p. 113: error in the proof of Theorem 4.11. It is concluded from the supposition $\sigma=\omega$ that $x(t) \in C$ for all $t \in[0, \omega)$. This is not correct. What can be concluded is that there exists a sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ in $[0, \omega)$ such that $t_{n} \rightarrow \omega$ as $n \rightarrow \infty$ and $x\left(t_{n}\right) \in C$ for all $n \in \mathbb{N}$.
Correction. Seeking a contradiction, suppose that $\sigma=\omega$. Then there exists a sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ in $[0, \omega)$ such that $t_{n} \rightarrow \omega$ as $n \rightarrow \infty$ and $x\left(t_{n}\right) \in C$ for all $n \in \mathbb{N}$. By compactness of C and openness of G, there exists $\varepsilon>0$ such

$$
C_{\varepsilon}:=\left\{z \in \mathbb{R}^{N}: \operatorname{dist}(z, C) \leq \varepsilon\right\} \subset G
$$

The set C_{ε} is compact and so, for all $n \in \mathbb{N}$,

$$
S_{n}:=\left\{s \in\left[t_{n}, \omega\right): x(s) \notin C_{\varepsilon}\right\} \neq \emptyset
$$

because otherwise the closure of the set $\{x(t): 0 \leq t<\omega\}$ would be compact and contained in G, and thus, by Corollary $4.10, \omega \in I$, which is impossible. Defining the sequence $\left(s_{n}\right)_{n \in \mathbb{N}}$ by $s_{n}:=\inf S_{n}$, it is clear that $s_{n} \rightarrow \omega$ as $n \rightarrow \infty, \operatorname{dist}\left(x\left(s_{n}\right), C_{\varepsilon}\right)=\varepsilon$ and $x(t) \in C_{\varepsilon}$ for all $t \in\left[t_{n}, s_{n}\right]$. Setting $B:=\max \left\{\|f(t, z)\|: t \in[\tau, \omega], z \in C_{\varepsilon}\right\}$, we have that

$$
\varepsilon \leq\left\|x\left(s_{n}\right)-x\left(t_{n}\right)\right\| \leq \int_{t_{n}}^{s_{n}} \| f\left(t, x(t) \| \mathrm{d} t \leq B\left(s_{n}-t_{n}\right) \rightarrow 0 \text { as } n \rightarrow \infty\right.
$$

yielding the desired contradiction.
p. 211, 2nd line below equation (5.39): typo. " $[0, t] \in T_{2}$ " should read " $[0, t] \subset T_{2}$ ".

