p. 113: error in the proof of Theorem 4.11. It is concluded from the supposition $\sigma = \omega$ that $x(t) \in C$ for all $t \in [0, \omega)$. This is not correct. What can be concluded is that there exists a sequence $(t_n)_{n \in \mathbb{N}}$ in $[0, \omega)$ such that $t_n \to \omega$ as $n \to \infty$ and $x(t_n) \in C$ for all $n \in \mathbb{N}$.

Correction. Seeking a contradiction, suppose that $\sigma = \omega$. Then there exists a sequence $(t_n)_{n \in \mathbb{N}}$ in $[0, \omega)$ such that $t_n \to \omega$ as $n \to \infty$ and $x(t_n) \in C$ for all $n \in \mathbb{N}$. By compactness of C and openness of G, there exists $\varepsilon > 0$ such

$$C_{\varepsilon} := \{ z \in \mathbb{R}^N : \operatorname{dist}(z, C) \le \varepsilon \} \subset G.$$

The set C_{ε} is compact and so, for all $n \in \mathbb{N}$,

$$S_n := \{ s \in [t_n, \omega) : x(s) \notin C_{\varepsilon} \} \neq \emptyset,$$

because otherwise the closure of the set $\{x(t) : 0 \le t < \omega\}$ would be compact and contained in G, and thus, by Corollary 4.10, $\omega \in I$, which is impossible. Defining the sequence $(s_n)_{n \in \mathbb{N}}$ by $s_n := \inf S_n$, it is clear that $s_n \to \omega$ as $n \to \infty$, $\operatorname{dist}(x(s_n), C_{\varepsilon}) = \varepsilon$ and $x(t) \in C_{\varepsilon}$ for all $t \in [t_n, s_n]$. Setting $B := \max\{\|f(t, z)\| : t \in [\tau, \omega], z \in C_{\varepsilon}\}$, we have that

$$\varepsilon \le \|x(s_n) - x(t_n)\| \le \int_{t_n}^{s_n} \|f(t, x(t)\| \mathrm{d}t \le B(s_n - t_n) \to 0 \text{ as } n \to \infty,$$

yielding the desired contradiction.

p. 211, 2nd line below equation (5.39): typo. " $[0,t] \in T_2$ " should read " $[0,t] \subset T_2$ ".