≤ k, are polynomials in L variables. Set

Z :=

k∩
i=1

Zi, where Zi := {z ∈ RL : ∆i(z) = 0}, 1 ≤ i ≤ k,

and let λL denote Lebesgue measure in RL. Since Γ is not the zero polynomial,
there exists j ∈ {1, . . . , k} such that ∆j is not the zero polynomial, and so, Zj is a
proper algebraic set in RL. By induction hypothesis, λL(Zj) = 0, and consequently,
λL(Z) = 0. Let σ : RL+1 → {0, 1} be the characteristic function of S. Defining
ρ : RL → R by

ρ(s1, . . . , sL) :=

∫ ∞

−∞
σ(s1, . . . , sL, sL+1)dsL+1,

it follows from Fubini’s theorem2 that

λL+1(S) =

∫
RL+1

σ(s1, . . . , sL+1)ds1 . . .dsL+1 =

∫
RL

ρ(s1, . . . , sL)ds1 . . . dsL. (∗∗)

Note that if (s1, . . . , sL) ∈ RL\Z, then, invoking (∗), we conclude that there are at
most finitely many (not more than k) numbers z ∈ R such that (s1, . . . , sL, z) ∈ S.
Therefore, ρ(s1, . . . , sL) = 0 for all (s1, . . . , sL) ∈ RL\Z and, since λL(Z) = 0, it now
follows from (∗∗) that λL+1(S) = 0.

Exercise 6.7
The monic polynomial P is given by P (s) = (s+1)(s+2)(s+5) = s3+8s2+17s+10.
Set

v =

(
1
0

)
, b = Bv =

1
0
0

 , E =

(
0 0 0
1 0 0

)
,

2 Guido Fubini (1897-1943), Italian.
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in which case we have

A+BE =

0 0 2
1 2 0
2 0 1

 , C(A+BE, b) =

1 0 4
0 1 2
0 2 2

 .

The matrix C(A+BE, b) has full rank and so (A+BE, b) is controllable. Moreover,

C(A+BE, b)−1 =

∗ ∗ ∗
∗ ∗ ∗
0 1 −1/2

 , P (A+BE) =

46 0 60
41 84 22
60 0 76

 .

Therefore,

f∗ = −(0, 0, 1)C(A+BE, b)−1P (A+BE) = (−11,−84, 16)

and

F = E + vf∗ =

(
−11 −84 16
1 0 0

)
.

Exercise 6.8
Let A = −I and B = 0. Then −I = A+BF is Hurwitz for all F ∈ RM×N but (A,B)
is evidently not controllable.

Exercise 6.9
Note initially that

C(A, b) = (b, Ab,A2b) =

1 1 1
0 0 0
1 2 3


has determinant 0, and so the system fails to be controllable for all α ∈ R. On the
other hand, we will show that the system is stabilizable for all α ∈ R. This we do by
an application of the Hautus criterion for stabilizability. We have

(
sI −A, b) =

s− 1 −α 0 1
0 s+ 1 0 0
−1 −1 s− 1 1

 .

Consider columns 1,2 and 4, in which case we have∣∣∣∣∣∣
s− 1 −α 1
0 s+ 1 0
−1 −1 1

∣∣∣∣∣∣ = s(s+ 1)

which is non-zero for all s ∈ C+\{0} and all α ∈ R. By the Hautus criterion for
stabilizability, we may conclude that the system is stabilizable for all α ∈ R if we can
show that, for s = 0, rk (sI −A, b) = 3. Considering columns 2,3 and 4 of (−A, b), we
have ∣∣∣∣∣∣

−α 0 1
1 0 0
−1 −1 1

∣∣∣∣∣∣ = −1.

Therefore, we have shown that, for all α ∈ R, rk
(
sI − A, b

)
= 3 for all s ∈ C+ and

so, by the Hautus criterion, the system is stabilizable for all α ∈ R.
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Exercise 6.10
Let λ ∈ σ(A). If λ is uncontrollable, then an argument identical to that used in the
proof of the necessity part of the eigenvalue-assignment theorem (Theorem 6.3) shows
that λ ∈ σ(A+BF ) for all F ∈ RM×N .
Conversely, assume that λ ∈ σ(A + BF ) for all F ∈ RM×N . Then any monic real
polynomial P of degree N such that P (λ) ̸= 0 cannot be assigned to (A,B) and
therefore, by the eigenvalue-assignment theorem, (A,B) is not controllable. If B = 0,
then, trivially, rk (λI − A, 0) = rk (λI − A) < N , showing that λ is uncontrollable.
Let B ̸= 0. Then, without loss of generality, we may assume that A and B take the
form (Kalman controllability decomposition, Lemma 3.10):

A =

(
A1 A2

0 A3

)
and B =

(
B1

0

)
,

where the pair (A1, B1) is controllable. For every F = (F1, F2) ∈ RM×N , we have

A+BF =

(
A1 +B1F1 A2 +B1F2

0 A3

)
, σ(A+BF ) = σ(A1 +B1F1) ∪ σ(A3),

where the second identity follows form Theorem A.7. Since (A1, B1) is controllable,
Theorem 6.3 ensures that we can choose F1 such that λ ̸∈ σ(A1+B1F1). Consequently,
λ ∈ σ(A3) and thus, rk (λI −A,B) < N , showing that λ is uncontrollable.

Exercise 6.11
Since, for all z ∈ RN , (∇V )(z) = Pz and ⟨Pz,Az⟩ = ⟨PAz, z⟩ = ⟨A∗Pz, z⟩, we have

⟨(∇V )(z), Az⟩ = ⟨Pz,Az⟩ = ⟨(PA+A∗P )z, z⟩/2. (∗)

It is now immediate that, if PA+A∗P = 0, then ⟨(∇V )(z), Az⟩ = 0 for all z ∈ RN .
Conversely, assume that ⟨(∇V )(z), Az⟩ = 0 for all z ∈ RN . Then, by (∗), the matrix
Q := PA + A∗P satisfies ⟨Qz, z⟩ = 0 for all z ∈ RN . Let y, z ∈ RN be arbitrary.
Exploiting the symmetry of Q, we have ⟨Qy, z⟩ = ⟨Qz, y⟩. Therefore

0 = ⟨Q(y + z), y + z⟩ = ⟨Qy, y⟩+ ⟨Qz, z⟩+ 2⟨Qy, z⟩ = 2⟨Qy, z⟩.

and, since y and z are arbitrary, it follows that Q = 0.

Exercise 6.12
Note that

span{Az,Bz, z} = span

{(
z2
−z1

)
,

(
0
z1

)
,

(
z1
z2

)}
= R2 ∀ z ∈ R2\{0}.

Since ad1(A,B) = I, it follows that

span{Az,Bz, ad1(A,B)z, ad2(A,B)z, . . .} = span{Az,Bz, z} = R2 ∀ z ∈ R2\{0}.

Noting that A + A∗ = 0, it follows from Corollary 6.15 that the feedback law
u(t) = −⟨x(t), Bx(t)⟩ = −x1(t)x2(t) is globally asymptotically stabilizing.

Exercise 6.13
(a) Let N = 1, A = 1 and S = {1} ⊂ R. Then S is A-invariant, but S is not positively
exp(At)-invariant because exp(At) = et ̸= 1 for all t > 0.
LetN = 1,A = −1 and S = (0,∞) ⊂ R. For each ξ ∈ S, we have exp(At)ξ = e−tξ ∈ S
for all t ∈ R and so S is exp(At)-invariant. However, S is not A-invariant because,
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for each ξ ∈ S, Aξ = −ξ ̸∈ S.
(b) Let S ⊂ RN be a subspace; since S is finite dimensional, it is closed. Assume that
S is A-invariant. Set En(t) :=

∑n
k=0(1/k!)(At)

k for all n ∈ N and let ξ ∈ S. Since
S is an A-invariant subspace, we have En(t)ξ ∈ S for all n ∈ N and all t ∈ R+. By
closedness of S, it follows that limn→∞ En(t)ξ = exp(At)ξ is in S for all t ∈ R+.
Now assume that the subspace S is positively exp(At)-invariant. Let ξ ∈ S be arbi-
trary. Then, for each n ∈ N, ζn := n(exp(An−1)− I)ξ is in S and so, by closedness of
S, Aξ = limn→∞ ζn ∈ S. Therefore, S is A-invariant.
(c) LetN = 1, A = 1 and S = [1,∞) ⊂ R. For each ξ ∈ S, we have exp(At)ξ = etξ ∈ S
for all t ∈ R+ and so S is positively exp(At)-invariant. However, S is not exp(At)-
invariant because, for each ξ ∈ S, exp(At)ξ = etξ → 0 as t→ −∞.
(d) Let S ⊂ RN be a subspace. As a finite-dimensional subspace S is closed. By part
(b), if S is positively exp(At)-invariant, then S is A-invariant, and thus, by the closed-
ness and subspace property of S, we conclude that exp(At)ξ =

∑∞
k=0(1/k!)(At)

kξ is
in S for all ξ ∈ S and all t ∈ R.

Exercise 6.14
(a) Writing x1(t) = y(t), x2(t) = ẏ(t) and x3(t) = z(t), we have ẋ(t) = Ax(t) +
u(t)Bx(t) with A,B ∈ R3×3 as given.
(b) By direct calculation, we have

ad1(A,B) = [A,B] = AB −BA =

 0 −1 0
−1 0 0
0 0 0

 ,

ad2(A,B) = [A, ad1(A,B)] =

−2 0 0
0 2 0
0 0 0

 .

By induction, we find that, for all k ∈ N,

ad2k−1(A,B) = (−4)k−1ad1(A,B), ad2k(A,B) = (−4)k−1ad2(A,B).

Therefore,

span{Az,Bz, ad1(A,B)z, . . .} = span{Az,Bz, ad1(A,B)z, ad2(A,B)z}

= span


 z2
−z1
0

 ,

 0
−z2
z3

 ,

−z2
−z1
0

 ,

−z1
z2
0


which is not equal to R3 for all z ∈ R3 of the form z = (z1, z2, 0). Therefore, the
hypotheses of Corollary 6.15 fail to hold.
(c) Set Ω := {(z1, z2, z3) = z ∈ R3 : z3(z

2
1 + z22) ̸= 0}. Observe that A+A∗ = 0 and

span{Az,Bz, ad1(A,B)z, ad2(A,B)z} = R3 ∀ z ∈ Ω.

Setting Γ := {z ∈ R3 : ⟨z,Bz⟩ = 0} = {(z1, z2, z3) ∈ R3 : z22 − z23 = 0}, we see that
(R3\Ω) ∩ Γ = {(z1, z2, z3) ∈ R3 : z2 = 0 = z3} and the only positively exp(At)-
invariant subset thereof is {0}. Therefore, by Theorem 6.15, we may conclude that
the feedback u(t) = −⟨x(t), Bx(t)⟩ = x22(t)− x23(t) = ẏ2(t)− z2(t) is globally asymp-
totically stabilizing.

Exercise 6.15
Recall that O ∈ RN×N is said to be orthogonal if its columns form an orthonormal
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basis of RN ; equivalently, O is orthogonal if O∗O = I (and so O−1 = O∗). We first
show that, for every N ∈ N and every symmetric P ∈ RN×N , there exists an orthog-
onal matrix O ∈ RN×N such that Λ := O∗PO is diagonal (of course, the diagonal
entries of Λ are the eigenvalues of P , and so each eigenvalue is real and recurs up
to its algebraic multiplicity). This we prove by induction on N . For each N ∈ N, let
P(N) denote the statement:

P(N): “For each symmetric P ∈ Rn×N there exists orthogonal O ∈ RN×N such that
Λ := OTPO is diagonal.”

Clearly, P(1) is a true statement. Assume that N ∈ N and P(N) is true. Let

P ∈ R(N+1)×(N+1) be symmetric. Let λ ∈ R be an eigenvalue of P and let v1 ∈ RN+1

be an associated eigenvector with ∥v1∥ = 1. Let v2, . . . , vN+1 ∈ RN+1 be such that
O1 :=

(
v1, v2, . . . , vN+1

)
is an orthogonal matrix. Write P1 = O∗

1PO1 = O−1
1 PO1

and so O1P1 = PO1. Now, the first column of PO1 is Pv1 = λv1 and so the
first column of O1P1 is also λv1. Therefore, the first column of P1 is (λ , 0 , . . . , 0)∗

and, since P1 is symmetric, we may infer that the first row of P1 is (λ , 0 , . . . , 0).
Therefore, P1 = diag

(
λ , P2), where P2 ∈ RN×N is symmetric. By the induc-

tion hypothesis, there exists orthogonal O2 ∈ RN×N such that Λ2 := O∗
2P2O2

is diagonal. Writing O0 := diag
(
1 , O2

)
∈ R(N+1)×(N+1), then O0 is orthogonal

and we have O∗
0P1O0 = diag

(
λ , Λ2

)
=: Λ. Finally, writing O = O1O0, then

O∗PO = O∗
0O

∗
i PO1O0 = O∗

0P1O0 = Λ. Therefore, P(N + 1) is a true statement.
By induction, it follows that P(N) is true for all n ∈ N.
Now, let P ∈ RN×N be symmetric and positive definite. Then each eigenvalue of P
is real and positive. Let O ∈ RN×N be orthogonal and such that O∗PO = Λ, where
is diagonal. Define µ := min{λ : λ ∈ σ(P )} > 0 and nu := max{λ : λ ∈ σ(P )}, and so
µ (respectively, ν) is the smallest (respectively, largest) of the positive entries on the
diagonal o f Λ. Then,

⟨z, Pz⟩ = ⟨(O∗z), O∗PO(O∗z)⟩ = ⟨(O∗z), Λ(O∗z)⟩

and noting that, since O is orthogonal, ∥z∥ = 1 implies ∥O∗z∥ = 1, we have

min
∥z∥=1

⟨z, Pz⟩ = min
∥w∥=1

⟩w,Λw⟩ = µ

and
∥P∥ = max

∥z∥=1
⟨a, Pz⟩ = max

∥w∥=1
⟨w,Λw⟩ = ν.

Moreover, since σ(P−1) = {1/λ : λ ∈ σ(P )}, we have ∥P−1∥ = 1/µ and so µ =
1/∥P−1∥.

Exercise 6.16
Noting that, for all s ∈ C and all α ∈ R, rk (sI − A, b) = rk (sI − (A− αbc∗), b) and
rk (sI − A∗, c) = rk (sI − (A − αbc∗)∗, c), the requisite results follow by the Hautus
criteria for controllability and observability (Theorems 3.11 and 3.21).

Exercise 6.17
The transfer function Ĝ for the system is given by

Ĝ(s) = c∗(sI −A)−1b =
1

s2 + s− 2

and, with α = 2 and β = 3, the rational function R is given by

R(s) =
(
1 + βĜ(s)

)(
1 + αĜ(s)

)−1
=
s2 + s+ 1

s2 + s
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Clearly, R does not have any poles in the open right half plane C+. The pole at s = 0

is semisimple and lims→0 sR(s) = 1 > 0. Also, ReR(iω) = ω2

1+ω2 ≥ 0 for all ω ∈ R.
Therefore, by Lemma 6.16, we may infer that R is positive real. The requisite results
now follow by Theorem 6.17.

Exercise 6.18
Setting Aα := A−αbc∗, then, as in the proof of Theorem 6.17, (Aα, b, c

∗) is a minimal

realization of the strictly-proper rational function Ĝα := Ĝ/(1+αĜ). By assumption

Ĝα is positive real and so, by the positive real lemma (Lemma 6.18), there exist
a symmetric positive-definite matrix P ∈ RN×N and a vector l ∈ RN such that
PAα + A∗

αP = −ll∗ and Pb = c. Let kα, f , φ and V be as in the proof of Theorem
6.17. Then

Vf (z) = ⟨(∇V )(z), Aαz − bkα(c
∗z)⟩ = −(l∗z)2 − 2(c∗z)kα(c

∗z)

≤ −2(c∗z)kα(c
∗z) ∀ z ∈ RN .

(a) Assume k ∈ S[α,∞). Then wkα(w) = wk(w) − αw2 ≥ 0 for all w ∈ R and so
Vf (z) ≤ 0 for all z ∈ RN . By the same argument as that used in the proof of Theorem
6.17, it follows that (6.39) holds.
(b) Now assume that k ∈ S(α,∞). Then wkα(w) > 0 for all w ∈ R\{0}. Therefore,
Vf (z) < 0 for all z ̸∈ ker c∗ and so V −1

f (0) ⊂ ker c∗. The same argument (based on

LaSalle’s invariance principle) as that used in the proof of Theorem 6.17 now applies
to conclude that the equilibrium is globally asymptotically stable.

Exercise 6.19
In this case,

A =

(
0 1

−µ 0

)
, b = c =

(
0
1

)
and so Ĝ is given by Ĝ(s) = s/(s2 + µ), which has simple poles at ±i√µ, each with

residue 1/2. Moreover, Re Ĝ(iω) = 0 for all w ̸= ±√
µ. By Lemma 6.16, Ĝ is positive

real and the requisite results follow from Theorem 6.19 (with α = 0).

Exercise 6.20
(a) Let Ã, b̃ and c̃ be as in the proof of Theorem 6.21. Furthermore, let f : RN+1 →
RN+1 be the locally Lipschitz function given by

f(z) := Ãz − b̃k(c̃∗z) + d̃, where d̃ :=

(
0
γρ

)
∈ RN+1.

Then the initial-value problem (6.49) may be expressed in the form

η̇(t) = f(η(t)), η(0) =

(
ξ
ζ

)
, where η(t) :=

(
x(t)
u(t)

)
.

By the global Lipschitz property of k, there exists λ > 0 such that |k(c̃∗z)− k(0)| ≤
λ|c̃∗z| ≤ λ∥c̃∥∥z∥ for all z ∈ RN+1. Therefore,

∥f(z)∥ ≤ ∥Ã∥∥z∥+ λ∥b̃∥∥c̃∥∥z∥+ ∥b̃∥|k(0)|+ ∥d̃∥ ∀ z ∈ RN+1.

Writing L := max{∥Ã∥+ λ∥b̃∥∥c̃∥, ∥b̃∥|k(0)|+ ∥d̃∥}, we have

∥f(z)∥ ≤ L
(
1 + ∥z∥

)
∀ z ∈ RN+1.
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By Proposition 4.12, it now follows that the maximal solution of the initial-value
problem (6.49) has interval of existence R.
(b) For all t ∈ R+, we have

ż(t) = ẋ(t) = Ax(t) + bk(u(t)) = Az(t) + b
(
k(u(t))− k(uρ)

)
= Az(t) + b

(
k(v(t) + uρ)− k(uρ)

)
= Az(t) + bk̃(v(t))

and

v̇(t) = u̇(t) = γ(ρ− c∗x(t)
)
= γ

(
ρ− c∗z(t) + c∗A−1bk(uρ)

)
= γ

(
ρ− c∗z(t)− Ĝ(0)k(uρ)

)
= γ

(
ρ− c∗z(t)− ρ

)
= −γc∗z(t).

(c) Let s ∈ C and z ∈ CN be arbitrary and assume that z∗(sI − Ã, b̃) = 0, where Ã

and b̃ are given by (6.53). By the Hautus criterion for controllability, it is sufficient
to show that z = 0. Writing z∗ = (w∗, v̄), where w ∈ CN and v ∈ C, we obtain

z∗(sI − Ã, b̃) = (w∗(sI −A) + v̄γc∗, sv̄, −w∗b) = 0.

Assume that s ̸= 0. Then v = 0, and thus w∗(sI−A, b) = 0. Since (A, b) is controllable,
the Hautus criterion for controllability implies that w = 0, and hence, z = 0. Now
assume that s = 0. Then

−w∗A+ v̄γc∗ = 0, w∗b = 0, (∗)

and consequently,

v̄γĜ(0) = −v̄γc∗A−1b = 0.

Since γĜ(0) > 0, we now conclude that v = 0. By (∗), w∗(−A, b) = 0, and so
controllability of (A, b) together with the Hautus criterion yields that w = 0, and
hence, z = 0.
(d) Observability of (c̃∗, Ã) follows from an argument similar to that employed in the
solution of part (c).
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Appendix

Exercise A.1
Let x1, . . . , xK ∈ FP be a basis of

(
kerM

)⊥
. Choose xK+1, . . . , xN ∈ FP arbitrarily

and set X :=
(
x1, . . . , xN

)
∈ FP×N . Define y1 := Mxi ∈ FN , i = 1, . . .K. First, we

show that y1, . . . , yK are linearly independent. Assume α1 ∈ F, i = 1, . . . ,K, and∑K
i=1 α1yi = 0. Then M

(∑k
i=1 αixi

)
= 0 and so

∑k
i=1 αixi ∈

(
kerM

)
∩
(
kerM

)⊥
.

Therefore,
∑K

i=1 αixi = 0 and, by linear independence of x1, . . . , xk, we may infer that
αi = 0, i = 1, . . . ,K, whence linear independence of y1, . . . , yK . Now choose vectors
yK+1, . . . , yN ∈ FN such that y1, . . . , yN is a basis of FN . Set Y :=

(
y1, . . . , yN

)
∈

FN×N and note that Y is invertible. Define M ♯ := XY −1 ∈ FP×N . Then

M ♯Mx1 =M ♯yi = XY −1yi = xi, i = 1, . . . ,K,

and, since x1, . . . , xK is a basis of
(
kerM

)⊥
, we have M ♯Mx = x for all x ∈(

kerM
)⊥

. Moreover, if M has full rank, then M ♯M = I and so M has a left in-
verse.

Exercise A.2
(a) The result holds vacuously if S = ∅ (the empty set is both open and closed). Thus,
we restrict to the case wherein S ̸= ∅.
First assume that S is closed. Let (xn) be a convergent sequence in S with limit
x ∈ X. Suppose that x ̸∈ S. Then x is a point of the open set X\S. Therefore, x has
an open neighbourhood U with U ⊂ X\S. Since xn → x as n → ∞, it follows that
xn ∈ U ⊂ X\S for all n sufficiently large. This contradicts the fact that (xn) is a
sequence in S. Therefore, x ∈ S.
Now assume that every convergent sequence in S has its limit in S. Suppose that S is
not closed. Then X\S is non-empty and is not open, and so there exists x ∈ X\S such
that B(x, ε)∩S ̸= ∅ for all ε > 0. Thus, for each n ∈ N, there exists xn ∈ B(x, 1/n)∩S.
The sequence (xn) so constructed is a sequence in S with limit x ∈ X\S. This contra-
dicts the hypothesis that every convergent sequence in S has its limit in S. Therefore,
our supposition is false and so S is closed.

(b) First assume that x ∈ cl(S). Suppose, for contradiction, that there exists ε > 0
such that B(x, ε) ∩ S = ∅. Then X\B(x, ε) contains S and so, since X\B(x, ε) is a
closed set, it must also contain cl(S). Therefore, cl(S) ∩ B(x, ε) = ∅, whcih contra-
dicts the hypothesis that x ∈ cl(S). We have now shown that, if x ∈ cl(s), then
B(x, ε) ∩ S ̸= ∅ for all ε.
We prove the converse by contraposition. Assume that x ∈ X is such that x ̸∈ cl(S).
Then, since X\cl(S) is an open set, there exists ε > 0 such that B(x, ε) ⊂ X\cl(S).
In particular, ∅ = B(x, ε) ∩ cl(S) ⊃ B(x, ε) ∩ S.

Exercise A.3
Let (xn) be a sequence in a Banach space X and, for aech n ∈ N, write sn =

∑n
k=1 xk.

Assume that the series
∑∞

k=1 xk is absolutely convergent, that is, assume that∑∞
k=1 ∥xk∥ < ∞. Let ε > 0 be arbitrary. By absolute convergence of the series,

there exists N ∈ N such that
∑∞

k=n ∥xk∥ < ε for all n > N . Now, forall n,m ∈ N
with n ≥ m > N , we have

∥sn − sm∥ =

∥∥∥∥∥
n∑

k=1

xk −
m∑

k=1

xk

∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=m

xk

∥∥∥∥∥ ≤
n∑

k=m

∥xk∥ < ε

and so (sn) is a Cauchy sequence in the Banach space X and so, by completeness,
(sn) converges in X.
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Exercise A.4
Let F denote the underlying scalar field. For convenience, write B = Cb(S, Y ). It is
straightforward to verify that B ia s vector space. By boundedness of the elements of
B, we have ∥f∥∞ < ∞ for all f ∈ B. Moreover, (i) ∥f∥∞ = 0 if, and only if, f = 0;
(ii) ∥λf∥∞ = |λ|∥f∥∞ for all (λ, f) ∈ F×B; (iii) for all f, g ∈ B,

∥f + g∥∞ = sup
x∈S

∥f(x) + g(x)∥ ≤ sup
x∈S

∥f(x) + sup
x∈S

∥g(x)∥ = ∥f∥∞ + ∥g∥∞.

Therefore, ∥ · ∥∞ is a norm on B. We proceed to prove completeness of this normed
space. Let (fn) be a Cauchy sequence in B. Then, for every (fn(x)) is a Cauchy
sequence in the Banach space Y and so converges to a limit f(x) ∈ Y . To complete
the proof, it suffices to show that the function f : S → Y is in B and ∥f − fn∥∞ → 0
as n→ ∞. Let ε > 0 be arbitrary. Since (fn) is a Cauchy sequence in B, there exists
N ∈ N such that ∥fn(x)− fm(x)∥ ≤ ε for all x ∈ S and all n,m ∈ N with n,m > N .
Passing to the limit n → ∞ gives ∥f(x) − fm(x)∥ ≤ ε for all x ∈ S and all m > N .
Therefore, ∥f − fm∥∞ ≤ ε for all m > N and so we may infer that ∥f − fn∥∞ → 0
as n→ ∞. By boundedness of the functions fn, we see that f is bounded. It remains
only to show that f is continuous. Let s ∈ S and ε > 0 be arbitrary. Fix n ∈ N
sufficiently large so that ∥f − fn∥∞ ≤ ε/3. By continuity of fn, there exists δ > 0
such that ∥fn(x) − fn(s)∥ ≤ ε/3 for all x ∈ S with ∥x − s∥ ≤ δ. Therefore, for all
x ∈ S with ∥x− s∥ ≤ δ,

∥f(x)− f(s)∥ ≤ ∥f(x)− fn(x)∥+ ∥fn(x)− fn(s)∥+ ∥fn(s)− f(s)∥ ≤ ε

3
+
ε

3
+
ε

3
= ε,

whence continuity of f at s. Since s ∈ S is arbitrary, f is continuous. Thus, we have
shown that f ∈ B.

Exercise A.5
Noting that

{∥Mz∥p/∥z∥p : z ∈ FQ\{0}} = {∥Mz∥p : z ∈ FQ, ∥z∥p = 1},

it immediately follows that ∥M∥ = sup∥z∥p=1 ∥Mz∥p. Clearly, sup∥z∥p=1 ∥Mz∥p ≤
sup∥z∥p≤1 ∥Mz∥p =: µ. We will show that µ = ∥M∥. By continuity of z 7→ ∥Mz∥p
and compactness of {z ∈ FQ : ∥z∥p ≤ 1}, there exists ẑ ∈ FQ, with ∥ẑ∥p ≤ 1, such
that ∥Mẑ∥p = µ. If ẑ = 0, then µ = 0 = ∥M∥. If ẑ ̸= 0, then

∥M∥ = sup
∥z∥p=1

∥Mz∥p ≤ sup
∥z∥p≤1

∥Mz∥p = µ = ∥Mẑ∥p = ∥ẑ∥p∥ẑ∥−1
p ∥Mẑ∥p

≤ ∥ẑ∥−1
p ∥Mẑ∥p ≤ sup

∥z∥p=1

∥Mz∥p = ∥M∥.

Therefore, µ = ∥M∥. This completes the proof of (A.11).

To conclude that (A.12) also holds, simply note that

inf{γ ≥ 0: ∥Mz∥p ≤γ∥z∥p ∀ z ∈ FQ}

= inf{γ ≥ 0: ∥Mz∥p ≤ γ ∀ z ∈ FQ, ∥z∥p = 1}
= inf

{
γ ≥ 0: sup∥z∥p=1∥Mz∥p = ∥M∥ ≤ γ

}
= ∥M∥.

Exercise A.6
First, assume that the improper integral converges to F ∈ MF. Let ε > 0 be arbitrary.
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Then there exists r ≥ a such that ∥
∫ T

a
f(t)dt−F∥ ≤ ε/2 for all T ∈ [r,∞). Therefore,∥∥∥∥∫ τ

σ

f(t)dt

∥∥∥∥ =

∥∥∥∥∫ τ

a

f(t)dt−
∫ σ

a

f(t)dt

∥∥∥∥
≤
∥∥∥∥∫ τ

a

f(t)dt− F

∥∥∥∥+ ∥∥∥∥∫ σ

a

f(t)dt− F

∥∥∥∥
≤ ε

2
+
ε

2
= ε ∀σ, τ ∈ [r,∞), σ ≤ τ.

Now, assume that, for every ε > 0, there exists r ≥ a such that ∥
∫ τ

σ
f(t)dt∥ ≤ ε for

all σ, τ ∈ [r,∞) with σ ≤ τ . For each n ∈ N with n ≥ a, define Fn :=
∫ n

a
f(t)dt. Let

ε > 0 be arbitrary. By the hypothesis, there exists r ≥ a such that

∥Fn − Fm∥ =

∥∥∥∥∫ n

m

f(t)dt

∥∥∥∥ ≤ ε ∀m,n ∈ N, r ≤ m ≤ n.

Therefore, (Fn) is a Cauchy sequence in the Banach space MF and so converges.
Denote its limit by F . We will show that the improper integral converges to F . Let
ε > 0 be arbitrary. By the hypothesis in conjunction with convergencs of (Fn) to f ,
there exists r ≥ a such that

∥Fn − F∥ ≤ ε

2
∀n ∈ N, n ≥ r and

∥∥∥∥∫ τ

σ

f(t)dt

∥∥∥∥ ≤ ε

2
∀σ, τ ∈ [r,∞), σ ≤ τ.

Let τ ≥ r + 1 be arbitrary and denote its integer part by n = ⌊τ⌋ ≥ r. Then∥∥∥∥∫ τ

a

f(t)dt− F

∥∥∥∥ =

∥∥∥∥∫ n

a

f(t)dt+

∫ τ

n

f(t)dt− F

∥∥∥∥
≤ ∥Fn − F∥+

∥∥∥∥∫ τ

n

f(t)dt

∥∥∥∥ ≤ ε

2
+
ε

2
= ε

and so the improper integral converges to F .

Exercise A.7
If γ < 0, then F is bounded and so is of class E0. If γ ≥ 0, then, for all δ > γ,
there exists c ∈ R+ such that ∥f(t)∥ ≤ ceδt and so ∥F (t∥ ≤

∫ t

0
∥f(τ)∥dτ ≤ (c/δ)eδt.

Therefore, if γ ≥ 0, then F is of class Eγ . Defining β := max{γ, 0}, it follows that F
is of class Eβ . Since β ≥ γ and f is of class Eγ , f is a fortiori of class Eβ . Therefore,
f, F ∈ Eβ . Define F▽ := f . Let E denote the set of points in R+ at which f fails to
be continuous. Then, f(t) = F ′(t) = F▽(t) for all t ∈ R+\E. Moreover, F, F▽ ∈ Eβ

and, by the result in part (1) of Theorem A.37, we have

L{f}(s) = L{F▽}(s) = sL{F}(s)− F (0) = sL{F}(s) ∀ s ∈ Cβ

and so L{F}(s) = (1/s)L{f}(s) for all s ∈ Cβ .


