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Chapter 1

Exercise 1.1

(a) Writing g: z1 — 1/(z1 + o), then, in a sufficiently small neighbourhood of 0, g
may be approximated by the first two terms of its Taylor expansion about 0:
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Now consider the nonlinear terms in the satellite model. For (z1, 22, 23, 24, w1, w2) in
a sufficiently small neighbourhood of 0 € R®, expansion and keeping only constant
and linear terms, gives

(z14+0)(za + w)2 = zlzi + 221 zaw + Wiz + O‘ZZ 4 2wozy + ow?
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Therefore, for (21, 22, 23, z4, w1, w2) in a sufficiently small neighbourhood of 0 € RS,
we have
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(b) With v = (u1,u2) = 0, we have

Jult,2) = fot, 21,22, 23, 24) = (22, fa(21, 24,0), 23, fa(21, 22, 24,0)).
For the putative solution x = (z1, z2, z3,24), we have

oPw?

1(t) = 0= w2(t), d2(t) = 0= 0:(e +w)” — gz = 2(@1(t), 2:2(t), 24(1),0)

£3(t) = € = wa(t), &a(t) = 0= fa(zr(t),z2(t),z4(t),0),
and so x is indeed a solution of the nonlinear system.
(c) Let 6 > 0 be arbitrary. Noting that

( w >2/3
Oc =0 s
w+e

we may choose € > 0 sufficiently small so that

(0e —0)’ &> < &%



2 Solutions to Exercises

Define £ = (&1,£2,&3,84) := (0. — 0,0,0,¢). Then ||£]| < § and, by part (b), t —
z(t) = (0 — 0,0,¢et,¢) is a solution with initial data z(0) = £. Moreover, ||z(t)|| > et
for all t > 0 and so ||z(t)|| — o0 as t — oo.

Exercise 1.2
(a) Let x: I — RY be a solution. By the chain rule (Proposition A.34), the derivative
(E oz)" of the composition F o z satisfies

(Eox)'(t) = ((VE)(z(t),2(t)) = (VE)(z(t)), f(x(t)) =0, Vtel.
Consequently, there exists v € R such that E(z(t)) = (Eoxz)(t) = forall t € I.
(b) ((VE)(2), f(2)) = —g(z1)22 + 229(21) = 0 for all z € R
(c) Applying part (b) with g given by g(s) = —bsin s shows that

21
E(z) = E(z1,22) = b/ sinsds = b(1 — cos z1) + 25 /2
0

is a first integral.
(d) (VE)(2) = (VE)(21,22) = (d — ¢/21, b—a/z) and so

(VE)(z1, 22), (21(=a + b22), 22(c — dz1)))
= ac — bczo — adz1 + bdz1z9 — ac + adz1 + bezo — bdz1zs
=0, V(z1,22) € (0,00) x (0,00).

(e) Assume E: G — R is a first integral for (1.12). We have seen that the image of any
solution of (1.12) is contained in some level set of E. Therefore, in principle, a study
of the level sets of a first integral can provide insight into the qualitative behaviour of
solutions of (1.12). For any constant function E, trivially we have ((VE)(z), f(z)) =0
for all z € G and, moreover, G is the only non-empty level set E. Therefore, if
non-constancy is removed from the definition of a first integral, then every constant
function is a first integral and the result in (a) above does not provide any useful
information.

Exercise 1.3
In parts (a)-(d), it is assumed that k(&) # 0.

(a) K'(z) = 1/k(z) # 0 for all z € U. Therefore, K: U — K (U) is strictly monotone
and so has an inverse function K ~': K (U) — U. Moreover, K(U) is an open interval
containing 0 and K~'(0) = €.

(b) Since H is continuous with H(7) = 0, there exists ¢ > 0 such that [ := (t—¢,7+¢€)
is contained in J and H([) is contained in K (U).

(c) Differentiating the relation K (z(t)) = H(¢) for all ¢t € I gives K'(x(t))#(t) = h(t)
for all t € I. Since K’ = 1/k, we have @(t) = k(x(t))h(t) for all ¢ € I. Moreover,
(1) = K"Y(H(1)) = K7'(0) = € and so x: I — G, t — K~ '(H(t)) is a solution
of the initial-value problem. Assume x1,z2: I — G are two solutions of the initial-
value problem. Then K(z1(t)) = H(t) = K(z2(t)) for all ¢ € I and so z1(t) =
K™Y (K (x2(t))) = xa(t) for all t € 1.

(d) Set J:=R, I :=(—1,1), U := (0,00), k(x) = 2° for all z € U and h(t) := t for all
t € J. Define K: U — K(U) by K(z) := [[ds/k(s) = (1—27%)/2 for all z € U and
define H: J — R by H(t) := fot h(s)ds = t?/2 for all t € J. Then K(U) = (—o0,1/2),
H(I) = (-1/2,1/2) C K(U) and K~': K(U) — U is given by K~'(2) = 1/y/1 — 22.
By parts (a)-(c), it follows that : I — R, t = K~ '(H(t)) = 1//1 — {2, solves the
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initial-value problem. Moreover, since z(t) — oo as t — *£1, the solution x is maximal.
In parts (e) and (f) below, it is assumed that k(¢) = 0.

(e) First, we prove that z(t) = £ for all ¢ € I with ¢ > 7. Suppose that this claim
is false. Then there exists I* = (o,p) C I such that o > 7, z(0) = &, z(p) # £ and
z(t) € (£—=9,6)U (&, +0) for all t € I*. Set ¢ := (p — 0) maxe[s,,] |1(t)]. Since, for
all t € I, @(t) = k(z(t))h(t) and k(z(t)) # 0, we have
/Z(P) ds
z(r) k(S)

"o | [ 20 -
h(t)dt| = dt| =
[ s = |
Observe that either z(t) € (£§,£ + ) for all t € I* or x(t) € (£ —§,¢) for all t € T*.
If the former is the case, then z(p) > ¢ and passing to the limit r — o (and so
z(r) | z(o) = &) yields a contradiction to the second of properties (1.16). If the latter
is the case, then z(p) < £ and passing to the limit r — o (and so z(r) 1 z(o) = &)
yields a contradiction to the first of properties (1.16). We may now conclude that
z(t) =& for all t € I with ¢t > 7.
The above argument applies mutatis mutandis to conclude that z(t) = £ for all t € T
with t < 7.

)
CZ/ h(t)|dt > Vrel.

(f) The function k fails to satisfy properties (1.16).

Exercise 1.4

(a) Let : J — R be a solution of (1.18). We first show that x(t) = 0 for all t €
J with ¢ > 7. Suppose otherwise, then there exists I = (o,p) C J with ¢ > 7,
z(0) = 0 and z(t) # 0 for all t € I. Define a := (p — 0) max,c(o,p) |a(t)|. Observe
that (d/dt)(In|z(¢t)|) = (¢)/z(t) = a(t) for all points ¢ € I at which a is continuous.
Therefore,

| Infa(p)/x(s)]] =

/Sp a(t)dt' < /Sp la(t)|dt <o Vs € (o,p)

which is impossible since, by choosing s sufficiently close to o, z(s) can be made
arbitrarily close to (o) = 0 and so the term on the left can be made arbitrarily
large. Therefore, z(t) =0 for all ¢t € J with ¢t > 7.

The above argument applies mutatis mutandis to conclude that z(t) = 0 for all t € J
with ¢t < 7.

(b) Clearly, z(7) = £ and, invoking Theorem A.30, we have #(t) = a(t)z(t) at all
points t of continuity of a. Therefore, z is a solution. Suppose y: J — R is also a
solution, and write z := x —y. Then z(7) = £ — & = 0 and 2(¢) = @(¢t) — y(t) =
a(t)(z(t) —y(t)) = a(t)z(t). By the result in (a), the zero function is the only solution
on J of the initial-value problem: 2(t) = a(t)z(t), 2(0) = 0. Therefore, y(t) = x(t) for
all t € J and so x is the unique maximal solution.

(c) By properties of the exponential function, sufficiency of the condition is clear. We
proceed to prove necessity and argue by contraposition. Assume that f: a(s)ds A —oc0
as t — oo. Then there exist a € R and a sequence (¢,) in R, with ¢, — co as n — oo,
such that f:" a(s)ds > a for all n € N. Therefore, |z(tn)| > e*|€] > 0 for all n € N
and so, for £ #0, z(t) /A 0 as t — 0.

(d) Define A := fOT a(s)ds, B := fOT la(s)|ds and C := | [] a(s)ds|. Observe that, for

every integer m,

mT (m+1)T
/ a(s)ds =mA and / la(s)|ds = B.
0

mT
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Let (tn) be any sequence in R with ¢, — 0o as n — co. For each n € N, there exists
a unique integer m, such that m,T < t, < (my + 1)T. Clearly, m, — 0o as n — oo.

- /:" a(s)ds = </TO+/OMT+/”:T) a(s)ds

Therefore, mn,A — B — C < f:" a(s)ds < mpA+ B+ C for all n € N and so
f:" a(s)ds — —oo asn — oo if, and only if, A < 0. We may now infer that f: a(s)ds —
—00, as t — oo if, and only if, A < 0. Invoking the result in (c¢) completes the proof.

Exercise 1.5
Let K C J be a compact interval containing 7 and let £ C K be the finite set of
points ¢ € K at which either a or b (possibly both) fails to be differentiable. Write

K=K \E. Multiplying both sides of the differential equation by p, we have

(n)' () = p(OE(0) +a(D(t) = p(t) (al)e(t)+b(1) — p(Ha(t)z(t) = p(Db(E) Vit € K,

which, on integration and imposing the condition z(7) = £, gives

/ H(s)b(s)ds = u(a(t) — u(r)a(r) = p()e(t) — € Vi€ K.

Thus, we arrive at a candidate solution z: K — R of the initial-value problem:

z(t) = ﬁ <§ + /Tt ,u(s)b(s)ds) Vi€ K.

To verify that x is indeed a solution, simply note that z(7) = £ and, invoking the
(generalized) fundamental theorem of calculus,

; *@ t s)b(s)ds L(t)b(t):a T <
x(t)_,u(t) (E-&-/T (s)b( )d)—l— (D) (t)x(t) +b(t) Vte K.

Since K C J is arbitrary, we may conclude that the function

J =R, te xt):=a(t)u (1) (5 + /: ,u_l(s)b(s)ds>

solves the initial-value problem. Assume y: J — R is also a solution of the initial-value
problem. Write e = x — y and so e solves the problem

By part (a) of Exercise 1.4, we may infer that e = 0 and so y = x. Therefore, z is the
unique solution on J of the initial-value problem.

Exercise 1.6
Write w(0) = w® and ¢(0) = ¢°. On [0, ¢;), we have

W(t) = (a— pw(t), ¢(t) =—vq(t), (w(0),q(0)) = (w’,q"),
and so w(t) = e M and q(t) = e "¢° for all t € [0,t5). Write w* := (@~ #)tsy)°
and ¢* := e7"*¢". Then, on [t, 1], we have

w(t) = —pw(t), 4(t) = —vq(t) +bw(t), (w(ts),q(ts)) = (w

*

4",
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and so, for all ¢ € [ts, 1], we have

— t—t —ut _at
w(t) = e ™M)yt = e it a0

t
) =g g [ et

ts
- bwles , _,_ (e
w0 (b=0)ts _ —(u—1)t
e (q + 7# — (e e ))
The optimal control maximizes ¢(1) and so (noting that bw®/(y — ) > 0) the param-
eter ts should be such that the function
g: (0,1) — (0,00), T+ eaT(e_(”_")T - e_(“_u))

attains its maximum at 7 = t;. A straightforward calculation reveals that the first
derivative ¢'(7) is zero if, and only if,

I/t p-v)

uw—v

Moreover, the second derivative g” is negative valued. Therefore, g attains its maxi-
mum at 7 = t;.



6 Solutions to Exercises

Chapter 2

Exercise 2.1
Set £ =1 and define A: [-1,1] — R by

Exercise 2.2

Let J =R and N = 2. Let a: R — F be any piecewise continuous function with the
property that the set E of points at which it fails to be continuous is non-empty.
Define A: R — F?*? and ¢ € F? by

0= an) e=(0):

Then the initial-value problem z(t) = A(t)z(t), z(0) = £ has constant solution z: R —
F?, t — x(t) = £, whilst A fails to be continuous at each ¢ € E.

Exercise 2.3
Let x: J. — F¥ be a solution of &(t) = A(t)x(t). Then there exists 7 € J, such that

z(t) —z(1) = / A(o)z(o)do Vit € J,.

Let t1,t2 € J; be arbitrary. Then
2(t2) — a(ts) = alt2) — o(r) — (a(tr) — a(r)) = (/:2 - /:1> A(o)z(0)do
- /t * A(o)z(o)do.

1

Exercise 2.4
Observe that Ms(t,s) — Mi(t,s) = f; A(o)do for all (t,s) € J x J and, for all n € N,

Moot s) — Moy (t, s) = / A(0)[Ms1(0,5) — Ma(0,8)]do ¥ (t,5) € J x J.

The result (2.3) follows by induction.
Assume that for, some n € N, the equality in (2.4) holds for all (¢,s) € J x J. Then

t o1 on t _ n
// / dgnH...dedUl:/%dgl

Since f: doy =t — s for all (¢,8) € J x J, (2.4) follows by induction.

Exercise 2.5
The result follows from the Peano-Baker series (2.6) if it can be shown that, for all
n €N,

% (/:A(a)da)n _

t o2 On—1
/ A(o1) / A(oz) -+ / A(on)doy - -doedor Vi, 7 € R (%)
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Clearly, (%) holds for n = 1. Let n € N and assume that (*) holds. Observe that com-
mutativity of A(t) and A(o) for all ¢, o implies commutativity of A(¢) and f: A(o)do
which, in conjunction with the product rule for differentiation and Theorem A.30,

o 2 ( / t A(a)da) " s DA ( / t A(a)da)n

at all points ¢ of continuity of A. Integrating and dividing by (n + 1)!, we have

ﬁ (/:A(J)da)nH - /:A(U)% (/TU A(p)dp)ndo
:/:A(a) /Tg A(al)~~~/jn71A(an)dan~~~d01da.

By induction, it follows that (*) holds for all n € N.

Exercise 2.6
We have

(G(s)exp (— H(s)))/ = (G'(s) — H'(s)G(s)) exp (— H(s)) >0 Vs € [t,T]
which, on integration, gives
c=G(t) > G(t)exp (— H(t)).

Hence, we arrive at the requisite inequality

g(t) < G(t) < cexp (H(t)) = cexp </t h(s)ds) = cexp (

t
/ h(s)ds ) .
Exercise 2.7

Let 7 € J be arbitrary. Consider the initial-value problems @(t) = A(t)z(t), z(1) =&,
and Z(t) = A(t)Z(t), Z(7) = £ The unique solutions on J are given, respectively, by
z(t) = @(t, 7)€ and Z(t) = @(¢, 7)€ for all t € J. Now,

d

3 F(0, 2(0) = (ADE(®), (1)) + (#(1), AB)x(®)) = ((A®t) + A™(1)) 2(t), (1)) = 0

for all points t € J at which A is continuous. Therefore, (Z(t),z(t)) = (£,£) for all
t € J and so

(£,€) = (D(t,7)E, D(t,7)E) = (D" (t, 7)D(t, 7)€, &) VEE ]

Since &,& € FY and 7 € J are arbitrary, we may now infer that @ (¢, NG, 7) =1
for all (¢,7) € J x J. Therefore, *(t,7) = &~ (t,7) = &(7,t) for all (t,7) € J x J,
whence the required result.

Exercise 2.8
Let F=R, N =2, J = [0,1] and define y1,y2 € C(J,FY) by

yi(t) = ((1)) Vied, yalt) = <1gt> Vied.

Then y1 and y2 are linearly independent. However, y2(t) = (1 + t)y1(¢) for all t € J
and so the vectors y1(t), y2(t) € R? fail to be linearly independent for all t € J.
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Exercise 2.9
By inspection, we see that ¥q: t — (é) is a solution. Written componentwise, the

system of differential equations is: £1(t) = z2(t), £2(t) = 2tz2(t). By separation of
variables, we find that ¢ — e’ satisfies the second equation and so

“d
1/)2:tn—>(0:t S)

is a solution. Evidently 1 and > are linearly independent. Writing ¥ = (1[)1 1/)2),
the transition matrix function @ is given by

. 1, tes’ds 1 —e OT e’ ds
ot,7) =¥ (1) = 0 2 0 _—
e e

2 L 2
1 e 7 f e’ ds
= T, V(t,7) € R xR.

0 e’ T

Exercise 2.10
(1) For all k € N, P* = diag(p}, ..., p%) and so

exp(P) = ZPk/k! = diag (Zplf/k!7...,2p’f\,/k!> = diag(e™,...,e"V).
k=0 k=0 k=0

(2) (exp(P))* = (372, PH/K)" = 302 o (P*)F/k! = exp(P7).
(3) By Corollary 2.3, (d/dt) exp(Pt) = P exp(Pt). Moreover,

oo

P exp(Pt) Pi Pt)F k! = <Z /k') = exp(Pt)P.
k=0

0

Exercise 2.11
Let F =R, N = 2 and consider the non-commuting matrices

(o) 9= o)

P+Q=((1) é), with (P+Q)"=P+Q VneN,

In this case,

and so
ep(P+@) = L(P+Q)" = (Z;) (P+Q)=T+(e-1(P+Q)
k=0 k=1
(e e—1
(6 )
Therefore,

exp(P)exn@) =)+ Q) = (i 1) (5 1) = (5 §) 2emnir
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Exercise 2.12
Let {v1,...,vx} be a basis of V. Since V is closed under complex conjugation, it
follows that {o1,...,0k} is also a basis of V. Therefore,

V = span{vi,...,vk,01,...,0k } = span{Rewvi,...,Revk,Imuvy,...,Imvk}

and so the family {Rewv,...,Revk,Imuwy,...,Imvg} of vectors in RV contains a
basis.

Exercise 2.13
Let z: J, — FY be a solution of (t) = A(t)x(t) 4 b(t). Then there exists 7 € J, such
that

z(t) —z(1) = / (A(o)z(c) + b(0))do Vi€ Jo.

Let t1,t2 € J, be arbitrary. Then

2(t2) — x(t1) = a(ta) — a(r) — (w(t1) — = (/ / ) ) +b(0))do
=/t1 (A()a(0) + b(e)) do.

Exercise 2.14

Let Sin denote the set of all solutions of @(t) = A(t)z(t)+b(t) and let y € Sin. Assume
2z € Sin and write x := z—y. Then @(t) = 2(t)—y(t) = A(t)z(t)+b(t)—A(t)y(t)—b(t) =
A)(z(t) — y(t)) = A(t)z(t) at every ¢t € J which is not a point of discontinuity of
A or b. Therefore, © € Shom and so z € y + Shom- This establishes the inclusion
Sih C Yy + Shom- To establish the reverse inclusion, assume z € y + Shom. Then
z = y+x for some = € Spom and so 2(t) = A(t)y(t) +b(t) + A(t)x(t) = A(t)z(t) + b(t)
at every t € J which is not a point of discontinuity of A or b. Therefore, z € Siy,.

Exercise 2.15
Let P(n) denote the statement

“B(t +np, ) = B(t, 0)8" (p.0)B(0,7) ¥ (t,7) € R x R”

We already know that &(t + p, 7) = ®(t,0)P(p, 0)P(0, 7) for all (¢,7) € R x R, and so
P(1) is a true statement. Assume n € N and P(n) true. Then
o(t

O(t+ (n+1)p,7) = Ot +p+np,7) =t +p,0)2" (p,0)2(0,7)
= &(t,0)®(p, 0)®(0,0)8" (p, 0)(0, 7)
= &(t,0)0" 1 (p,0)®(0,7) ¥ (t,7) ER x R
and so P(n + 1) is true. By induction, it follows that P(n) is true for all n € N.

Exercise 2.16

Note initially that, since ®(p,0) is invertible, 0 € o(®(p,0)) and so, for the function
f:z — 2", we have f'(u) # 0 for all u € o(P(p,0)). Therefore, by the spectral
mapping theorem (Theorem 2.19),

ker (" (p,0) — I) = ker(®(p, 0) — AI).

(a) Let 2: R — FY be a non-zero solution (and so, in particular, 2(0) # 0). Assume
z(0) € ker(®(p,0) — AI). Then @"(p, 0)z(0) = A"z(0) = z(0) and so, invoking (2.32),
we have, for all ¢t € R,

w(t +np) = B(t + np, 0)z(0) = B(t, 0)8" (p, 0)z(0) = (£, 0)z(0) = (t).
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Therefore, x is np-periodic.

Conversely, assume that x is np-periodic. Then z(np) = ®(np,0)x(0) = z(0). By
(2.32), we have @(np,0) = " (p,0). Therefore, (2" (p,0) — I)z(0) = 0 and so z(0) €
ker(®" (p,0) — I) = ker(P(p,0) — AI).

(b) That Snp is a vector space is clear. Let B be a basis of ker(®(p,0) —I). For z € B,
let 2. denote the np-periodic solution ¢t — ®(t,0)z. By part (a), the set {z.: z € B}
is a basis for S,p, whence the result.

Exercise 2.17

Sufficiency. Assume that X is an eigenvalue of $(p,0) and \* = p. Let v € CV be an
associated eigenvector and so @"(p,0)v = \"v = pv. Define z by z(t) := &(t,0)v for
all ¢ € R. Invoking (2.32), with 7 = 0, gives

z(t 4+ np) = D(t + np,0)v = D(t,0)9" (p, 0)v = pud(t,0)v = px(t) Vi€ R.

Necessity. Assume that x is a non-zero solution of (2.30), with the property z(t+np) =
puz(t) for all ¢t € R. Write v := z(0) # 0. Invoking (2.32), with 7 = 0, we have

1B (1,000 = pa(t) = et + np) = Bt + np, 0)v = B(t, 0)3" (p, O)v,

and thus, &(¢,0) (@"(p, 0) — uI)v = 0. Consequently (@"(p, 0) — uI)v =0 and so p is
an eigenvalue of @"(p,0). By Theorem 2.19 (with f(z) = 2"

a(2"(p,0)) = {\": X € o(P(p,0))}.
Therefore, @(p,0) has an eigenvalue A with the property that A" = p

Exercise 2.18
For convenience, write

At) = (“(‘)l a?t)) with A; == (_%2 1(/)2> and a(t) = 1+ sint.

It is straightforward to verify that

cos(t/2 sin(t/2
exp(Ait) = <— blé({/%) cos((t§2))) Vi ER.

Moreover, from Example 2.18, we know that the transition function ¢ generated by
a is such that ¢(t,0) = exp(1 — cost + t) for all ¢ € R. Therefore,

cos(t/2)  sin(t/2) 0
&(t,0) = (GXP(OAI” ¢ 0)) — [ —sin(t/2) cos(t/2) 0
Pk 0 0 exp(l — cost +t)
For p = 2w, we immediately see that the spectrum of ®(p,0) is {—1,e”}. Also,
0 0 0
p,0)+I1=[0 0 0
0 0 e’+1
&1
Let ¢ be any non-zero vector in ker (&(p,0) 4 I), then { = [ & | with & and & not
0
both zero. Then the solution of the initial-value problem z(t) = A(t =¢,is

cos(t/2)&1 + sin(t/2)§2
t— &(t,006= | — sin(t/2)§10+ cos(t/2)&2
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which is evidently non-constant and of period 7.

Exercise 2.19
Necessity. Assume that (2.33) has a p-periodic solution z. Write £ := x(0). Then

£ = x(p) = B(p,0)¢ + / " (p, 5)b(s)ds = B(p, 0)€ + 1

whence n = (I — ®(p,0))¢ and so n € im (I — &(p,0)).
Sufficiency. Assume that n € im (I — &(p, 0)) Let £ € FY be such that n = (I —
®(p,0))¢ and define z: R — FY by

z(t) = &(t,0)¢ + /Ot D(t,s)b(s)ds Vi eR.

Clearly, = is a solution of (2.33). We will show that x is p-periodic. Invoking (2.31),
(2.32) and periodicity of b, we have ®(t+p,s) = @(¢,0)P(p, s) and P(t+p, s+ p)b(s+
p) = P(t, s)b(s) for all ¢, s € R. Therefore,

2(t+p) = B(t +p, 0)¢ + /Ow B(t + p, 5)b(s)ds
— &(1,0) (@(p, 0)¢ + /0 " a(p, s)b(s)ds) + /p " ot + p, $)b(s)ds
= &(t,0)(2(p, 0)¢ +1) + /Ot ®(t+p, s+ p)b(s+ p)ds
— B(1,0)¢ + /Ot (1, 5)b(s)ds = 2(t) ViER

and so x is p-periodic.

Exercise 2.20 Let H = I € C**? the 2 x 2 identity matris. Then o(H) = {1}.
The eigenvalue 1 has algebraic multiplicity 2, coincident with its geometric multi-

plicity. The matrix G = (8

of H, with o(G) = {0,e?™"}. The eigenvalue A = 1 of H has principal logarithm
Log A = 0 € o(G). However, the latter eigenvalue of G has algebraic multiplicity 1,
coincident with its geometric multiplicity.

620,”-) is a logarithm (but not the principal logarithm)

Exercise 2.21

We first show that 1 is periodic of period 2. The function ¢ is the unique solution
of §(t) + a(t)y(t) = 0 with initial data y(0) = 1, y(0) = 0. Therefore, on [0, 7], we
have

Thus,

(¢1(7) . On [7,1], we have (¢1(t), $1(t)) = (—1,0). In partic-
ular, (@1(1)

(p1(t) = (cos(wt), —wsin(wt)) = (cos(wt/7), (x/7)sin(nt/T)).
(
- ) An analogous calculation on the interval [1,2] gives

) =
=(-1

We may now conclude that ¢ is periodic of period 2.
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Now consider the function 2, which is the unique solution of () + a(t)y(t) = 0 with
initial data y(0) = 0, y(0) = 1. We claim that

(p2(n), ¢2(n)) = (-1)"n(l —7), (-1)") VneN.
On [0, 7], we have
(p2(t), $2(t)) = (sin(wt) /w, cos(wt)) = (rsin(rt/7)/7, cos(nt/T)).

Thus, (¢2(7),$2(7)) = (0,—1) and so

(02(t), @2(t) = (p2(7) + 2(T)(t = 7), pa(7)) = (= (t—17), —1) Vte[r1].
In particular, (¢1(1),¢2(1)) = (— (1 —7),—1) and so the claim holds for n = 1.
Assume m € N and the claim holds with n = m. On [m, m + 7|, we have
pa(t) = pa(m) cos(w(t — m)) + (pa(m) /w) sin(w(t — m))
P2(t) = —wpa(m) sin(w(t —m)), ¢1(m) cos(w(t —m).
Thus, (p2(m+7) , @2(m+7)) = (=p2(m), —p2(m)) = ((=1)"'m(1-7), (=1)"*")
and so, for all ¢t € [m + 7,m + 1].
pa(t) = palm +7) + palm + )t —m—7) = (~1)" (m(1 1) + (t — m — 7))
Ga(t) = p2(m+7) = (=1)"".

In particular,
(p2(m +1),¢2(m + 1)) = ()" (m+ 1)(1 - 7), (=1)""")

and so the claim holds with n = m + 1. By induction, it follows that the claim holds
for all n € N and so 2 is unbounded with p2(n) = (—1)"(1 — 7) for all n € N.

Exercies 2.22 The functions 1 and g2 are the unique solutions of j(t) = —a(t)y(t)
with respective initial data ¢1(0) = 1, $1(0) = 0 and ¢2(0) = 0, ¢2(0) = 1. Define 1
and 12 by ¥1(t) := p1(—t) and 12(t) := @2(—t) for all t € R. Then, since a is even, we
have ¥(t) = $(—t) = —a(—t)p1(—t) = —a(t)y1(t) and, similarly, 12(t) = —a(t)y(¢).
Therefore, p1 and 12 are the unique solutions of (t) = —a(t)y(t) with respective
initial data 1(0) = 1, ¢1(0) = 0 and 12(0) = 0, 1)2(0) = —1. We may now infer that,
for all t € R, ¢1(t) = ¥1(t) = p1(—t) and p2(t) = —2(t) = —pa(—t). It follows that

_ (¢1(=p) w2(=p)\ _ (p1(p) —p2(p)
P(=p,0) = (sm(—p) ¢2<—p>) = (*sb(p) $2(p) ) :

Also, since ®(t, 1)

= &(t + p,7p) for all ¢, 7 € R and setting (¢,7) = (—p,0), we have
@(—p, O) = @(0,])) =

~1(p,0). Recalling that det &(p,0) = 1, we may conclude that

7
7
) =®(p,0) ="' (—p,0)
-( ) -G )

and so ¢1(p) = ¢2(p). Therefore, v = (¢1(p) + ¢2(p))/2 = ©1(p).
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Exercise 2.23
27 27
/ tr A(s)ds = / (2+sins — coss)ds = 47 > 0.
0 0
An application of Corollary 2.33 (with p = 27) shows that there exists a solution

which is unbounded on R.

Exercise 2.24

For the putative solution 2 we find &(t) = e'/? (smt — cost/2

cost & sin t/2) for all ¢t and

42 —14+3(cost)?/2 1 —3sintcost/2) [—cost
Alt)z(t) = e (—1—35intcost/2 —1+ 3(sint)?/2 sint

_ ¢y2 (sint —cost/2\ .
=¢ (cost+sint/2 =i(t) V.

Therefore, z is indeed a solution and ||z(t)|| = e'/? — co as t — occ.
Exercise 2.25

The identity (2.49) clearly holds for k¥ = 1. Assume that (2.49) holds for some k € N.
Then

Xy o (X)X YR + XY v X = X (XY 4 (X —Y)YF

k k+1
=X -V 4> XM (X -y T =Y X (X - vy
j=1 j=1

and so the identity holds for k£ + 1. The result follows by induction.
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Chapter 3

Exercise 3.1
(a) Let T'> 0 and &1, &2 € R be arbitrary. With input u of the form ¢ — a 4 St, with
parameters «, 5 € R, the solution of the initial-value problem is given by

x1(t) = &1 + Eat + at® /2 + B2 /6,  xa(t) = & + at + Bt/2.

Imposing the requisite soft-landing conditions, z1(T") = 0 = z2(T), gives a pair of
simultaneous equations for the parameters o and :

E1+&T +aT?/2+ BT )6 =0 =& + T + BT7/2
which may be expressed in the equivalent form
2T T*\ (a\ _ (0 =2\ (&
37 1) \B) ~ \-6 —6T)\&
and which has unique solution given by
a _ 1 (6T 61?27\ (&
B) T2 \-12 6-12T &)

(b) Let £ > 0 be arbitrary. Under the control u,

tH{a SS T >

I/\I/\

patameterized by T'> 0 and S € (0,T), we find
22(S) = —gS, z1(S) =€ - g5°/2
and
z2(T) = —g(8) + (T = 5), xl(T) =& - 95%/2 = gS(T = 8) + a(Ts)* /2.

Imposing the soft-landing condition z1(7T) = 0 = z2(T), yields the unique solution

20551 2951
9(9 + @) a(g +a)

Exercise 3.2
(a) Noting that

00 1 0
10 0 2w
(BAB)=|y o o 1
0 1 —2w 0

has non-zero determinant and, since R = imC(A, B) D im (B, AB), we may conclude
that R = R%, that is, all states are reachable from 0.

(b) In this case,

0 1 0 0
: 1 0 0 0

C(A,B1) = (BL, ABLLA’BLA’BI) = | o 9, 0
0 —2w 0 0
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and so the set of states reachable from 0 is a three-dimensional subspace:

0 1 0
. 1 0 0

R = span ol 0 | 92w
0 —2w 0

Exercise 3.3
For notational convenience, write « := —(M + m)g/M! and 8 = mg/M. The reach-
ability matrix is

0 -1 0 «

o 2 3 1 [-1 0 «a O
C(A,B) = (B,ABA’B,A*B) = o= | 0
l 0 B 0

with determinant (al + 8)%/(M1)* = 1/(MI)* > 0. Therefore, tkC(A,B) = 4 = N
and so the system is controllable.

Exercise 3.4

By Proposition 3.8, im C(A, B) is A-invariant. It immediately follows that im C(A, B)
is A*-invariant for all & € N. Let v € imC(A, B) and t € R. Then (t*/k!)A*v €
imC(A, B) for all k € N. Since imC(A, B) is a subspace of RY, imC(A, B) is closed
and so exp(At)v = 370 (t*/k!)A%v is in im C(A, B).

Exercise 3.5

Let £ € imC(A, B) be arbitrary. By e*”-invariance of the subspace imC(A, B) (Ex-
ercise 3.4), —exp(AT)¢ € imC(A, B) and so there exists u € PC([0,T],R*) such
that

—exp(AT)¢ = z(T;0,u) = /o exp(A(T — t))Bu(t)dt,

Therefore 0 = eXp(AT){—i—fOT exp(A(T —t))Bu(t)dt = z(T'; &, u) and so £ € Dy. Since
& € imC(A, B) is arbitrary, it follows that imC(A, B) C Dr.
Now let £ € Dr be arbitrary. Then there exists u € PC([0,T],R™) such that

0=a(T; & u) =exp(AT)E + /0 exp(A(T — t))Bu(t)dt

and so —exp(AT)¢ = z(T;0,u). Therefore, —exp(AT)¢ € imC(A, B) and, by e47-
invariance of the latter, we have £ € imC(A, B). Since £ € Dr is arbitrary, it follows
that Dr C imC(A, B). We may now conclude that Dy = imC(A, B).

Exercise 3.6 5 -
Assume (A, B) is controllable. Let £ € RY be arbitrary and set £ := §. By con-

trollability of (A, B), there exists u € PC([0,T],RY) such that 0 = exp(AT)¢ +
fOT exp(A(T — t))B(u(t))dt. Left multiplication by S™! gives

T
0=5S""exp(AT)SE + / S~ exp(A(T —t)SS™ ' Bu(t)dt
0

= exp(AT)E + /0 exp(A(T — t))Bu(t)dt.
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Therefore, (A, B) is controllable. An analogous argument establishes that, if (A, B)
is controllable, then (A, B) is controllable (alternatively, simply note that this fact is
subsumed by what we have just proved).

Exercise 3.7

N . o k
Recall that A = (%1 ﬁ;) and B = (%1) Hence, A"B = (141031) for all kK € N.

By the Cayley-Hamilton theorem,
I‘kC(A1, Bl) = I‘k (Bl,AlBl, ey A{(_lBl) = I'k (Bl7 AlBl, ey Ajlv_lBl) s

and thus,

tkC(A1, By) = rk ((%) 7 (AloB1> e (A]lV;&))

=1k (B,AB,...,AN"'B) =1k (S (B, AB, ..., AN 'B))
=1k (B,AB,...,AN"'B) =1kC(A,B) = K .
Therefore, by Theorem 3.6, (A1, B1) is controllable.

Exercise 3.8
For this system, we have

s -1 0 0 0 0
0 s -1 0 0 -1
(sI—Ab)=[0 0 s 0 -1 0
—a 0 0 s -1 g
0 0 0 0 s 1

For s # 0, it is straightforward to verify that columns 1,2,3,4 and 6 are linearly
independent for all a, 8 € R. For s = 0, columns 1,2,3,5 and 6 are linearly independent
if, and only if, o # 0. Therefore, rk (s — A, B) = 5 if, and only if, @ # 0 and so, by
the Hautus criterion, (A4, B) is controllable for all pairs («, 8) with a # 0, and (A, B)
is not controllable for all pairs (0, 3).

Exercise 3.9
The matrix O(C1, A) comprises rows 1,3,5,7 of O(C, A) (as given in Exercise 3.19),
that is,

1 0 0 0
0 1 0 0
OCLA) =32 o ¢ 2
0 —w? 0 0

In this case and noting that the third column is zero, det O(C1, A) = 0 and so the
system fails to be observable.
The matrix O(C2, A) comprises rows 2,4,6,8 of O(C, A), that is,

0 0 1 0
0 0 0 1

OCA)=1 ¢ _a 0 o0

—6w® 0 0 —4duw?

In this case, det O(Ca2, A) = —12w* # 0 and so the system is observable.
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Exercise 3.10

s -1 0 0
—3w? s 0 —2w
sI — A\ _ 0 0 s -1
C o 0 2w 0 s
1 0 O 0
0 0 1 0

Rows 1, 3, 4 and 5 are linearly independent for all s € C. Therefore, the system is
observable.

Assume that only the radial measurement y; is available, in which case C' is replaced
by its first row C; = (1 0 0 0). Then we have

s -1 0 0

—3w? s 0 —2w

(SIC_ A) =] o 0 s -1
! 0 2w 0 s
1 0 0 0

Noting column 3, it is clear that this matrix fails to have full rank for s = 0. Therefore,
the system with radial measurement only is not observable.

Now, assume that only the angular measurement y» is available, in which case C' is
replaced by its second row C2 = (0 0 1 0). Then we have

s -1 0 0

—3w? s 0 —2w

(515 A) =1 o 0 s -1
2 0 2w 0 s
0 0 1 0

If s # 0, then it is readily verified that rows 1, 3, 4 and 5 are linearly independent,
whilst, if s = 0, then rows 1, 2, 3 and 5 are linearly independent. Therefore, the
system with angular measurement only is observable.

Exercise 3.11

Noting that (O(C,A))" = C(A*,C*) and applying the Kalman controllability de-
composition lemma (Lemma 3.10) to the pair (A", C*), we may infer the existence of
T € GL(N,R) such that

1 4% (M1 Mo 1, My
T AT_(O M3>’ T C_<0>

with My € R¥*X My € RE*P and (M, My) a controllable pair.
Writing S := (T*)7", Ay := M7, Ay := M3, Az := M3 and C; := M, we have

A 0

§TAS = A= (I A'T)" = (A2 Ag) L CS = (T7'C7)" = (C1,0)

and, by controllability of (M1, M4), we have observability of (Mj, M{) = (Ch, A1).

Exercise 3.12

(a) By the Kalman controllability decomposition lemma (Lemma 3.10), there exists
S € GL(N,R) such that the matrices A, B and C have the requisite structure and the
pair (A1, B1) is controllable. It remains to show that (C1, A1) is observable. Suppose
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otherwise. Then there exists v # 9 §uch that ClA’fv = 0~f9r all k € Ng. A straight-
forward computation shows that C'A* has the structure C A* = (ClA’f, * ) Writing

U= <8) # 0, we have

CA*5 =C1A* =0 VEk e Ny

which contradicts observability of the pair (C’, A)

(b) By the Kalman observability decomposition lemma (Lemma 3.22), there exists

S € GL(N,R) such that the matrices A, B and C have the requisite structure and the
pair (C1, A1) is observable. It remains to show that (A1, B1) is controllable. Suppose
otherwise. Then there exists v # 0 such that v*B1A¥ = 0 for all k € Ng. A straight-

. o k
forward computation shows that A*B has the structure A*B = (Al*Bl) Writing

= <8) # 0, we have

7" A"B=v"AfB1 =0 Vk e No
which contradicts controllability of the pair (A, B)

Exercise 3.13

We prove the theorem using contraposition. To this end, assume that rk </\I g A) <

N for some A € C (an eigenvalue of A). Then there exists z € CV, z # 0 such that
()J ; A’) z=0. Thus, Az = Az and C'z = 0. As a consequence,

A*Cz=XCz=0 VkeNo,

implying that O(C, A)z = 0 Since z # 0, this shows that rkC(A, B) < N. Hence, by
the rank condition for observability (Theorem 3.18), the pair (C, A) is not observable.

Conversely, assume that the pair (C, A) is not observable. If C' = 0, then rk 815 A =

rk(sI — A) < N for all s € 0(A). If C # 0, then it follows by Kalman observability
decomposition (Lemma 3.22) that there exists S € GL(N,R) such that

A:=8"1A8 = (2; 123), C:=CS=(C1,0).

where A, € RKXK, Cr e RP*E and K < N.Let A € C and v € CVN X be an
eigenvalue/eigenvector pair of As. Then

v#0, (A —A3)v=0.

w = (O> IS (CN,
v
it follows that

()\I—fl)wz()\IBAl A )w:O, C‘w:(cl,o)((’):o.

Setting

S\I—Ag (%
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Hence, z = Sw # 0 satisfies
STTA —A)z=MN-Aw=0, Cz=Cw=0,
implying that
(M —A)z=0, Cz=0.

Consequently, ()\15 A) z = 0 and hence, rk (AIC_ A) < N.

Exercise 3.14
Let z € O(C, A) be arbitrary. Then

0=Cz2=CAz=---=CAN1,.

By the Cayley-Hamilton theorem, we also have C ANz = 0. Therefore z € ker C' and
Az € ker O(C, A). Since z € ker(C, A) is arbitrary, it follows that O(C, A) is contained
in ker C' and is A-invariant. Finally, let S C RY be an A-invariant subspace contained
in ker C' and let z € S be arbitrary. By A-invariance of S, we have Az,..., AN 1z ¢ S
and, since S C ker C, it follows that 0 = Cz = CAz = --- = CAN "'z, Therefore,
z € ker O(C, A) and, since z € § is arbitrary, we may conclude that S C ker O(C, A).

Exercise 3.15 . .
Obviously, the transfer function Gk is given by Gk (s) = C(sI — (A — BKC)) 'B.
Now sI—(A—BKC) = (sI—A)(I+(sI-A)"'BKC) = (I+BKC(sI—A)"")(s[- A),
and so

Gr(s)=C(sI —A)'(I+BKC(sI —A))"'B
=C(I+ (s —A)'BKC) '(sI — A)'B.

Therefore,

Gr(s)(I + KG(s)) = C(sI — A)" (I + BKC(sI — A)"') 'B(I + KC(sI — A)"'B)

= C(sI — A) (I + BKC(sI — A)™") ' (I + BKC(sI — A)"")B
=C(sI —A) " 'B=G(s)

and

(I+G(s)K)Gx(s) = (I +C(sI — A)T'BK)C(I + (sI — A)"'BKC) '(sI — A)™'B
=C(I+ (s — A)'BKC)(I + (sI — A)"'BKC) '(sI — A)"'B
=C(sI — A)'B=G(s).

Exercise 3.16
In this case, w =1 and

a _ a(f—-i)
i+B8 1+

gliw) = G(i) =
Invoking Proposition 3.27, we see that —m/4 is the argument of §(7) in [0, 27) and so

3 = 1. Furthermore,
. o «
V2=14(i)| = ——= = —=

NN
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and so oo = 2.

Exercise 3.17

(a) Since R(s) is not identically equal to the zero matrix, it follows that B # 0 and
C #0.

First consider the case that (A, B) is controllable and (C, A) is observable. Then there
is nothing to show: the claim follows with 7' = I. (To identify the triple (A, B, C)
with the block structure given in Exercise 3.17, in the latter simply disregard the last
two block rows and the last two block columns in A and the last two blocks in B and
C.)

Now consider the case wherein (C, A) is observable and (A, B) is not controllable. By
the result in part (a) of Exercise 3.12, there exists T' € GL(N,R) such that

T AT = (%1 fé) , T'B= (%1> , CT = (C1,Ca),

with (A, By) controllable and (C1, A1) observable, proving the claim in this case.(To
identify the above structure with the block structure given in Exercise 3.17, in the
latter simply disregard the third block row and third block column in A and the third
blocks in B and C.)

Finally, consider the case wherein (C, A) is not observable. By the observability de-
composition lemma (Lemma 3.22), there exists S € GL(N,R) such that

SAS = (ﬁ; 123), 5B — (gg) CS = (Ch,0),

with (C1, A1) observable. If the pair (A1, B1) is controllable, then the claim follows
with T'= S. If (A1, B1) is not controllable, then, by the result in part (a) of Exercise
3.12 applied in the context of the triple (A1, Bi, C1), there exists an invertible matrix
S1 such that

_ A A _ B
Syt ALS = ( 61 A;;) , S7'Bi= ( 61) , G181 = (C11,C12)
where (A11, B11) is controllable and (C11, A11) is observable. Defining
e & (S1 0
T:=5S, where S:= (0 I) ,

and setting (A31, A32) = A3S51, Ass = As and Bs1 = B2, we have

1 Ain A O
T_IAT:(S(l) ?) (ﬁ; 123) (%1 ?): 0 Aswm 0

As1 Az Ass
and
B
B -1 B 11
P (3 YE)-(5) o (i Dernn
B3

with (A11, B11) controllable and (C11, A11) observable.
(b) A straightforward calculation reveals that

CA*B = (CT)(T " A*T)(T™'B) = C.uAf 1 Bin Vk € No.
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Therefore,
CeXp(At)B =Chu1 eXp(Ant)Bn Vte R,

and applying Laplace transform gives
R(S) = C(SI — A)_lB = 011(81 — A11)_1Bu.
Therefore, (A11, B11,C11) is a realization of R.

Exercise 3.18
If (A, B) is not controllable, then there exists z € R such that z # 0 and 2*C(A, B) =
0. Let S~ € GL(N,R) be such that z* is the N-th row of S™'. Then

S7'B = <%1> ,  where By € RW—DxM,

Partition the matrices S™'AS and CS accordingly, that is,

A1 Ap

—1 _
S A57<A3 I

), CS=(Ci o),

where 4; € RV=DXN=1 454 ¢y € RPXN-1 Since 2*A*B = 0 for all k € Ny, it
follows that the last row of S™'A*B is equal to zero for all k € Ny. Combining this
with a routine calculation then shows that

k
(871AS)(ST'B)=51AB = (AloBl) vk € Ny,
and CA*B = (CS)(S7'AS)*(S™'B) = C1A¥B; for all k € Ny. This in turn leads to
Ce*'B = 3 tkCA’“B -y tko AYB, VteR
e = Z ﬁ = Z y 141 D1 t e .
k=0 k=0
Applying Laplace transform yields,
R(s) = C(sI — A)"'B = Ci(sI — A1) 'Bi.

Thus (A1, B1,C1) is a realization of R. The dimension of this realization is N — 1,
showing that the realization (A, B, C') is not minimal.

Exercise 3.19
(a) The claim follows immediately from the relations

1 = A1 + Blcz:vz, To = Asxs + Bgu, Yy = Cixy.

(b) Note that the inverse of

o SI*Al 73102
SI_A—( 0 sI—A2>

is given by

-1 _ (S]— A1)71 (5‘[—141)713102(8]—142)71
(sI—A) " = ( 0 (sI— Ag)~! ) .
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Therefore,
G(s)=C(sI — A 'B

(0 A (1)

= 01(51 — A1)_1Blcz(81 — AQ)_lBQ = 61(8)6’2(8).

(c) For j = 1,2, write Gj = n,;/dj, where n; and d; are coprime polynomials. It
follows from Proposition 3.29 and Theorem 3.30 that the degree of d; is equal to IV;.
Moreover, note that the dimension of the realization (A, B,C) of G1Gy is equal to
N1+ Ns and G1G2 = nlnz/(dldg).

If the realization (A, B,C) is minimal, then, by Proposition 3.29, n1 and d2 are co-
prime and, furthermore, no and di are coprime, or, equivalently, there is no pole/zero
cancellation in the product G1Gs.

Conversely, assume that there is no pole/zero cancellation in the product G1G5. Then,
the polynomials nine and dide are coprime. Since the degree of didz is equal to
N1+ N2, another application of Proposition 3.29 shows that the realization (A, B, C)
is minimal.
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Chapter 4

Exercise 4.1
Let a,b € I, be arbitrary and, without loss of generality, assume a < b. To conclude
that I, is an interval it suffices to show that [a,b] C I.. Since I, := Uye7Iy, there
exist ya,y» € T such that a € I,, and b € I,,. Since T is totally ordered, either
Ya = Yb O Yp =X Yq. In the former case, I,,, C I, and so [a,b] C I, C I.. In the latter
case, Iy, C I, and so [a,b] C I, C I..
We proceed to show that z is well defined. Let ¢t € I. be arbitrary. Then t € I, for
some y € 7. Define v := y(¢). Assume § € T is such that ¢ € I; and define 0 := §(¢).
Since T is totally ordered, either y < g or § =< y. In each case, y(t) = §(¢t). Therefore,
with each ¢t € I., we may associate a unique element z(t) of G given by z(t) = y(¢),
where y is any element of 7 such that ¢t € I,. The function z: I, — G, so defined,
has the property

zl, =yVyeT

and is the only function with that property.

Exercise 4.2
For £ # 0, separation of variables yields

T t x
/ d—jz/ds = {—1] =t—-7 = lIl-ﬁ-T—t.
¢ S - s]e z £

(i) For (1,&) = (0,1), we obtain

1
z(t) = -
with maximal interval of existence (—oo, 1).
(iii) For (7,&) = (1,1), we obtain
1
)= ——
w{t) = 5

with maximal interval of existence (—o0, 2).
(ii) Clearly, in this case, R — R, ¢ + 0 is a maximal solution, with maximal interval
of existence equal to R.

Exercise 4.3
For £ # 0, separation of variables gives

=) s Ly 17 11 ¢ 11 1,4, .
A e A e i S ()

Consequently,

1At —tY o(f) =
2(t) i€ = =0

(a) For (1,€) € R x (0,00), the maximal interval of existence is bounded and is given
by
(= (" +4/)"% (7 + 4/6)'%).

(b) For (7,£) such that £ € (—4/7*,0), the maximal interval of existence is R.
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Exercise 4.4
Seeking a contradiction, suppose that f(z°°) # 0. Setting A := f(2*°), it follows that
A has at least one component, A\; say, which is not equal to zero: A; # 0. Since

lim ©(t) = lim f(z(t)) = A,
t— oo t— oo
we have limy_o0 2;(t) = A\; # 0. Hence

. ] _ o0, if)\j>0
tlirgox](t)_{ —o0, ifA; <0,

contradicting the assumption that lim¢— o z(t) =z

Exercise 4.5
Let I C J be an interval with 7 € I and let x: I — G be a solution of the non-
autonomous initial-value problem, that is,

z(t) = f(t,z(t)) Vtel, =z(r)=¢.
Set I :=I—7={t—7:t€I}anddefiney: I~ —IxGCRV" by
yt) =+ 71,2t +7)).
Note that 0 € I, since 7 € I. Differentiation of y gives
y() = (Lt + 7)) = (L, ft+ 7 2(t + 7)) = g(t + 7, 2(t + 7)) = g(y()) -

Moreover, y(0) = (7,z(7)) = (7,£). We conclude that that y satisfies the autonomous
initial-value problem, that is,

y(t) = g(y(®) veel , y(0)=(r¢).

Conversely, let I C R be an interval with 0 € I and let y: I — J X G be a solution of
the autonomous initial-value problem, that is,

y() = g(y(t)) Viel, y(0)=(7¢).
Writing y(t) = (y1(t), y2(t)) € R x RY, we have that
yl(t)zl Vtel, yl(O):T.

Hence, y1(t) =t + 7 forallt € I. Set It :=I+7={t+7:¢t € I} C J and define
z: IT = G CRY by x(t) := y2(t — 7). Then, for all t € I,

E(t) = g2t = 7) = f(yu (¢ = 1), y2(t = 7)) = f (£, 2(2)) .

Finally, z(7) = y2(0) = £. Thus, we may conclude that x solves the non-autonomous
initial-value problem.

Exercise 4.6

Observe that, if {inf I,sup I} N (J\I) # 0, then J\I # (0 and so I # J. Conversely,
assume I # J. Then, J\I # () and so there exists v € J with v # I. Write a := inf I
and w := sup . Then, either (i) v > w or (ii) v < a. If (i) holds with v = w, then
w ¢ I and so w € J\I. If (i) holds with v > w, then, since I is relatively open in J,
we again have w ¢ I and so w € J\I. If (ii) holds, then analogous reasoning shows
that a € J\I. Therefore, {a,w} N (J\I) # 0.
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Exercise 4.7
Let 2,y € RY. Let ¢ > 0 be arbitrary. Then there exists v € V such that dist(y, V) >
|ly — v|| — . Therefore,

dist(z, V) < [l — o] < [lz = yll + [ly — ol < [l —yl| +dist(y,V) + ¢

and so, since € > 0 is arbitrary, dist(z,V) — dist(y, V) < ||z — y||. Repeating this
argument, with the roles of x and y interchanged, yields the second requisite inequality

dist(y, V) — dist(z, V) < ||z — y]|.

Exercise 4.8
(a) Let 7 € I. Then, by the variation of parameters formula,

¢
z(t) = e* g (7) —|—/ e p(s,x(s))ds, Viel.

T

Let o, 8 € R be such that 7 € (a, ) C I (since 7 € I and I, as a maximal interval of
existence, is open, such a and 3 exist). Then, setting

K :=max{||e?||:a— <o <B—a} <o,

we obtain

@) e ()| +

IN

t
/w““wwmmw

IN

Kllz(r)ll + , Vte(a,p).

/me@w

Setting ¢ := K||z(7)||, an application of Gronwall’s lemma yields

/: ~v(s)ds

Setting a* := inf I, 8* := supl, it follows that a* = —oo and 8* = oo, because
otherwise, if, for example, 8* < oo, the above argument would apply with g8 = g8*
and so z would be bounded on (7, %), which, by Theorem 4.11, is impossible.

(b) By the variation of parameters formula,

l2(t)]] < cexp (K ) < cexp (K /j 'y(s)ds) <00, Vi€ (wB).

t
w(t)=e*‘”x(0)+/ e p(s,z(s))ds, V>0,
0

and so .
z(@)ll SM@‘”H%(O)H*/ M=)y (s) lz(s)[lds Vit > 0.
0

Therefore,
t
lz@)lle™" < Mllz(0)]| +/ My (s)[|z(s)lle™*ds Vi =>0.
0
By Gronwall’s lemma,

HMWWSMWMM%MA%MQ,Wzm
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and so,

()] < M[z(0)]| exp (ut + M/O 7(5)d8> ; VE20. (*)

(c) If & < 0 and there exists 7' > 0 such that
Lt |
sup [ = [ 7(s)ds | <
t>T t 0

t t
,ut—i—M/ fy(s)ds:t(p—l—M%/fy(s)ds)—)—oo as t— o0,
0 0

and thus z(t) — 0 as t — 0o, by (). The existence of a number T > 0 such that (#x)
holds, is guaranteed, for example, if the improper Riemann integral fooo ~(s)ds of
converges or if sup,s« () < |u|/M for some t* > 0.

=

; (+)

<

then

Exercise 4.9
Let € > 0.
(a) For z € (0,¢),

l9(z) —g(O)] _ vz _ 1

= —=— 00 as z,0.

== 0] PR

It follows that the function g is not Lipschitz on R.
(b) For z € (0,¢),

lg(2) —g(0)] _
|z — 0]

zlnz

=|lnz| >0 as z]0.

It follows that g is not Lipschitz on R.

Exercise 4.10
Let z € V and choose € > 0 such that U := {w € R? : ||w — z|| < e} C V. It follows
from the continuity of the first order partial derivatives of g and compactness of U
that

vim s, (s O ) < oo,

wherein 0;g; denotes the partial derivative of component j of g with respect to argu-
ment <.
Let z1, 22 € U and define h; : [0,1] — R by

hj(t) :g]-((l—t)z1 +t22), Vte [0, 1].

Note that )
hi(t) = (Vgi) (1 = t)z1 + t22), 22 — 21), Vi€ [0,1],

and so, by the Cauchy-Schwarz inequality,

A (O < 1(Vgi) (1 = t)z1 + tz2)|llz2 = z1ll <9V Qllz2 — 21|, Ve € [0,1].

By the mean-value theorem of differentiation, there exists 7 € [0, 1] such that

|g;(22) — g5(21)| = |h; (1) — h; (0)| = |h;(7)].
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Hence, |g;(22) — gj(21)| < 7V/Ql|z2 — 21|, and thus,
lg(22) — g(z1)|| < v/ MQ|22 — 2| .
This holds for all z1, 22 € U and the claim follows.

Exercise 4.11
We show that f is continuously differentiable. It follows then, from Proposition 4.14,
that f is locally Lipschitz. Clearly,

1 1
f’(z):;cosz—;sinz, ifz>0 and f'(z)=0, ifz<0.

It remains to show that f is differentiable at 0 and that f’ is continuous at 0. To this
end, we use I’Hopital’s rule to obtain,

lim f2) = £(0) S [ lim1 cosz -1 = lcos’O:O.
210 z—0 210 22 210 2 z 2
Moreover,

limwzliml_l =0.
210 z 210 z

Therefore, f'(0) = 0. Clearly, f’ is left-continuous at 0 and, since

R , . zcosz —sinz . 1 cosz—zsinz —cosz .1,
lim f'(z) = lim —————= =lim = =—lim-sinz =0,
210 210 22 210 2 z 210 2

we conclude that f’ is also right-continuous at 0. Hence, f’ is continuous at 0, showing
that f’ is continuously differentiable.

Exercise 4.12

(a) Let (to,z0) € J x G be arbitrary. The hypotheses ensure that there exist neigh-
bourhoods Jp and Gy C G of tp and zop, respectively, and a constant L2 > 0 such that
Jo N J and Gg are compact, C := cl{(f1(t), f2(2)): (t,2) € (JoNJ) x Go} C D and

1f2(z) = f2(9)|| < Lallz =yl Va,y € Go.

By compactness of Jo N J and Gy, piecewise continuity of fi and continuity of fa,
there exists K > 0 such that ||(fi(t), f2(2))|| < K for all (¢,2) € (Jo N J) x Go.
Therefore, the set C is compact. By Corollary 4.16, there exists L3z > 0 such that

f3(s,u) = fa(s,0)|| < Lallu — o V¥ (s,u), (s,0) € C.

Defining L := L3 L3, we have, for all (¢,z), (t,y) € (Jo N J) X Go,
£, x) = f(& )l = [1f3(f1(2), f2(2) = fs(fr (), fa ()l
< Ls|| f2(x) = f2(y)|l < Lllz —yll,

and so f is locally Lipschitz with respect to its second argument.

Finally, let y: J — G be continuous. By piecewise continuity of fi and continuity of
f2 and f3, it immediately follows that the function t — f(¢,y(t)) = f3(fi(t), f2(y(t)))
is piecewise continuous. Therefore, f satisfies Assumption A.

(b) Let f be given by f(t,z) := g(2) + k(t)h(2), where g, h: RY — R are locally
Lipschitz and k: R — R is piecewise continuous. Defining the piecewise continuous
function fi := k, the locally Lipschitz function fo := (g,h): RY — R?*" and the
continuous function f3: R x R* — RY by fs(r,s) = fa(r, (s1,82)) := s1 + rs2, we
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see that f3 is locally Lipschitz in its second argument s = (s1,s2) and f(t,2) =
f3(f1(t), f2(2)). By Proposition 4.20, f satisfies Assumption A.

Exercise 4.13

Let (7,€), (o,m), (p,0) € J X G be arbitrary. Since ¥(, T, &) = &, it follows that (7, &)
(7, &) and so the relation ~ is reflexive. Next, assume (7, &) ~ (o,n) and so ¢¥(o, 7, §)
1. By Theorem 4.26, we have I(7,£) = I(o,n) and ¥(7,0,n) = Y(7,0,9(0,7,£)) =
(7, 7,§) = & Therefore, (o,n) ~ (1,€) and so the relation ~ is symmetric. Finally,
assume (7,§) ~ (o,n) and (0,n) ~ (p,0). Then (o, 7,§) = n and ¢(p,0,n) = 0.

Hence,
Y(p,7,8) = Y(p,0,9(0,7,§)) = Y(p,0,n) =0

and so (7,&) ~ (p,0). Therefore, the reflexive and symmetric relation ~ is also tran-
sitive and so is an equivalence relation.

Let G denote the graph of the maximal solution (-, 7, ), that is, G := {(¢, ¥ (¢, 7,¢)) :
t € I(1,£)}. Observe that

~

(1,8) ~ (o.n) & (o, 7,8) =ne (on) €G
and so the equivalence class of (7,&) coincides with G.

Exercise 4.14
In Example 4.32, for the initial-value problem &(t) = A(t)x(t), (1) = &, A p-periodic,
the following equivalence was established:

d np-periodic solution

< 1 is an eigenvalue of " (p,0) and (7, 0)¢ is an associated eigenvector.

We use this equivalence to prove Proposition 2.20.
First, assume that there exists a np-periodic solution of &(t) = A(t)z(t). Then, by
the above equivalence

1€o(@"(p,0)) ={A": A€ a(D(p,0)}

and so @(p,0) has an eigenvalue A with A" = 1.

Now, assume that @(p,0) has an eigenvalue A\ with A" = 1. Let £ be an associated
eigenvector. Then @"(p,0)¢ = A\"¢ = £ and so 1 is an eigenvalue of ®"(p,0) with
associated eigenvector £. By the above equivalence, it follows that ¢t — &(¢,0)¢ is a
np-periodic solution.

Exercise 4.15
Consider the differential equation # = x(1 — ) with initial condition z(0) = &.
Separation of variables gives

x t x x _
[ ==t = [Ca[(T-t 5 mi-miTy-r
¢ s(1—s) o ¢ S e 1—s 13 1-¢

Consequently,
X 1 —£ _ ot _ t _ t _ £
Elfm_e = z(l-¢+e¢=¢" = J”(t)_ng(1—§)e—’5

Thus (¢, ) is given by
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Fr £ € R, the maximal interval of existence I¢ is
(—o0,In((¢€-1)/€)), €£€<0
le=§ & £eo,1]
(In((¢ =1)/¢),00),  €>1.

Consequently, the domain D of ¢ is given by D = D1 U Dy U D3, where

£—
3

D1::U(—oo,1n5’1)><{§}, Dy :=Rx[0,1], Ds:= ] (In 1,oo)><{§}.

£<0 g £>1

Exercise 4.15: sketch of the domain D of the local flow ¢

Exercise 4.16

For (£1,&2) = &, consider the initial-value problem & = f(z), z(0) = £. If £ = 0, then
it is clear that ¢(t,€) = ¢(t,0) = 0 for all ¢ € R. Assume £ # 0. A straightforward
calculation gives the polar form of the initial-value problem

F=r(l—r%), 6=—1, (r(0),6(0)) = (p,0),

where p = ||€]|, &1 = pcoso, and &2 = psino. Clearly, 6(t) = o —t.

Assume p = 1, then, from the first of the differential equations, it is clear that r(¢) = 1
for all t and so the solution of the original initial-value problem is given componentwise
by

z1(t) = pcos(t — ) = p(cosocost + sinosint) = & cost + &osint
z2(t) = psin(oc — t) = p(sinocost — cososint) = —& sint + & cost

cost sint

for all ¢t € R. Writing R(t) = (_ sint  cost

), it follows that

P(t,§) =R(t)¢ VteR, VEER?, |¢| =1.

We proceed to resolve the cases of p > 1 and p < 1. Observe that, if p > 1, then
r(t) > 1 for all ¢ and, if p < 1, then r(¢) < 1 for all ¢t. Therefore, in each case
(1—=7())/(1 = p) > 0 for all t. Separating variables in the differential equation for r,
we have

t r(t) ds r(t) 1 1 1
t_/ods_/p 3(1752)—/,7 (§+2(1fs)_2(1+s)>d5’
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and so
T‘(t) 1 1-— T(t) 1 14 T(t) 2 2\ —2¢t\—1/2
t=In—>——-ln—~+> -1 t) = 1-— .
" 2T, Ta g, o Tl HAmse)
Consequently,

o(t,€) = (€12 + (1 = IE]%)e~) /> R(t)e Vi€ Ie.

If p = ||€]] < 1, then we may infer that I = R. Furthermore, if p = [|£|| > 1, then the
above expression for ¢(t, ) has a singularity: the maximal interval of existence of the
solution is given by Iz = (ag, 00) with

ag = —In (|l¢]l/V/]1€]12 = 1).

Assembling the four cases (viz. £ =0, 0 < ||€]| < 1, [|§]| = 1 and [|§|| > 1) treated
above, we may infer that the local flow ¢: D — R“ has domain

D= {(t6) € Rx B ¢]* + (1~ [[¢])e™™ > 0}

and is given by

w(t,§)

Exercise 4.17

We will show that G := {®:: t € R} satisfies the axioms of a commutative group.
Closure. 5,1 € § — Ps0P, =Dy €G.

Associativity. For all @,.,®,, P, € G, we have

(I€? + @ = [1€l®) " *R(t)e v (t,€) € D.

(@T (e} @9) (¢} @t = @T+S o @z = ¢r+s+t = @7‘ ¢} @S_A,_t = @r o (¢g ¢} @t)

Identity element. [ = ®g € G, Py o Py = &y = D 0 P for all ¢, € G.
Inverse element. For each & € G, $_, € G and

¢t0¢_t :@0 :I:d5_t O¢t~
Commutativity. For all $,$; € G,
@S o @t = ¢s+t = Gpt+s = ¢t O@S.

Exercise 4.18

Let £,7n,0 € G be arbitrary. Since £ € O(§), it follows that £ ~ £ and so the relation ~
is reflexive. Next, assume £ ~ 1 and so ¢(7,§) = 7 for some 7 € I¢. Invoking Theorem
4.35, we have —7 € I — 7 = I,; and o(—7,7n) = o(—7,¢(7,§)) = § and so n ~ &.
Therefore, the relation ~ is symmetric. Assume £ ~ n and n ~ 6. Then ¢(7,£) = n
for some 7 € Iz and ¢(o,n) = 6 for some 0 € I, = I — 7. Then 0 + 7 € I and
plo+ 1,8 = o(o,0(1,€)) = p(o,n) = 0 and so & ~ 0. Therefore, the reflexive and
symmetric relation ~ is also transitive and so is an equivalence relation.

Finally, observe that

E~n & (Arelep(r,§) =n) & ne€0(),
and so the equivalence class of £ coincides with O(¢).

Exercise 4.19
Write I N[0, 00) = [0, we). First assume that z € £2(£). Then there exists a sequence
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(tn) in [0, we) such that ¢, — we and ¢(tn, &) — z as n — co. For arbitrary 7 € [0, we)
we have that

tn € (T,we), for all suffciently large n.
Consequently, since I,;¢) = I¢ — 7 (by Proposition 3.2), we obtain that o(t, —
7,0(1,€)) € OT (p(r,€)) for all sufficiently large n and, moreover,

@(tn —7,0(1,8)) = p(tn,§) = 2z as n— oo.

Therefore, z € Ot (p(7,§)). This holds for every 7 € [0,we) and thus,

ce ) OFE).

TE[O,L\)&)

Conversely, let us now assume that

ze [ OF(e(r.9).

TE[0,we)

Let (75,) be a sequence in [0, we) such that 7, — we as n — oo. Then, for each n € N,
there exists o € [0,we — Tn) = Iy(5,,¢) N[0, 00) such that

1
Since @(0n + Tn, &) = ©(on, 9(Tn,§)), it follows that ¢(on + 7n,&) — z as n — oo,

showing that z € £2(§).

The same argument applies mutatis mutandis to conclude that

A= [ O (e(r,€).

TEIN(—00,0]

Exercise 4.20

Let £ € G. Since the hypotheses of Theorem 4.38 hold, 2(£) is non-empty, compact
and is approached by o(t,€) as t — oco. Assume that S C R" is non-empty and
closed, and is approached by ¢(t,&) as ¢ — oco. Seeking a contradiction, suppose that
2(§) ¢ S. Then there exists z € 2(§) with z ¢ S. Since S is closed, it follows that
€ := dist(z,5) > 0. Since z € (), there exists (t,), with ¢, — 0o as n — oo, such
that ¢(tn,&) — 2z as n — oo. By continuity of the map u — dist(u, S) (recall Exercise
4.7), we have dist(p(tn,&),S) > €/2 for all sufficiently large n. This contradicts the
fact that dist(¢(t,€),S) — 0 as t — co. Therefore, 2(£) C S.

Exercise 4.21

It is straightforward to verify that f(z) = 0 if, and only if, z = 0. Thus, the compact
annulus A := {z € R*: 1 < ||z|| < 3} contains no equilibrium points. The circle
C1 :={z € R?: ||z|| = 1} forms the inner boundary of A and

(2 f(2) = 9((2)12* = B+ 221 = ||2])12]* = 3 = 2|z = [|z])]2]|* 2 0 V= € Cu.
The circle Cs := {2z € R?: ||z|| = 3} forma the outer boundary of A and

(2. /(2)) = g((2)2]* = B+ 221 — ||z ]121* < 3+ 2[z1] = [|2]*)]2]|* <0 V= € Cs.

Therefore, the vector f(z) is not directed outward at any point z of the boundary
of A. Thus, every ¢ € A has semiorbit OT(£) is the compact set A and sof2(£) is
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a non-empty subset of .4; moreover, since A contains no equilibrium points, 2(&)
contains no equilibrium points. Therefore, by Theorem 4.46, for every & € A, 2(§) is
the orbit of a periodic point.

Exercise 4.22
(a) By the fundamental theorem of calculus, D is continuously differentiable. More-
over,

D(—u) = / d(v —D(u) VueR
0
and so D is an odd function. Since D’( d(0) < 0, there exists € > 0 such that
D(u) < 0 for all u € (0,¢) and, since D( ) — 00 as u —» 00, there exists E > ¢ such
that D(u) > 0 for all u > E. By continuity of D, the set Z := {u € [¢, E]: D(u) =0}
is non-empty, and the requisite properties hold for @ := inf Z and b := sup Z.

(b) By direct calculation we obtain &1 (t) = y(t) = z2(t) — D(y(t)) = z2(t) — D(z1(t))
and (1) = (t) + d(y(t)i(t) = —y() = —1(¢).

(c) Note that, if (z1,22) = z € R® is such that ||z|]] = a, then |z1] < @ and so
z1D(z1) < 0. Therefore,

HZH =a — <Z,f(2)> = 2122 — Z1D(21) — 2129 = —ZlD(Z1) > 0

and so the vector f(z) does not point into the disc of radius a centred at 0 at any
point z of its boundary. Therefore the exterior of the open disc of radius a centred at
0 is positively invariant under the (local) flow.
(dg For (z1,22) = (0,7), we have 27 4+ 223 = 2(b*> + ® + 4m?) = 2(c* + 4m* +
30%/2) —b* = 2r? — b* and so (0,7) € E1 C I'. For (z1,22) = (0,—y), we have
2.2 4+ =+ +4m?> =75 +b% andso (0,—) € Ex C I.
(e) We first investigate the nature of f on I' = E1 UC; UUL U Cy U Es. Let z =
(21,22) € Ep. Then the vector n = (z1,222) is an outward pointing normal to I'*.
Moreover, (n, f(z)) = z122—21D(21) —2z122 = —z122—21D(21) < —|z1|(|22|] —m) < 0.
Now, let z = (21,22) € C1 U Cs. Then z is an outward pointing normal to I'* and
(2, f(2)) = —z1D(z1) < 0. Next, let z = (21, 22) € L. Then the vector n = (1,0) is an
outward pointing normal to I'* and (n, f(z)) = 22 — D(z1) = z2 — D(c) < 0. Finally,
let z = (21, 22) € E2. Then the vector n = (221, 22) is an outward pointing normal to
I'* and (n, f(2)) = 22122 — 221 D(21) — z122 < —|21|(]22] — m) < 0. By symmetry, the
above analysis may be extended to the entire closed curve I'* to conclude that, at
all points z € I'* the vector f(z) is not outward pointing. This fact, in conjunction
with the result in part (c), implies that the annular region A is positively invariant
under the (local) flow. Moreover, A contains no equilibrium point. By the Poincaré-
Bendixson theorem, we may infer the existence of a periodic solution x = (1, z2)
of (4.38) with orbit in A. Therefore, y = z1 is a periodic solution of the Liénard
equation (4.37).
(f) By part (e), the system (4.38) has a periodic solution (z1, z2) in A. Since &2 = —z1,
there exists 7 > 0 such that z1(7) = 0. Setting v := z2(7) € [—7, —a]U]a, ], consider
the solution y of the Liénard equation (4.37) satisfying y(0) = 0 and ¢(0) = v. Then
(y1,92) given by

=y, y2=9+ D(y),
solves system (4.38) and satisfies y1(0) = 0 = z1(7) and y2(0) = v = z2(7). Conse-
quently, (y1(t),y2(t)) = (z1(t+7),22(t + 7)) for all ¢ € R and so, the function y = y1
is periodic.

Exercise 4.23
First observe that the system has precisely one critical point 0 € G. By part (b) of
Exercise 1.1, we may deduce that

E:G =Ry, z=(z1,22)— (1 —cosz +25/2



Logemann & Ryan 33

is a first integral. Clearly E(¢) > E(0) = 0 for all ¢ € G\{0}. Let cos™": [-1,1] —
[0,7] denote the inverse of the function cos |jg,-. Let o € (0,2) be arbitrary. Set
a:=cos (1 — a). Define 7o : [0,1] — [~a,a] by

a(dt—1), 0<t<1/2

a(3—4t), 1/2<t<1.

Yo(t) := {

Now define 71 : [—a,a] — [0,2), t+— /2(a — 1+ cost) and finally define v: [0,1] —

G by
 (e@®),m®), 0<t<1/2
(t) =
(vo(t), = (), 1/2<t<1.
Then the level set E~*(a) is non-empty and is given by
E™N0) ={€G: B(2) =a} = {7(t): t € [0, 1]}

and is evidently a closed Jordan curve. Moreover, Use(o,2yE~ ' () = G\{0}. Let
¢ € G\{0} be arbitrary and set o = E(¢). Then, by Proposition 4.54, O(¢) = E~!(«)
is a periodic orbit.
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Chapter 5

Exercise 5.1
In this case, G := (—1,00) x (—1,00) and f: G — R? is given by

f(2) = f(z1,22) := ((z1 + D)2z, —21(22 + 1)).
Set U := {(z1,22) € R? : 2§ + 23 < 1} and define V : U — R by
V(z) =V(z1,22) := 21+ 22 —In(z1 + 1) — In(22 + 1) .

Clearly, V(0) = 0. Moreover, since In(s + 1) < s for all s € (—1,1) \ {0}, we have
V(z) > 0 for all z € U \ {0}. Furthermore,

(TV)E) = (T = (22 22 )

and so Vi(z) = Vy(z1,22) = z122 — z122 = 0 for all z € U. It now follows from
Theorem 5.2 that the equilibrium 0 is stable.

Exercise 5.2
By hypothesis, there exists € > 0 such that

% <1, Vwe (—ee)\ {0}.
Define U := R x (—¢,¢) and consider

V:U—=>R, z:(zl,zz)Hszrz;.

Then V(0) = 0 and V(z) > 0 for all z € U\ {0}. Moreover, setting f(z) = f(z1, 22) :=
(22, —21 — 22 + g(22)), it follows that

22

((VV)(2), f(2)) = 2z122 + 222(—21 — 22 + g(22)) = 222 (M — 1) <0, VzeU.

By Theorem 5.2, the equilibrium 0 is stable.

Exercise 5.3

Define f: R? — R? by f(2) = f(z1,22) := (22,bsinz1). Set U := (—7,7) x R and
define V: U — R by V(z2) = V(21,22) := z122. Let z = (z1,22) € U be such that
V(z) = z122 > 0. Then, z1 # 0, 22 # 0 and so Vy(z) = 22 4+ bz sinz; > 0. Therefore,
hypothesis (1) of Theorem 5.7 holds. Let 6 > 0 be arbitrary and set 6 := min{d, w}/2.
For & := (6,0), we have &£ € U, ||£]| < § and V(€¢) = 6% > 0. Therefore, hypothesis (2)
of Theorem 5.7 also holds and so (0, 0) is an unstable equilibrium.

Exercise 5.4
(a) Define h: Ry — R by

42
o sint

h(t) = 2cost” — 2 t>0,

1, t=0.

Then, h is continuous on Ry and, clearly, h(t) does not converge to 0 as ¢t — oo.

Moreover,
t 2
sin s
h(s)ds =
0 S

t

1
= fsint2,
t

0
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showing that fo s)ds — 0 as t — oo.

Note that, by Lemma 5.9, the function h cannot be uniformly continuous. To show
this directly (that this, without appealing to Barbalat’s lemma), define

Sn=V2nm and t,:=+/(2n+1/2)m; VneN.

Then
lim (sp —tn) =0 and lim (h(sn) — h(tn)) =2,

n—>00 n— 00

showing that h is not uniformly continuous.

Exercise 5.5
Let £ = (£1,&) € G = R? and write (¢, &) = (z(t),y(t)) for all t € [0, we) := IeNR;.
Then
zd = a” tanh(z)(1 —y) = 4(1 —y) =5 — yy.
Integration yields o2 (t) — £7 = 2y(t) — 2€a — 4% (t) + &3 for all t € [0, we). Rearranging,
we have
0 < a®(t) = [I€lI* — 262 +2y(t) — y*(t) Vi € [0,w¢)

whence boundedness of y and x. Therefore, by Theorem 4.11, wg = oo and O™ (¢)
is bounded. Moreover, since ¢(t) = () tanh(x(t)) > 0 for all ¢t € [0,w), ¥ is non-
decreasing. Combining this with the fact that y is bounded shows that lim: o y(t) =
A exists and is finite. Consequently,

t

lim 2%(s) tanh(z(s))ds = lim (y(t) — &) = A — &

t—o0 0 t—o0

By the integral-invariance principle (Theorem 5.10) with U = R? and g given by
g(2) = g(z1, 22) = 23 tanh(z1) for all z € R?, it follows that lim;—.o x(t) = 0. Note
that any point of the form (0, z2) is an equilibrium point and thus, g~*(0) = {(0, 22)
z2 € R} is an invariant set.

Exercise 5.6

If the hypothesis “V;(z) < 0 for all z € U” is replaced by “Vy(z) > 0 for all z € U”,
then inspection of the proof of Theorem 5.12 reveals that the same argument applies
with only one modification, namely, the phrase “V o z is non-increasing” should be
replaced by “V o x is non-decreasing. There is no anomaly: note that there is no
requirement that V' be sign definite; the crucial ingredient is that lim;—. V(z(¥))
should exist and be finite.

Exercise 5.7

As in Example 5.3, introducing the function f: R? — R? given by f(2) = (217 22) =
(22, —bsinz; — azQ) the system may be expressed in the form & = f(z). Let ¢ denote
the local flow generated by f. Define the vertical strip S := (—m, ) X R. By Example
5.3, the function V': S — R given by

V(2) = V(z1,22) := 25 + 2b(1 — cos z1).

is a Lyapunov function with Vy(21, z2) = —2a23 < 0 for all (21, 22) € S, and so, the
equilibrium 0 is stable. Consequently, there exists a neighbourhood U C S of 0 such
that, for every & € U, the the closure of the semi-orbit OT (¢) is contained in S. By
Theorem 5.12, it follows that, for every £ € U, Ry C I¢, and moreover, as t — 00,
»(t, €) approaches the largest invariant set M in fol(O) ={z=(z1,22) € S: z0 =0}.
Let z = (z1,0) be an arbitrary point of M and write (z1(t), z2(t)) = ¢(t, 2) for all t €
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I.. Obviously, z2(t) = 0 for all ¢ € R. Therefore, 0 = @2(t) = —az2(t) — bsinzi(t) =
—bsinz (¢) for all t € R. Since z1(t) € (—m,n) for all ¢t € R, it follows that 1 (¢) =0
for all t € R. In particular, 0 = 21(0) = 21 and so, z = 0. Therefore M = {0} and
thus, ¢(¢,£) — 0 as t — oo.

Exercise 5.8
With V: R?* = R and f: R? — R? given by

V(2) = V(z1,22) = 21 + 23 = ||2|®

and
f(2) = fz1,22) i= (22 — 27 (a1 + b127) , —21 — 25 (a2 + b223)),

respectively, we have that
Vi(2) = (VV)(2), f(2)) = 221 (a1 + biz7) — 225 (az + ba23) <0 Vz € R%

Therefore,
Dy (p(1,) = Vyp(,€) <0, Vi€ [0,0e).,

where we = sup I¢. Consequently,

e N < (0,1l = Il VE € [0, we).

Therefore, OT(¢) is compact. By Theorem 5.12 (with U = R?), we may infer that
wg = oo and, since Vf_l(O) = {0}, we have ¢(t,£) — 0 as t — oo.

Exercise 5.9
Set () := (-, &). By continuity of V and compactness of cl(O™(£)), V is bounded on
O™ (€) and so the function V oz is bounded. Since (d/dt)(V oz))(t) = V¢ (z(t)) < 0 for
all t € Ry, V oz is non-increasing. We conclude that the limit limi— oo V(z(t)) =: A
exists and is finite. Let z € 2(§) be arbitrary. Then there exists a sequence (¢,) in
Ry such that t, — oo and z(t,) — z as n — oco. By continuity of V, it follows that
V(z) = A. Consequently,

V(z) =X Vz € 2(). (%)
By invariance of 2(§), if z € £2(€), then ¢(t, z) € 2(§) for all t € R and so V(¢(t, z)) =

A for all ¢ € R. Therefore, Vi (p(t,2)) =0 for all t € R. Since ¢(0,z) = z and z is an
arbitrary point of £2(£), it follows that

Vi(z) =0 Vze (), ()

and so 2(§) C Vf_l(O)A The claim now follows because, by Theorem 4.38, 2(€) is
invariant and x(t) approaches 2(£) as t — oo.

Comment. It might be tempting to conclude from (x) that (VV)(z) = 0 for all
z € £2(€), which then immediately would yield (xx). However, this conclusion is not
correct: the set £2(€) is not open and therefore (%) does not imply that (VV')(z) = 0 for
all z € 2(€). (The invalidity of the conclusion is illustrated by the following simple
example: if V(z) = ||z]|? and 2(¢) = {z € RY : ||z = 1}, then V(2) = 1 for all
z € £2(§), but (VV)(2z) =2z #0 for all z € £2(¢).)

Exercise 5.10

(a) For r2,6° € (0,00) x [0,27), let r(-;7°) and 6(-;6°) denote the unique maximal
solutions of the initial-value problems

F=r(1-r), r(0)=r° and 6 =sin®(0/2), 6(0) =6°,
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respectively. Invoking separation of variables, a routine calculation shows that

7”0

L0y
) = 70 4 (1 — 70)e~?

vt >0,

and hence, im0 7(¢;7°) = 1.
If 6° = 0, then 6(t;6°) = 6(¢;0) = 0 for all ¢ € R and the claim in part (i) follows.
Assume now that 0° € (0,27). Then, 6(t;6°) < 27 for all t > 0, because otherwise
there would exist 7 > 0 such that 6(r;0°) = 2, in which case the initial-value
problem
O(t) = sin*(0(t)/2), O(to) = 2w

would have two solutions on R, namely, 0(-;6°) and (-) = 2, contradicting unique-
ness. Since 6(-;8°) is strictly increasing and 6(t;6) € %90, 2m) for all t > 0, it follows
that 0* := lim;_,. 0(t; 0°) exists and is contained in (°, 27]. Suppose 6* < 27. Then,
c:=sin?(0*/2) > 0 and, for all ¢ > 0 sufficiently large, (d/dt)6(¢;0°) > ¢/2 > 0 which
contradicts the fact that 0(t;0°) € [0°, 27) for all ¢ > 0. Therefore, lim;_, o 0(t;0°) =
2m. Since

D(t;(r°,0) = (r(t;7%),0(t:6") Vit >0,

the claim in part (ii) now follows.

(b) Writing = r cos§ and y = rsin 6, a straightforward calculation gives the system

&= g(z,y)xr — h(z,y)y, ¥=g(x,y)y+ h(z,y)

on R?\{(0,0)}. The point (1,0) is an equilibrium of this system. Denoting the corre-
sponding local flow by ., it follows from (a) that

o limyoq e, (2°,49)) = (1,0) for all (2%, 3°) € R\ {(0,0)};

o ||1be(t, (cos8°,sin %))|| = 1 for all £ > 0 and all 8° € [0, 27);

o for each n € N, there exists t, > 0 such that 1. (tn, (cos(1/n),sin(1/n))) = (-1, 0).

(c¢) Applying the coordinate transformation x — x + 1 to the system in (b) yields the
equivalent system

t=glz+1Ly)(z+1)-hz+1,y)y, 9=g@+Lyy+h(x+1Ly(z+1)

on G := R*\{(—1,0)}, with equilibrium (0, 0). Let ¢ denote the local flow generated
by this system. Then, for all (z°,4°) € G, ¢(t, (2°,4°)) = ¥e(t, (z° + 1,4°)) — (1,0)
and lim;—, o0 ¢(t, (2°,4%)) = 0. Therefore, the equilibrium is globally attractive. To
see that the equilibrium is not stable, define &, := (cos(1/n) — 1,sin(1/n)). Then
there exists 0 > 0 such that, for all £ € G with ||€]| < 0, |le(t,€)]| < 1 for all £ > 0.
For n € N, define &, := (cos(1/n) — 1,sin(1/n)) and observe that, by the result in
the third bullet item in (b),

lo(tn, En)ll = llvbe(tn, (cos(1/n),sin(1/n))) — (1,0)]| = [[(=2,0)[| = 2.
Since &, — (0,0) as n — oo, it follows that the equilibrium (0, 0) is not stable.

Exercise 5.11

The planar system in Example 5.4 is encompassed by Example 5.16 with g: R> - R
given by g(z) = g(z1,22) 1= 2} + 22 — 22|22|. Define U := (—1,1) x (—1,1) and
observe that z1g(z1,0) = 21 > 0 for all z; # 0 and 029(21,22) = 1 — |22] > 0 for all
(21, 22) € U. Therefore, by Example 5.16, we may deduce that the equilibrium 0 € R?
is asymptotically stable.
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Exercise 5.12

(a) The Liénard system is of the form (5.8) with g: R? — R given by g(2) = g(z1, 22) =
k(z1)+d(z1)z2. By assumption, there exists € > 0 such that z1k(z1) > 0 and d(z1) > 0
for all z; € (—¢,e) \ {0}. Define U := (—¢,¢) x (—¢,¢). Then 2z19(z1,0) = z1k(z1) > 0
for all z1 € (—¢,e) \ {0} and 029(z1,22) = d(z1) > 0 for all (z1,22) € U with
z1z2 # 0. Therefore, by the result in Example 5.16, 0 € R? is an asymptotically
stable equilibrium.

(b) Define K: (—¢,¢) — R by K(z1) := [7* k(s)ds. Observe that, by hypothesis (a),
k(s) > 0 for all s € [0,¢) and k(s) < O for all s € (—¢,0) which, together with
continuity of k and hypothesis (b), ensures that K(z1) > 0 for all z1 € (—¢,¢) \ {0}.
Set U := (—¢,e) X (—¢,¢) and define V: U — R by V(2) = V(21, 22) := K(z1)+25/2.
Define f: R> — R® by f(z) = f(z1,22) == (22,—9(2))) = (22, —k(22) — d(21)22)), in
which case, the Liénard system may be expressed in the form & = f(z). We may now
infer that V(0) =0, V(z) > 0 for all z € U \ {0} and

Vi(z) = Vi(z2,22) = k(21)22 + 22( — k(21) — d(21)22) = —25d(z1) <0 Vz e U.

By Theorem 5.2 (with G = R?), it follows that 0 is a stable equilibrium.

Finally, set d = 0 and let k be the identity map. In this case, the Liénard system
reduces to the harmonic oscillator §+y = 0. Hypotheses (i) and (ii) clearly hold and so
the equilibrium 0 is stable but is not asymptotically stable since (maximal) solutions
of the harmonic oscillator have the property that [|(y(¢),y(¢))|| = ||(y(0),9(0))| for
all t € R.

Exercise 5.13

Let U and V be as in Corollary 5.17. Stability of the equilibrium 0 is an immediate
consequence of Theorem 5.2. The remaining issue is to establish attractivity. Let € > 0
be such that B(0,¢) C U. By stability, there exists § > 0 such that, if £ € B(0, §), then
x(t) € B(0,¢) for all t € R4 and for every maximal solution = with z(0) = £. Let x be
any such solution. By boundedness of x and continuity of f, we may infer boundedness
of z and so z is uniformly continuous. Since Vy(z(t)) < 0 for all ¢ € Ry, it follows
that V oz is bounded (0 < V(z(t)) < V() for all ¢ € Ry) and non-increasing. Hence,
V o x converges, in particular, there exists ¢ € [0,V (£)] such that V(z(t)) — ¢ as
t — oo. Therefore,

¢
lim / Vi(z(s))ds = lim V(z(t)) — V(§) =c—V(§).
t—o0 0 t—o0

Furthermore, by continuity of V, together with uniform continuity and boundedness
of z, Vy o x is uniformly continuous. By Barbalat’s lemma (Lemma 5.9), we may
conclude that Vi (z(t)) — 0 as ¢ — co. Seeking a contradiction, suppose that z(t) 4 0
as t — oo. Then there exist § € (0,e) and a sequence (t,) in Ry with ¢, — oo
as n — oo and ||z(t,)|| > 6. By continuity and negativity of V; on the annulus
A:={z€U: 0 <|z| < e}, there exists u > 0 such that V¢(z) < —pu for all z € A.
Therefore, Vy(z(tr)) < —pu for all n € N, which contradicts the fact that Vi (x(¢)) — 0
as t — oo.

Exercise 5.14
By attractivity of the equilibrium, there exists € > 0 such that

Jim o(t,¢) =0 V¢ €B(0,2). (%)

Let £ € A be arbitrary. It suffices to show that £ has a neighbourhood U contained
in A. Since £ € A, there exists T' > 0 such that (T,n) € dom(p) and ||p(T,§)| < e.
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By openness of dom(y) and continuity of ¢ (see Theorem 4.34), there exists § > 0
such that

lo(T,n) —@(T,6) <e VneU:=B(,0).
Therefore,

le(T,mIl < lle(Tn) = (T, O + le(T, | <26 VneU.
By (%), it follows that

lim ¢(t +T,n) = lim ¢(t,¢(T,n)) =0 Vn e U.
t— o0 t—o0

Therefore, the neighbourhood U of £ is contained in A. Since £ € A is arbitrary, it
follows that A is an open set.

Exercise 5.15

First, assume that V: RN — R, is radially unbounded. Let ¢ € Ry be arbitrary and
set e := {z € RY: V(2) < ¢}. Clearly, X, is a closed set. The set X is also bounded
as, otherwise, there must exist a sequence (zn) in Y. with ||zn|| — 00 as n — oo
and so, by radial unboundedness, V(z,) — oo as n — oo, which is impossible since
V(zn) < c for all n € N. Therefore, X, is closed and bounded, and so is compact.

Now, assume that Y. is compact for all ¢ € Ry. Suppose that V is not radially
unbounded. Then there exists ¢ € R} and a sequence (z,) in RY with ||z,|| — oo as
n — oo and V(z,) < ¢ for all n € N. Therefore, (2z,) is an unbounded sequence in
X, which contradicts compactness of X + ¢. Therefore, V' is radially unbounded.

Exercise 5.16 )
The Lorenz system is of the form & = f(z), with continuously differentiable f: R® —
R3 given by

f(Z) = f(217227 23) = (0(22 - 31)77”21 — 29 — Z123,21%22 — ng)

with ¢ > 0, b > 0 and 0 < r < 1. Consider the function V: R®> — R given by
V(2) = V (21, 22, 23) i= rzi+023+023. Clearly, V(0) = 0, V(2) > 0 for all = € R*\ {0}
and V is radially unbounded. Moreover,

Vi(z1,22,23) = 2rozi(z2 — z1) + 2022(rz1 — 22 — z123) + 2023(2122 — bz3)
= 720(%2% — 2rz120 + zg) — 2b0z§ V(z1,22,23) € ]R3,

Since 0 < r < 1, we may choose p such that 0 < r < p < 1. Write p := min{r(1 —
p),(1—r/p)}. Then, > 0 and, since 22122 < pzi + 23 /p, we have

rz; — 2rzize 4+ 25 > (1 —p)zi + (1 —1/p)zs > M(zf + zg)
Therefore,
Vi(z) = Vi(z1, 22, 23) < —20(,uzf + pzs + ngQ,) <0VzeR?

Moreover, fol(()) = {0}. Hence, by Theorem 5.22, the equilibrium 0 is globally
asymptotically stable.

Exercise 5.17

(a) A routine calculation gives (VV)(z1,22) = 2(21, 22(1 + 23)77) for all (21, 22) €
R?,

If 2222 > 1, then

Vienza) = 2( = 2 4 2301+ 2)7) = 2014 22) (1 - 23:2)23 — 27 — 2:323) < 0.
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If 2223 < 1 and (21, 22) # 0, then

Vi(z1,22) = 2( -4+ (2"5%’5‘21 - 33)(1 + Zg)iz)

=2(1+23)72 ((zfzg —1)z5 — 21 — 22’%23) < 0.

Clearly, V(0) = 0 and V(2) > 0 for all z € R?\ {0}. By Corollary 5.17, it follows that
the equilibrium 0 is asymptotically stable.

(b) Let £ = (£1,&2) € R? be such that £7¢3 > 1. Then z: R — R? given by

z(t) = (z1(t), 22(t)) = (e &1, e'6a)

solves the initial-value problem & = f(z), z(0) = £. Indeed, z(0) = &. Also, &1 = —x1,
&2 = xo and z3(t)x3(t) = €165 > 1, showing that & = f(z). Since |z2(t)] — oo as
t — 0o, we may conclude that 0 is not globally asymptotically stable.

(c) Setting z, = (0,n), it follows that ||z.|| = n — oo and V(z,) = n?/(1 +n?) = 1
as n — o0o. Hence, V is not radially unbounded.

Exercise 5.18
Write M = (Ml‘j), where M;; denotes the entry in row ¢ and column j of M. Then,
fork=1,...,N,

N N
q(z) = Z ZMijzizj = ZZ MijZiZj + ZMijij + Z Mikzizi + Mka/z
i=1 j=1

ik 2k j#k ik
and so
N N
(Okq)(2) = Z My;z; + Z Mg zi + 2Myr2zr = Z Myj;z; + Z My zi
J#k itk j=1 i=1
= k-th component of (M + M™)z.
Therefore, (Vq)(z) = (M + M*)z for all z € RY.

Exercise 5.19

The system is of the form & = Azx with A = (Pl 711)
(a) Setting Q@ = I, we seek P = <z; £§> such that PA + A*P + I = 0. Direct
calculation gives 0 = —2p2 + 1 = p1 — p2 — p3 = 2(p2 — p3) + 1, whence

)

Defining V': R? — Ry by V(2) := (2, Pz), we have
(VV(2), Az) = 2(Pz,Az) = (PA+ A*P)z,z) = —(2,2) = —||z|> Vze R
Therefore, the derivative of V' along non-zero solutions is negative.

(b) With V: R? — R, given by V(2) = ||z||?, we find

(VV(2),Az) = 2(z, Az) = =225 V2= (2) € R2
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Therefore, V' qualifies as a Lyapunov function. However, in contrast with part (a),
the derivative of V' along non-zero solutions is only non-positive.

Exercise 5.20
The system is of the form & = Az + h(x) with

-2 1 0 21 23|23
A=10 -1 4| and h:R* 5 R® 2= (2| = | zisinzs
0 0o -1 z3 2122 — 2223

Clearly, 0(A) = {—1,—2} and so A is Hurwitz. Let ¢ > 0 be arbitrary. Choose § > 0

Z1
sufficiently small so that /62 + 5 < e. Then, for all z = | 22 | € R?, we have
Z3

h(z 2422 4+ 226in2 23 + (2122 — 2223)2
”Z'<5:>”||(Z|)|—\/” : 52( )
06 + 64 4 404
52
Therefore, lim._,o h(z)/]|z]] = 0 and so, by Theorem 5.27, 0 is an asymptotically
stable equilibrium.

=0Vt +5<e.

Exercise 5.21
Let ¥: R — R be continuously differentiable with (0) = 0 and '(0) € (a, 8). The
feedback system is given by & = f(x), where f: R? — R? is given by

f(z):= Az — bip(c*2) Vz € R’
Clearly, f is continuously differentiable and f(0) = 0. Moreover,
A= (Df)(0) = A—4/(0)bc" = A — kbc"

and, since k € (a, 8), it follows that A is Hurwitx. By Corollary 5.29, we may infer
that 0 is an asymptotically stable equilibrium.

Exercise 5.22
Define f: R3 — R3 by

f(Z) = (f1(21,22723),f2(21,22723),fg(zl,Z2723))
= ( — 221 + zf|23| + 29, 218N 23 — 22 + 423, 2122 — 2223 — zs).

A straightforward calculation reveals that all (nine) first partial derivatives 9;f;(0)
exist. However, f is not differentiable at points (z1,22,0) with z1 # 0 and so the
hypotheses of Corollary 5.29 fail to hold.

Exercise 5.23
The Lorenz system is of the form & = f(x), with continuously differentiable f: R® —
R? given by

f(2) = f(z1,22,23) := (0’(22 — 21),T21 — Z2 — 2123,21%2 — bZ3).

Therefore,
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with characteristic polynomial given by (A +b)(A? + (¢ + 1)A + (1 —7)). Given that
o > 0 and r > 1, it immediately follows that A has a positive eigenvalue. Therefore,
by Theorem 5.31, 0 is an unstable equilibrium of the Lorenz system.

Exercise 5.24

As in Exercise 5.16, define V: R® — R by V(02) = V (21, 22, 23) := r2i + 023 + 023.
Writing a1 := min{r,o} > 0 and as := max{r, o}, we have a1|z||* < V(2) < az2||2|]?
for all z € R3. Furthermore, by the calculation in the solution to Exercise 5.16, we
have Vy(z) < —as||z||? for all z € R?, where a3 := 20 min{y, b} > 0. Therefore, by
Theorem 5.35, 0 is an exponentially stable equilibrium.

Exercise 5.25

Let u: Ry — R be piecewise continuous with u(t) — u™ € R as t — oco. Let
¢ € RY be arbitrary and let z: Ry — RY be the solution of the initial-value problem
& = Az + bu, 2(0) = £ Define w: Ry — RY by w(t) := x(t) + A~ Bu™. Then,

W(t)i(t) = Az(t) + Bu(t) = Aw(t) + B(u(t) — u™®) Vi€ R\E

where F is the set of points at which w fails to be differentiable. Thus, writing 6 :=
£+ A7 Bu™ and v(-) := u(-) — u™°, we see that w solves the initial-value problem
w = Aw + Bv, w(0) = 6. Since A is Hurwitz and v(t) — 0 as t — oo, the 0-CICS
property holds and so Az(t) + A~'Bu® = w(t) — 0 as t — oo.

Exercise 5.26
The claim follows from a straightforward application of Proposition 4.20.

Exercise 5.27

With u = 0, the system is given by & = —x|z|. The function V: R — Ry, z > 22
is a radially-unbounded Lyapunov function with (V'(2))(—z|z|) = —2|z|* < 0 for all
z # 0. Therefore, the equilibrium 0 is globally asymptotically stable.

Exercise 5.28
This is a straightforward consequence of the facts that, for a,b € Ry, (a +b) <
max{2a,2b} and max{a,b} < a+b.

Exercise 5.29

(a) & (b) Since 9 (+,0) = 0 and g(s)s < 0 for all s € Ry, it follows that 0 < ¢(¢,&) < &
for all £ € Ry and all t € It "Ry, where Iz denotes the maximal interval of existence
of the solution of the initial-value problem & = g(z), £(0) = £. Therefore, Ry C I
for all £ € Ry (by Theorem 4.11) and so Ry x Ry C dom(v)).

(c) Since g(s)s < 0 for all s > 0, we may infer that, for every, & > 0, ¥(-,€) is
decreasing and ¥(t, &) — 0 ast — oo. Moreover, if 0 < & < &, then ¥(t,&1) < ¥(t,&2)
for all t € Ry (by Corollary 4.36). Define 6: Ry x R — R4 by 0(r,t) := ¢(t,r).
Then, for each r > 0, 6(r,-) is decreasing and 6(r,t) — 0 as ¢ — oco. Moreover, for
each t € Ry, 6(0,t) = 0 and, if 0 < r; < 72, then 6(r1,t) < 6(r2,t). Furthermore,
by continuity of 1, 6(-,t) is continuous for each ¢ € Ry. Therefore, for each t € Ry,
6(-,t) is a K function. We may now conclude that 6 is of class L.

Exercise 5.30
Define c: Ry — Ry by

c(s) = sup{|Vy(z, w)|: [|z[| < bi(s), [[w] < s} Vs Ry

and observe that ¢ is non-decreasing, with ¢(0) = 0. Moreover, bz(s) = ¢(s) +b2(b1(s))
for all s € R4. Since b1, b2 € Koo, it follows that baob; is in K. Therefore, to conclude
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that b3 is in K it suffices to show that the function ¢ is continuous. Continuity at
s = 0 is clear. Let s > 0 be arbitrary. We will show that ¢ is continuous at s. Let
(sn) be a sequence in Ry with s, — s as n — co. We may assume that s, > 0 for all
n € N. For each n € N, define p,, := min{s,, s} and o, := max{sn,s} > pn > 0. Then
le(s) — ¢(sn)| = ¢(on) — ¢(pn) for all n € N and so, to conclude that ¢ is continuous
at s, it is sufficient to show that lim, (c(an) — c(pn)) = 0. For each n € N, the set

Ku={(zw): ||z <bi(on), lw] < on}

is compact which, together with continuity of (z,w) — |Vy(z,w)|, ensures the exis-
tence of (Yn,vn) € Ky such that ¢(on) = |V (Yn, vn)|. Define sequences (z,) and (wnr)
by

_ bi(pn) w. = Py
n - bl(O'n) ny n - on n

and observe that
lznll < b1(pn), llwnll < pn ¥neN.

Therefore,

Vi (zn, wn)| < c(pn) < c(on) = [Vi(Yn,vn)| Vn €N. (*)
By boundedness of the sequence (o,), there exists ¢ > 0 such that o, < o for all
n € N. Define K := {(z,w): |z|| < bi(0), |lw|| < o}. Then K is compact and is such
that (yn,vn), (zn,wn) € K for all n € N. Let € > 0 be arbitrary. Since V} is uniformly
continuous on K, there exists § > 0 such that, for all (z,w), (y,v) € K,

Iz =yl + lw — o] <6 = [|Vi(z,w)| = [V (y,v)|| <e. (+)

Since lim,, o0 pn = limp— 00 0, = s > 0, we may infer that, as n — oo,

o = all = (1= 2223 > 0 and o = vl = (1= 22) ol >0,
and so there exists N € N such that ||zn — yn|| + ||wn — vn| < 9§ for all n > N. The
conjunction of (x) and (**) now gives 0 < c¢(0,) — ¢(pn) < € for all n > N and so
limp—oo(c(on) — ¢(pn) = 0, completing the proof.

Exercise 5.31

It is clear that a1(0) = 0 = a2(0) and that the functions a1 and as are non-decreasing
and are continuous at 0. Let s > 0 be arbitrary. Let (s,) be a sequence in R4 with
Sp — § as n — o0o. Since s > 0, we may assume that s, > 0 for alln € N. Let € > 0
be arbitrary. We will establish continuity at s of both a1 and a2 by showing that, for
i = 1,2, there exists N € N such that

lai(s) —ai(sn)] <& Vn > N. )

For each n € N, define p,, := min{s, s,} > 0 and o, := max{s,s,} > pn. Clearly,
limp o0 pn = limp—oo 0 = s > 0 and so there exist p > 0 and o > 0 such that
p < pn < 0onp < o for all n € N. Observe that o,/p, < o/p for all n € N and
on/pn — 1 as n — oo. Since W is radially unbounded, there exists r > p such that
W(y) > ai(o) for all y with |y|| > r. Write R := ro/p > o and set K := B(0, R).
Since W is uniformly continuous on K, there exists 6 > 0 such that, for all y,z € K,

ly =2 <6 = [W(y) - W(2)| <e. (1)

(a) First, we prove continuity of as at s. By continuity of W, for each n € N, there
exists yn, with ||yn|| < on, such that az(on) = sup{W(y): |yl < on} = W(yn). For
each n € N, set z, 1= (pn/0n)yn. Then ||z,| < pn and

0 < az(on) —az2(pn) < W(yn) — W(zn) Vn €N. (%)
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Observe that the sequences (y») and (zn) are in K and, since pn/on, — 1 as n — oo,
we have

|y — 2znll = ( - Zl) lyn|| = 0 as n — oo.

In particular, there exists N € N so that ||y, — zn|| < ¢ for all n > N which, in
conjunction with (%) and (7t), gives

laz(s) — az2(sn)| = az(on) —az2(pn) <e Vn > N.

Therefore, () holds for ¢ = 2 and so a2 is continuous at s.
(b) Next, we prove that a1 is continuous at s. Recall that, for all y with |ly|| > r, we
have W (y) > a1(o) > a1(pn) for all n € N. Therefore,

ai(pn) = nf{W(y): pn < |lyll} = nf{W(y): pn <|lyll <7} VneN

and so there exists a sequence (yn), such that p, < ||yn]| < r and a1(pn) = W(yn)
for all n € N. Define the sequence (z,) by zn := (0n/pn)yn. Then

00 < P ynll = 2nll < - =R Vn €N,
Pn P

Therefore,
0<ai(on) —ai(pn) < W(zn) —W(yn) VneN. ()

Observe that the sequences (yn) and (z,) are in K and, since 0,,/p, — 1 as n — oo,
we have

On
lyn — 2nll = (p— - 1) lynll = 0 as n — oco.

In particular, there exists N € N so that ||yn — zn]| < 0 for all n > N which, in
conjunction with (xx) and (1), gives

lai(s) —ai(sn)| = a1(on) —ai1(pn) <e ¥Yn > N.
Therefore, () holds for ¢ = 1 and so aq is continuous at s.

Exercise 5.32
(a) Define V: R — R by V(2) = 2?/2. Then

Vi(z,v) = —2°(1 +22%) + 2(1 4+ 2°)0° = —2* + (1 + 2°) (20 — 2*) V(2,v) € R X R.

Therefore, for |z| > v?, we have V;(z,v) < —z* and so, an application of Corollary
5.44 (with by and bo given by bi(s) = s and ba(s) = s*) shows that the system is
ISS.

(b) Define V: R? = R by V(2) = V (21, 22) := 27/2 + 23 /4. By Lemma 5.46, there
exist a1, az € Koo such that

ar(|lz]l) £ V(2) < ax(z]) V= € R®.
Moreover,
Vi(z,v) = 2+t < —zf/2 - 23/2 + 23 Y (z,v) € R? x R.
Let 1 > 0. By Young’s inequality’
Zv = (u23)(v/p) < (n23)"?/(4/3) + (v/n)* /4 ¥ (22,0) ER xR,

! William Henry Young (1863-1942), English. Young’s inequality says that if a,b > 0
and p,q > 0 are such that 1/p+ 1/q = 1, then ab < a?/p + b?/q.
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and, setting 1 = 3734, we have z3v < z3/4 + 27v* /4. Therefore,
Vi(z,v) < =V (z) + 270" /4 V(z,v) € R* X R.

An application of Theorem 5.41 (with az = a1 and a4 given by a4(s) = 27s* /4) shows
that the system is ISS.

(c) Define V: R* = R by V(z) = V (21, 22) := ||2||>/2. Then
Vi(z,v) = Vi(z1, 22,v1,02) = —zf — zg + z1v1 + 2202 YV (z,v) € R? x R2.

For all (z1,v1), (22,v2) € R X R, z191 < (2§ +v1)/2 and zve < 25/4 + 3113/3/4 ZSby
Young’s inequality). Therefore, defining Wi, Wa: R? — Ry by Wi(2) := 27/2+ 325 /4
and Wa(v) = Wa(v1,ve) 1= v3/2 + 31/21/3/4, we have

Vi(z,0) < =Wi(z) + Wa(v) V(z,v) € R* x R®.
By Lemma 5.46, there exist as, a4 € Koo such that
az(||z]]) < Wi(z) Vz€R? and Wa(v) < as(|v]) Yve R

Therefore,
Vi(z,0) < —as(|l2[l) + aa([lol) V¥ (z,v) € R* x R?,

and so, by Theorem 5.41, it follows that the system is ISS.
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Chapter 6

Exercise 6.1
By direct calculation

0O 0 ... 0

0o 0 ... 1
C(Ac,be) = (bey Acbe, ..., AV b)) = |+ ¢ o 1 |,

0 1 * ok

1 *x ... * x

and so rkC(A¢,b.) = N. Hence, (A, b) is controllable.

Exercise 6.2

(a) Let s € S be arbitrary. Then, by property (i), I'(s) ~ s and so I'(s) € [s].
Therefore, every s € S has at least one representative in I'(S). Assume s1,s2 are
representatives of s € S. Then s1 ~ sz and so, by property (ii), I'(s1) = I'(s2).
Therefore, every s € S has precisely one representative in I'(S).

(b) It is straightforward to verify that the requisite properties hold for ~, namely,
reflexivity (for all (4,b) € S, (A,b) ~ (A, b)), symmetry (for all (A1,b1), (A2,b2) €S,
(A1,b1) ~ (AQ,bQ) implies (Ag,bg) ~ (A1,b1)), and transitivity (fOI‘ all (A1,b1),
(AQ,bQ), (A3,b3) S S, if (A1,b1) ~ (A27b2) and (AQ,bg) ~ (A3,b3), then (A1,b1) ~
(As,b3)). Therefore, ~ is an equivalence relation.To see that I" is a canonical form,
we show that the requisite properties (i) and (ii) hold. First note that, by Lemma
6.1, for all (A,b) € S I'(A,b) = (Ac,be) ~ (A,b) and so property (i) holds. Let
(A1,b1), (A2,b2) € S be such that (A1,b1) ~ (Az2,b2). Then, A; and Az have the same
characteristic polynomial and so have the same controller form, that is, I'(A1,b1) =
I'(A2,b3). Thus, property (ii) also holds. Therefore, I" is a canonical form.

Exercise 6.3
For n € N, N > 2, let P(N) be the statement

P(N): Pu(s)=s" +my_1s™" '+ +mis+mo
0 1

—mo —mi

The matrix m = < > has characteristic polynomial

-1

S 2
= =S8 4+ mis+m
) ’mo s+ ma L 0

P]L{(S

and so P(2) is a true statement. Assume N € N, N > 2, and P(N) true. The
(N +1) x (N + 1) matrix

0 1 0 e 0 0
0 0 1 s 0 0
M =
0 0 0 0 1
—mo —Mmi1 —ma2 —mN-1 —MN

s -1 0 0 0
0 s -1 0 0

PM(S) = : :
0 0 0o .- s -1

mo M1 M2 -+ MN-1 S+MmMmN
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which, by expansion on row 1 and invoking the truth of P(V), gives

s -1 -- 0 0
Py(s)=s| :

0 o - s -1

mi Mz -+ MN-1 S+mn
0 -1 0 0

+ : :

0 o .- s -1
mo Mm2 - MN-1 S+ MmN

N-1

=s(s" +mns" T 4t mas+mi) +mo ="+ maSY 4 mas +mo

and so P(N + 1) is a true statement. The result follows by induction.

Exercise 6.4
We first show that, for all k € N,

k—1
AF — Ak +2Ak717ibf*AAi. (%)
i=0
For k = 1, formula (x) reduces to A = A+bf*, which is trivially true (by the definition
of A). Assume now that formula (x) is true for K = m. Then,
m—1
i=0
m—1 ) )
_ Am+1 + Z Amfzbf*Az +bf*Am
i=0
_ Am+1 +ZAm_ibf*Ai,
i=0
which is () for K = m + 1. We conclude that formula (x) is true for all k € N.

Write P(z) = 30 an2", with a, € R, n = 1,...,N and ay = 1. Using (%), we

obtain
n—1

anA™ = an A" + an Z A" AN n=1,...,N.
i=0
Therefore, there exist g, € RV, n=0,...,N — 1, such that

N
P(A) =) anA™ = P(A) + bgy + Abgi +--- + AV 'bf*
n=0

By the Cayley-Hamilton theorem, P(A) = 0, and thus,
P(A) = —(bgy + Abgi + -+ A" 2bg_o + AV 'bf7).

Writing G := (g0, 91, ,gn—1, ) € RM*N the above formula for P(A) can be writ-
ten in the form P(A) = —C(A,b)G* and so G* = —C(A,b) ' P(A), where C(A,b)™*
exists by controllability. Since the last row of G* coincides with f*, it follows that

fF=—(0,...,0,1)C(A,b)" ' P(A).
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Exercise 6.5
(a) The matrix C(A,b) is given by

0 O 2 0
0 2 0 -2
CAb =191 o -4
1 0 —4 0
To calculate f, the last row of C™'(A,b) is needed:
* % * %
x % x %
cCCTHAD) = |« o« * %
1 1
0 = —> 0
6 3

The polynomial p to be assigned is given by
PN = A+ 12 (A +2)2 = A + 60 + 1322 + 12X + 4.

Now
* * * * * * * * * * * *
2 [ 0 =1 0 O 3 -3 0 0 -2 4 01 0 O
A_O—QOO’A_ —600—4’A_0200’
* * k% * ok % * * ok % %k
and thus,
* * * * * * * * * * * *
. 01 0 O -18 0 0 -—12 0 —-13 0 0
A = 19 200 |*t| =36 00 24|t 0 —26 00"
* ok % % * ok % * * * ok %
* ok % * * % %k
36 0 0 24 n 0 4 0 O
0 0 0 12 0 0 4 0
* * * * * * * *
* * * *
. 18 -8 0 12
B -36 —24 4 -12
* * ok *
By Ackermann’s formula,
f* = —(070,,0,1)671(1471))]7(14)
* * * *
0 11 0 18 -8 0 12
673’ -36 —24 4 -—12
* * ok *

20 4
—15, -2, =,—6) .
( b 3 737 >

(b) Simply define F € R*** by F := (Jg), in which case, A+ BF = A+ bf* and so
o(A+ BF) = {-1,—2}, and each eigenvalue has multiplicity 2.



Logemann & Ryan 49

Exercise 6.6

(a) Let S C RE be a proper algebraic set. Then there exists a real polynomial I" in
L variables, not equal to the zero polynomial, such that S = {z € RY: I'(z) = 0}.
Set S := RE\S. If w € S°, then I'(w) # 0 and by continuity of I" there exists a
neighbourhood W C R of w such that W C S¢. Consequently, S¢ is open. Next we
show that S¢ is dense in RE. Seeking a contradiction, suppose that S¢ is not dense
in RY. Then there exists z € S and an open neighbourhood Z C RY of z such that
Z C S. The polynomial I defined by Io(s) := I'(s + z) for all s € R has the
property that I'h(s) = 0 for all s € Zy, where Zy := {s — z : s € Z}. Obviously, Zo is
an open neighbourhood of 0 and it follows from repeated partial differentiation that
all coeflicients of Iy are zero. Thus, Iy is the zero polynomial and so is I', yielding
the desired contradiction.

(b) We prove the claim by induction over L. Trivially, the claim is true for L = 1.

Let S be a proper algebraic set in RET!. Then there exists a non-zero polynomial I"
in L 4+ 1 variables such that S = {z € RE¥*! : I'(z) = 0}. Write I" in the form

k
F(Sl,...,SL+1):ZAi(Sl,...,SL)SiLJrl, (*)

i=0
where the A;, 0 < i < k, are polynomials in L variables. Set

k
Z::ﬂZi where Zi::{ZGRL:Ai(Z):O}, 1<i<k,

i=1

and let A\; denote Lebesgue measure in RY. Since I' is not the zero polynomial,
there exists j € {1,...,k} such that A; is not the zero polynomial, and so, Z; is a
proper algebraic set in RY. By induction hypothesis, AL(Z;) = 0, and consequently,
AL(Z) = 0. Let ¢ : RE*Y — {0,1} be the characteristic function of S. Defining
p: R 5 R by

o0
p(S1,...,SL) ::/ 0’(81,...,SL,SL+1)dSL+1,

—o0

it follows from Fubini’s theorem? that

)\L+1(S):/ 0(81,...,SL+1)d81...dSL+1:/ p(sl,..,,sL)ds1...dsL. (**)
RL+1 R

L

Note that if (s1,...,s5) € R¥\Z, then, invoking (), we conclude that there are at
most finitely many (not more than k) numbers z € R such that (s1,...,s5,2) € S.
Therefore, p(s1,...,sr) =0 for all (s1,...,5.) € R¥\Z and, since A1 (Z) = 0, it now
follows from (%) that Ap4+1(S) = 0.

Exercise 6.7
The monic polynomial P is given by P(s) = (s+1)(s+2)(s+5) = s*+8s% + 175+ 10.

Set
1 1 0 0 O
U:(O), b= Bv = 8 , E:(1 0 0),

2 Guido Fubini (1897-1943), Ttalian.
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in which case we have

A+ BE = , C(A+ BE,b) =

N = O
o N O
= O N
SO =
N = O
N DN W

The matrix C(A + BE, b) has full rank and so (A + BE,b) is controllable. Moreover,

¥ ok * 46 0 60
CAA+BE,b) "= % % « |, PA+BE)= |41 84 22
0 1 —1/2 60 0 76
Therefore,
f*=—(0,0,1)C(A+ BE,b)"'P(A+ BE) = (—11,—84,16)
and

pepror = (1 B 1),

Exercise 6.8
Let A= —I and B = 0. Then —I = A+ BF is Hurwitz for all F € R™*Y but (4, B)
is evidently not controllable.

Exercise 6.9
Note initially that

C(A,b) = (b, Ab, A®b) =

S
N O =

1
0
3

has determinant 0, and so the system fails to be controllable for all & € R. On the
other hand, we will show that the system is stabilizable for all « € R. This we do by
an application of the Hautus criterion for stabilizability. We have

s—1 -« 0 1
(s]—A,b): 0 s+1 0 0
-1 -1 s—-1 1

Consider columns 1,2 and 4, in which case we have

s—1 —a 1
0 s+1 0 |=s(s+1)
-1 -1 1

which is non-zero for all s € C4\{0} and all o € R. By the Hautus criterion for
stabilizability, we may conclude that the system is stabilizable for all @ € R if we can
show that, for s =0, rk (s] — A, b) = 3. Considering columns 2,3 and 4 of (—A,b), we
have

Therefore, we have shown that, for all @ € R, rk (sI — A, b) =3 for all s € Cy and
so, by the Hautus criterion, the system is stabilizable for all o € R.
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Exercise 6.10

Let A € 0(A). If X is uncontrollable, then an argument identical to that used in the
proof of the necessity part of the eigenvalue-assignment theorem (Theorem 6.3) shows
that A\ € o(A + BF) for all F € RM*¥,

Conversely, assume that A € o(A + BF) for all F € R®*N . Then any monic real
polynomial P of degree N such that P(\) # 0 cannot be assigned to (A4, B) and
therefore, by the eigenvalue-assignment theorem, (A, B) is not controllable. If B = 0,
then, trivially, rk (Al — A,0) = rk (A — A) < N, showing that A is uncontrollable.
Let B # 0. Then, without loss of generality, we may assume that A and B take the
form (Kalman controllability decomposition, Lemma 3.10):

_ Ar Ao _ B1
A7<0 A3) andBf<0),
where the pair (A1, By) is controllable. For every F = (Fi, Fz) € RM*N  we have

A1+ By Axs+ Bi1F»

A+BF:< 0 As

) , 0(A+4+ BF)=0(A1+ B1F1)Uoc(A43),

where the second identity follows form Theorem A.7. Since (Ai, Bi1) is controllable,
Theorem 6.3 ensures that we can choose Fi such that A € o(A1+ B1F1). Consequently,
A € 0(As) and thus, tk (A — A, B) < N, showing that A is uncontrollable.

Exercise 6.11
Since, for all z € R, (VV)(2) = Pz and (Pz, Az) = (PAz,z) = (A* Pz, z), we have

((VV)(2), Az) = (Pz, Az) = ((PA+ A" P)z,2)/2. (*)
It is now immediate that, if PA + A*P = 0, then ((VV)(z), Az) = 0 for all z € RY.
Conversely, assume that ((VV)(z), Az) = 0 for all z € RY. Then, by (), the matrix

Q := PA+ A*P satisfies (Qz,2) = 0 for all z € RY. Let y,2z € RY be arbitrary.
Exploiting the symmetry of Q, we have (Qy, z) = (Qz,y). Therefore

0={(Qy +2),y+2) =(Qy,y) +(Qz,2) + 2(Qy, 2) = 2(Qy, 2).
and, since y and z are arbitrary, it follows that Q = 0.

Exercise 6.12
Note that

span{Az, Bz, z} — span { (_Z;) , (2) , (2) } —R? V2 e R\{0).

Since ad' (A, B) = I, it follows that
span{Az, Bz,ad' (A, B)z,ad’(A, B)z,...} = span{Az, Bz, z} = R> ¥z € R*\{0}.

Noting that A + A* = 0, it follows from Corollary 6.15 that the feedback law
u(t) = —(z(t), Bz(t)) = —x1(t)z2(t) is globally asymptotically stabilizing.

Exercise 6.13

(a) Let N=1,A=1and S = {1} C R. Then S is A-invariant, but S is not positively
exp(At)-invariant because exp(At) = e’ # 1 for all ¢ > 0.

Let N=1,A=—1and S = (0,00) C R. For each £ € S, we have exp(At)é = e ¢ € S
for all t € R and so S is exp(At)-invariant. However, S is not A-invariant because,



52 Solutions to Exercises

foreach £ € S, Al = —-¢£ & S.

(b) Let S C RY be a subspace; since S is finite dimensional, it is closed. Assume that
S is A-invariant. Set En(t) := >_7_,(1/k!)(At)" for all n € N and let £ € S. Since
S is an A-invariant subspace, we have E,(t)¢ € S for all n € N and all ¢ € Ry. By
closedness of S, it follows that lim,— e En(t) = exp(At)€ is in S for all t € R..
Now assume that the subspace S is positively exp(At)-invariant. Let £ € S be arbi-
trary. Then, for each n € N, {, := n(exp(An~") — I)¢ is in S and so, by closedness of
S, A¢ = limy, 00 ¢n € S. Therefore, S is A-invariant.

(c)Let N=1,A=1and S = [1,00) C R. For each £ € S, we have exp(At)¢ =ef¢ € S
for all t € Ry and so S is positively exp(At)-invariant. However, S is not exp(At)-
invariant because, for each £ € S, exp(At)¢ = e'¢ — 0 as t — —oo.

(d) Let S C RY be a subspace. As a finite-dimensional subspace S is closed. By part
(b), if S is positively exp(At)-invariant, then S is A-invariant, and thus, by the closed-
ness and subspace property of S, we conclude that exp(At)¢ = S°7° ((1/k!)(At)*¢ is
in S for all £ € S and all t € R.

Exercise 6.14

(a) Writing z1(t) = y(t), z2(t) = y(t) and z3(t) = 2(t), we have &(t) = Az(t) +
w(t)Bz(t) with A, B € R**? as given.

(b) By direct calculation, we have

0 -1 0
ad'(A,B)=[A,B]=AB—-BA=|-1 0 0],
0 0 0
-2 0 0
ad®(A,B) = [A,ad"(A,B)]=[ 0 2 0
0 0 0

By induction, we find that, for all k € N,
ad®* " 1(A, B) = (—4)"'ad' (4, B), ad®*(A, B) = (—4)" 'ad*(4, B).
Therefore,

span{Az, Bz, ad’ (A,B)z,...} = span{Az, Bz, ad' (A, B)z, adQ(A, B)z}

22 0 —22 —Z1
= span —z1 |, —z2],| -2 |, 2
0 z3 0 0

which is not equal to R® for all z € R® of the form z = (21, 22,0). Therefore, the
hypotheses of Corollary 6.15 fail to hold.
(c) Set 2 := {(z1, 22,23) = 2 € R®: 23(2% + 23) # 0}. Observe that A+ A* = 0 and

span{Az, Bz,ad' (A, B)z,ad’(A,B)z} =R® Vze 0.

Setting I' := {z € R®: (2, Bz) = 0} = {(21,22,23) € R®: 25 — 23 = 0}, we see that
RN NT = {(21,22,23) € R® : 22 = 0 = 23} and the only positively exp(At)-
invariant subset thereof is {0}. Therefore, by Theorem 6.15, we may conclude that
the feedback u(t) = —(z(t), Bz(t)) = 23(t) — 23(t) = 9°(t) — 2%(t) is globally asymp-
totically stabilizing.

Exercise 6.15
Recall that O € RV*¥ is said to be orthogonal if its columns form an orthonormal
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basis of RY; equivalently, O is orthogonal if O*O = I (and so O~ = O*). We first
show that, for every N € N and every symmetric P € RV*¥ | there exists an orthog-
onal matrix O € RV*N such that A := O*PO is diagonal (of course, the diagonal
entries of A are the eigenvalues of P, and so each eigenvalue is real and recurs up
to its algebraic multiplicity). This we prove by induction on N. For each N € N, let
P(N) denote the statement:

P(N): “For each symmetric P € R™*" there exists orthogonal O € RY*" such that
A := 0T PO is diagonal.”

Clearly, P(1) is a true statement. Assume that N € N and P(N) is true. Let
P e RWTDX(N+D 16 symmetric. Let A € R be an eigenvalue of P and let v; € RN *?
be an associated eigenvector with ||vi|| = 1. Let va,...,on41 € RN+ be such that
01 = (vl,vg,...,vNH) is an orthogonal matrix. Write P, = Oj PO = Ol_lPOl
and so O1P1 = PO;. Now, the first column of PO; is Pvi = Avi and so the
first column of O1P; is also Avi. Therefore, the first column of P; is (A, 0, ..., 0)"
and, since P is symmetric, we may infer that the first row of P; is (A, 0, ..., 0).
Therefore, P, = diag()\, P), where P> € RY*YN is symmetric. By the induc-
tion hypothesis, there exists orthogonal O, € RY*N guch that Ay := 03 P00,
is diagonal. Writing Op := diag(l, 02) e RWHDXWNFYD " then Op is orthogonal
and we have OgP10y = diag(/\, Ag) =: A. Finally, writing O = 010y, then
O*PO = 050;PO10y = OjP10Og = A. Therefore, P(N + 1) is a true statement.
By induction, it follows that P(N) is true for all n € N.

Now, let P € RV*Y be symmetric and positive definite. Then each eigenvalue of P
is real and positive. Let O € RV*¥Y be orthogonal and such that O* PO = A, where
is diagonal. Define p := min{A: XA € o(P)} > 0 and nu := max{i: X € o(P)}, and so
u (respectively, v) is the smallest (respectively, largest) of the positive entries on the
diagonal o f A. Then,

(2, Pz) = ((0"2),0"PO(0"2)) = ((0"2), A(0"2))
and noting that, since O is orthogonal, ||z|| = 1 implies ||O*z|| = 1, we have

min (z, Pz) = min w, Aw) = u

llzll=1 llwll=1
and
1Pl = ”m”égl<a, Pz) = llml?ﬂ(w,/lw =v.
Moreover, since o(P™) = {1/A: A € o(P)}, we have |[P™!|| = 1/u and so p =
1/P7H.

Exercise 6.16

Noting that, for all s € C and all @ € R, rk (s] — A,b) =1k (s] — (A — abc*),b) and
rk (sI — A*,¢) = rk(sI — (A — abc™)*, ¢), the requisite results follow by the Hautus
criteria for controllability and observability (Theorems 3.11 and 3.21).

Exercise 6.17 A

The transfer function G for the system is given by

Gls) = (s — A) b= -
$2+s—2

and, with @ = 2 and § = 3, the rational function R is given by

s24+s+1
s2+s

R(s) = (14 8G(s)) (1 + aG(s)) " =
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Clearly, R does not have any poles in the open right half plane C'y. The pole at s =0
is semisimple and lims_,0 sR(s) = 1 > 0. Also, Re R(iw) = L‘;’% > 0 for all w € R.
Therefore, by Lemma 6.16, we may infer that R is positive real. The requisite results

now follow by Theorem 6.17.

Exercise 6.18

Setting Ay := A—abc”, then, as in the proof of Theorem 6.17, (Aq, b, ¢*) is a minimal
realization of the strictly-proper rational function G := G/(1+ aG). By assumption

G is positive real and so, by the positive real lemma (Lemma 6.18), there exist

a symmetric positive-definite matrix P € RY*Y and a vector I € R™ such that
PA, + AP = —1ll" and Pb = c. Let kq, f, ¢ and V be as in the proof of Theorem
6.17. Then

Vi(z) = (VV)(2), Aaz — bka(c"2)) = —(I"2)% — 2(c"2)ka(c"2)
< —2(c*2)ka(cz) Vz e RY.

(a) Assume k € S[a, 00). Then wka(w) = wk(w) — aw? > 0 for all w € R and so
Vi(z) <0 for all z € RY. By the same argument as that used in the proof of Theorem
6.17, it follows that (6.39) holds.

(b) Now assume that k& € S(a, 00). Then wkqo(w) > 0 for all w € R\{0}. Therefore,
Vi(z) < 0 for all z & kerc” and so fol(O) C kerc*. The same argument (based on

LaSalle’s invariance principle) as that used in the proof of Theorem 6.17 now applies
to conclude that the equilibrium is globally asymptotically stable.

(Y

and so G is given by G(s) = s/(s* 4 u), which has simple poles at +i,/n, each with

residue 1/2. Moreover, Re G(iw) = 0 for all w # +,/p. By Lemma 6.16, G is positive
real and the requisite results follow from Theorem 6.19 (with a = 0).

Exercise 6.19
In this case,

Exercise 6.20
(a) Let A, b and & be as in the proof of Theorem 6.21. Furthermore, let f: RV ™! —

RMF! be the locally Lipschitz function given by
f(z) == Az —bk(¢*z) +d, where d := (fyop> e RVFL,
Then the initial-value problem (6.49) may be expressed in the form

i) = 50), 00 = (&) where n(o) = (1(7).

By the global Lipschitz property of k, there exists A > 0 such that |k(¢"z) — k(0)| <
etz < M|Ell||z|| for all z € RN, Therefore,

£ < A=)+ Mgllialzl + [1Bl1&0)] + lld]] ¥z € RY*.
Writing L := max{||A[| + Al[o]|[|2]l, [bl|[k(0)| + [|d][}, we have

IF )l < L(1+]2]) ¥zeRVH,
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By Proposition 4.12, it now follows that the maximal solution of the initial-value
problem (6.49) has interval of existence R.
(b) For all t € Ry, we have

#(t) = @(t) = Az(t) + bk(u(t)) = Az(t) + b(k(u(t)) — k(u”))

= Az(t) + b(k(v(t) + u”) — k(u”)) = Az(t) + bk(v(t))
and

o(t) = a(t) = v(p — c*z(t)) = v(p — c*2(t) + " A~ bk(u))
=7(p—c"2(t) = GO)k(u”)) = v(p — c"2(t) — p) = =" 2(t).

(¢) Let s € C and z € CV be arbitrary and assume that z*(sI — A,b) = 0, where A
and b are given by (6.53). By the Hautus criterion for controllability, it is sufficient
to show that z = 0. Writing 2* = (w*, @), where w € C" and v € C, we obtain

2" (sI — A, b) = (w*(sI — A) 4 vyc*, s, —w*b) = 0.

Assume that s # 0. Then v = 0, and thus w*(sI—A, b) = 0. Since (A4, b) is controllable,
the Hautus criterion for controllability implies that w = 0, and hence, z = 0. Now
assume that s = 0. Then

—w"A+vyc" =0, w'b=0, (%)

and consequently,

yG(0) = —vyc" A7 b = 0.
Since ¥G(0) > 0, we now conclude that v = 0. By (%), w*(—A,b) = 0, and so
controllability of (A,b) together with the Hautus criterion yields that w = 0, and
hence, z = 0.
(d) Observability of (¢*, A) follows from an argument similar to that employed in the
solution of part (c).
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Appendix

Exercise A.1 N

Let z1,...,2x € F¥ be a basis of (kerM) . Choose Tr11,...,zn € FF arbitrarily
and set X := (:m,...,a:N) € FPXN_ Define y1 := Mz; € FY, i = 1,... K. First, we
show that y1,...,yx are linearly independent. Assume o1 € F, i = 1,..., K, and
S K aiyi = 0. Then M (Zle aixi> =0and so ¢ asx; € (ker M) N (ker M)J'.
Therefore, Zfil a;x; = 0 and, by linear independence of 1, ..., Zr, we may infer that
a; =0,1=1,..., K, whence linear independence of yi,...,yx. Now choose vectors

Y1, .-, yn € FY such that yi,...,yn is a basis of FV. Set Y := (yl,‘..7yN) €
FY*¥ and note that Y is invertible. Define M* := XY~ € FF*¥ . Then

MMz, = MYy, = XY Yyi=ai, i=1,...,K,

and, since 1,...,Tx is a basis of (kerM)J', we have M*Mz = z for all z €

(ker M)L. Moreover, if M has full rank, then M*M = I and so M has a left in-
verse.

Exercise A.2

(a) The result holds vacuously if S = @) (the empty set is both open and closed). Thus,
we restrict to the case wherein S # ().

First assume that S is closed. Let (x,) be a convergent sequence in S with limit
z € X. Suppose that ¢ S. Then z is a point of the open set X\ S. Therefore, x has
an open neighbourhood U with U C X\S. Since z, — x as n — oo, it follows that
zn, € U C X\S for all n sufficiently large. This contradicts the fact that (z,) is a
sequence in S. Therefore, z € S.

Now assume that every convergent sequence in S has its limit in S. Suppose that S is
not closed. Then X\ S is non-empty and is not open, and so there exists z € X\ S such
that B(z,e)NS # 0 for all € > 0. Thus, for each n € N, there exists x, € B(z,1/n)NS.
The sequence (z,,) so constructed is a sequence in S with limit z € X'\ S. This contra-
dicts the hypothesis that every convergent sequence in S has its limit in S. Therefore,
our supposition is false and so S is closed.

(b) First assume that = € cl(S). Suppose, for contradiction, that there exists € > 0
such that B(x,e) NS = (. Then X\B(z,e) contains S and so, since X\B(z,¢) is a
closed set, it must also contain cl(S). Therefore, cl(S) N B(z,e) = @, whcih contra-
dicts the hypothesis that z € cl(S). We have now shown that, if z € cl(s), then
B(z,e) NS # 0 for all e.

We prove the converse by contraposition. Assume that z € X is such that = & cl(5).
Then, since X\cl(S) is an open set, there exists € > 0 such that B(z,e) C X\cl(5).
In particular, § = B(z,e) Ncl(S) D B(z,e) N S.

Exercise A.3

Let (zn) be a sequence in a Banach space X and, for aech n € N, write s, = > ;_; k.
Assume that the series > ;- xx is absolutely convergent, that is, assume that
> ey llz|l < co. Let € > 0 be arbitrary. By absolute convergence of the series,
there exists N € N such that ;2 |lzx|| < € for all n > N. Now, forall n,m € N
with n > m > N, we have

l[8n = smll =

n m n n
S o= 3o =[5 o] < 3 bt <
k=1 k=1 k=m k=m

and so (sn) is a Cauchy sequence in the Banach space X and so, by completeness,
(sn) converges in X.
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Exercise A.4

Let F denote the underlying scalar field. For convenience, write B = Cy(S,Y). It is
straightforward to verify that B ia s vector space. By boundedness of the elements of
B, we have || f||cc < oo for all f € B. Moreover, (i) ||f|lc = 0 if, and only if, f = 0;
(i) M flloo = IS lloo for all (A, f) € F x B; (iii) for all f,g € B,

£ + gllec = sup [ f(z) + g(2)|| < sup [|f(z) + sup |lg()]| = [[fllec + [|9]loo-
reS zeS zeS

Therefore, || - || is @ norm on B. We proceed to prove completeness of this normed
space. Let (fn) be a Cauchy sequence in B. Then, for every (fn(z)) is a Cauchy
sequence in the Banach space Y and so converges to a limit f(x) € Y. To complete
the proof, it suffices to show that the function f: S — Y isin B and ||f — fallec = 0
as n — oo. Let ¢ > 0 be arbitrary. Since (f) is a Cauchy sequence in B, there exists
N € N such that || fn(z) — fm(z)|| <€ for all z € S and all n,m € N with n,m > N.
Passing to the limit n — oo gives || f(z) — fm(z)]| < e for all z € S and all m > N.
Therefore, ||f — fmlloo < € for all m > N and so we may infer that || f — fn]lec — 0
as n — 00. By boundedness of the functions f,,, we see that f is bounded. It remains
only to show that f is continuous. Let s € S and € > 0 be arbitrary. Fix n € N
sufficiently large so that ||f — fnlleec < /3. By continuity of f,, there exists § > 0
such that || fn(z) — fu(s)|]| < /3 for all z € S with ||z — s|| < . Therefore, for all
z € S with ||z — s|| <9,

&

1£@) = £ < @) = Fa@)]| + 1 Fa(@) = )+ 1Fa(s) = FI < 5+ 5+ 5 =

whence continuity of f at s. Since s € S is arbitrary, f is continuous. Thus, we have
shown that f € B.

Exercise A.5
Noting that

{I1Mzlp/12llp: = € FIN{0}} = {[|Mz],: = € F?, 2], = 1},

it immediately follows that [[M| = sup . _i [|Mz|p. Clearly, sup . _i [|Mz|, <
sup.y, <1 1M z[lp =: p. We will show that p = [[M]|. By continuity of z — [[Mz||,
and compactness of {z € F9: ||z|, < 1}, there exists 2 € F9, with |||, < 1, such
that ||M2|, = p. If 2=0, then =0 = ||M||. If 2 # 0, then
5 Sl Mol =111 s s
[M]| = sup [[Mz]l, < sup [[Mz|p=p= M2y = [ZlslI2l, [ M2y
llzllp=1 llzllp<1
TS TN
<2l 1M2]]p < e [Mz]|, = || M]|.
zllp=
Therefore, ;= ||M||. This completes the proof of (A.11).
To conclude that (A.12) also holds, simply note that

inf{y > 0: | Mzl|, <v|2|l, V2 € F9}
—inf{y > 0: | Mz, < vVz € F?, |z], = 1}
= inf {5 > 0: supy. _y[IMz], = [M] < 7} = | M]|.

Exercise A.6
First, assume that the improper integral converges to F' € Mg. Let € > 0 be arbitrary.
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Then there exists r > a such that || faT f)dt—F| <e/2forall T € [r,00). Therefore,

’[TTf(t)dt" :’/ f(t)dt—/:f(t)dtl
/; f)dt — F /: F(t)dt — FH

§%+%:5 Vo, € [r,00), 0 <T.

IA

N

Now, assume that, for every € > 0, there exists 7 > a such that || [T f(¢)dt| < e for

all 0,7 € [r,00) with o < 7. For each n € N with n > a, define F,, := [ f(t)dt. Let
€ > 0 be arbitrary. By the hypothesis, there exists r > a such that

|Fn — Fnl| = H/ f(t)dtH <e Vm,neN, r<m <n.

Therefore, (F,) is a Cauchy sequence in the Banach space Mr and so converges.
Denote its limit by F'. We will show that the improper integral converges to F. Let
€ > 0 be arbitrary. By the hypothesis in conjunction with convergencs of (F,) to f,
there exists r > a such that

||Fn7FH§% VneN, n>r and ‘

/ f(t)dtH < % Vo,7 € [r,00), 0 < T

Let 7 > r + 1 be arbitrary and denote its integer part by n = |7] > r. Then

| sra—r] - |

T € €
< HanF||+‘/ f(t)dtH < §+§:€
and so the improper integral converges to F'.

/: f(t)dt—é—/an(t)dt _F

Exercise A.7

If v < 0, then F' is bounded and so is of class &. If v > 0, then, for all § > =,
there exists ¢ € Ry such that ||f(t)|| < ce®® and so ||F(t]| < fot lf(P)dr < (c¢/5)e’t.
Therefore, if v > 0, then F' is of class £,. Defining 3 := max{~, 0}, it follows that F'
is of class €. Since B > v and f is of class &, f is a fortiori of class £€s. Therefore,
f, F € Eg. Define FY := f. Let E denote the set of points in R at which f fails to
be continuous. Then, f(t) = F'(t) = FY(t) for all t € Ry\E. Moreover, F, FY € &g
and, by the result in part (1) of Theorem A.37, we have

L{f}(s) = L{F}(s) = sL{F}(s) — F(0) = sL{F}(s) Vs €Cp

and so L{F}(s) = (1/s)L{f}(s) for all s € Cg.



