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LOW-GAIN CONTROL OF DISTRIBUTED
PARAMETER SYSTEMS WITH
UNBOUNDED CONTROL
AND OBSERVATION’

H. LoGEMANN," J. BoNTsEMA? AND D. H. OWENS®

Abstract. This paper deals with the problem of multivariable low-gain Pl-control
of stable distributed parameter systems with unbounded control and observation
operators. We show that, under very mild assumptions, a fairly large class of
distributed parameter systems can be stabilized and regulated by multivariable
Pl-controllers with sufficiently low gain. The controller design can be accomplished
using plant step data, no exact knowledge of the plant being required.

Key lf'ordsAInﬁnite dimensional systems, unbounded control and observation,
low-gain control, robust control, multivariable tuning regulators, Pl-controllers.

1. Introduction

The problem of finite-dimensional control of infinite-dimensional systems by
output feedback has received a considerable amount of attention in recent years,
cf. e.g. Balas (1986), Curtain (1984), Curtain and Salamon (1986), Jacobson
and Nett (1988), Kamen et al. (1985), Logemann (1986), Nett (1984) and
Schumacher (1983). Unfortunately, the order of the controllers derived by the
above authors may be quite high in certain cases. Moreover, if approximation
techniques are used (cf. Balas, 1986; Jacobson and Nett 1988; Kamen et al.,
1985; Logemann, 1986; Nett, 1984) the relationship between the particular
approximation method and the order of the stabilizing controller is
not yet understood. Intuitively, it is clear that restrictions on the plant, such
as minimum-phase or stability should lead to simple low-order controllers.
Logemann and Owens (1987) have shown that a large class of infinite-

dimensional minimum-phase systems can be stabilized by Pl-controllers with
sufficiently high gains. Furthermore, it is proved in Logemann and Owens
(1987) that the proposed PI-controllers have nice robustness properties and
that they achieve almost decoupling and almost perfect_ tracking at high-gain.
In this paper, we shall study the “dual” situation, e, we investigate the
problem of low-gain PI-control of a certain class of stable distributed parameter
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that the plant is exactly known. However, we
i “cess Jliable plant step data.
,sjgner has access to re It |
i problem has been considered by Davison (197¢).
mild assumptions, a lumped stable plant can pe

; . oble Pl-controller of the form (kK /s) +

:stabihzcd ?nd?lj(l)lidlszti‘) ?)21};2(:18;:121\11( (Davison, 1976) was gcneralizgd [(I){;
::;::n;f”:hzf;i‘buted parameter systems by Po_hjo.lamenl(9189582: 2930? and to
certain time-delay systems by Koivo and Pohjolainen (1 ' ) an "JUSS_”& and
Koivo (1986). The papers (Davison, 1976; JU55:1la _and Koivo, 1986; Koivo and
Pohjolainen, 1985; Pohjolainen, 1982) and Pohjolamen‘(l985) are all based oy,
state-space methods. Logemann and Owens presented n Logem'a'nn‘;md OWLjns
(to appear) a systematic input-output theory of Davisons multivariable tuning
regulator  for infinite-dimensional systems using the frequéﬂcy'deInain
framework provided by Callier and Desoer (1978; 1980). In particular, they
showed that Davisons result (Davison, 1976) gxlends to neutral systems,
Volterra integrodifferential systems and Volterrg mFegral sxstems.

[n this paper, we prove the existence of multlvar!able tuning regulators for 3
certain class of distributed parameter systems with unbounded control apqd
observation using the frequency-domain results of Logemann and Owens (to
appear). The class of distributed parameter systems considered in this paper
contains a large number of systems which are not covered by the theory
developed in Pohjolainen (1982; 1985).

The organisation of the paper is as follows. Section 2 1s devoted tg
preliminaries. In Sec. 3, we introduce the class of distributed systems we shall
deal with. We show that the impulse response of a system belonging to this
particular class is an element of (LM ,))" ™. The proof of existence of
multivariable tuning regulators for the class of systems under consideration is
broken up into two parts. In Sec. 4, we prove that input-output stability of the
closed loop implies internal stability of the closed loop. The tracking property of
the feedback system in the presence of certain disturbances 1s shown in Sec. 5.
As an example, we consider the heat equation with homogeneous Dirichlet
boundary conditions, point control and point observations in Sec. 6. An auxiliary
result used in Sec. 4 is proved in the Appendix.

gystems. We do not assume

suppose that the de i
In finite dimensions, this

He proved that, under very

2. Preliminaries

: Let Z , denote the interval [0, =) and set ¢ , 4 {s€¢ |Re(s)=0}. Suppose
f1s a distribution form

f= ‘Zuf,o,, $fs (2.1)
where 1,40, t,>0, Vi=1, 0, denotes the Dirac distribution at t;, f,€¢ and f, 1s

ad _-vnlued Lebesgue measurable function. The set A consists of all distributions
fof the form (2.1) such that

:z')l‘,'l + J‘ lfu)([)l(“ < o,
0

A'ls a convolution algebra. It is useful to define the following subalgebras of A:
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A_4 (f€ Al|ze> . f()e
Lz ,)4 {f e LYR ,)|3e > ¢
LR)A(f: »,

xp(e(+)) € A),
f(exp(e(-)) € L\(R )},
= €|3e>0, M> 0 [f(t)] = Mexp(—¢t) a.e.}.

Moreover we define

A4 (f|f e ay,

wh’ereﬂf degotes thg Lz.iplace transform of £. It is now clear what is meant by A
If fEA let fdenote its inverse Laplace transform. Finally if M is a square matrix
let o(M) denote the spectrum of M.

e : 1sut> .
Remark 2.1: (i) Let 6(t) A 0 [58 denote the unit step function and let

fEA_. Then, there exist M>0 and £¢>0 such that

| (Fr0)(B) = f(0)r| < Mexp(—et)|r],

vi=0, vr €R (for the proof, see Callier and Winkin, 1986).

(i) The subalgebra L,(Z ,)CA_ is an ideal of A (cf. Callier and Winkin,
1986).

In order to deal with unstable systems, it is useful to introduce the algebra,
BAAMY = Mned. e i,
i.e., the quotient ring of A_ with respect to the multiplicative subset

A* A (f € A_|3R>0: inflf(s)| > 0)
|s|2k'

(cf. Callier and Desoer, 1978; 1980).

Definition 2.1. Let GEB”*%and K€ B"*™. The feedback system shown in
Fig. 1 is called stable, if the matrix

(2.2)

H(G K)A[ (I+GK)'K —(I+KG)"KG]

(U+GK)y'GK I+GK)'G

isin A_(m*@xmxa [f the feedback scheme in Fig. 1is stable we shall say that K
stabilizes G.

Remark 2.2: (1) If K stabilizes G, then it follows in particular that (/+GK) !
€A™ and I+KG) 1€A_ 174

Fig. 1.
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Constant  PI- Disturbance d € (LG (A +))

reference controller
signal _J

Fig. 2.
Constant PI- C
onstant
reference controller disturbance S ER™

signal

Fig. 3.

(ii) Let GEA™*? and suppose that Ke B9 Then, K stabilizes G, if and

only if (I +KG) 'KEA ™. : '
In the sequel, we shall study the tracking properties of the feedback system

in Fig. 2. We assume that the impulse response of the plant is in A_""" and that
the disturbance d is a function in the space (Ly”(Z +))”, where

Lo*(# ) A {f € L*(R )| lim /(1) exists}.

Realize that Fig. 3 (where GEA ™ ™ and SER™) is a special case of Fig. 2 with
d(H)A(G+56)(¢). Indeed, by Remark 2.1 (i), it is obvious that G=06

(S (L:; (ij/? + ))m‘
In order to allow for non-zero initial conditions in the plant the following

definition is useful:

Definition 2.2. A stable linear system with m inputs and m outputs is a triple
(G, X, T), where GEA_"*™, X denotes a vector space and 7T is a linear
operator mapping X into (Ly* (2 ,))™. The output y of the system (G, X, T)
according to the input % and the initial condition x,€ X is given by y= G =u+ Tx.

Consider the PI-controller
z2(t) = kKjo(t),  2(0) = z,, (2.3a)
w(t) = z()+K,v(t), (2.3b)
where o(t), w(t), z(8), 20€ER™, k=0 and K,, K,eR™>™ We apply the

'co.n’troller ('2..3) to the stable linear system (G, X, T) in the presence of the
mitial condition x, €X and the disturbance de(Lg(R )™




Low-gain control of distributed parameter systems 433
() = (G*w)(t) + (Txo)(8) + d(D), (2.4)
v(t) = r0(t) - y(H), rexrm (2.5)

Theorem 2‘1'_ {‘et (G, X, T) be a given stable linear system with m inputs

and tln "(‘)utputs. Suppose that G(0) is non-singular. Let (K,, K;,)ER™™™
m X -] 1 1~ . ~ . i i . -.

X«’A’. . be a pair of matrices such that K, stabilizes G and K, satisfies the

condition

o(I+G(0)K,)'G(0)K,) C ¢,.

Then t‘here exists k*>0 such that the PI-controller K,(s)=(kK,/s)+K, stabi-
lizes G, YO<k<k*. Moreover in the range 0<k<k* the closed-loop system
defined by (2.3)-(2.5) tracks constant reference signals (i.e., lim,_,.y(f)=7r) in
the presence of arbitrary initial conditions (x,, 20) EXXR™ and arbitrary
disturbances d € (L™ (2 ,))™.

The proof of Theorem 2.5 can be found in Logemann and Owens (to appear).

Rem(_tr'k 2.3:  There exist always pairs of matrices (K,, K;) which satisfy the
conditions of the theorem. For example choose K, such that the condition,

. 1 ’

W) < Sup GG eld
is satisfied and set K, =G (0) '(I+G(0)K,). In (2.6), o(.) denotes the largest
singular value of its argument.

3. System description

Consider the following linear process
t
x(t) = S(Hxy + J. S(t—=1)(Bu(1)+dy)dr, (3.1a)
0

y(@) = Cx(8) + dy, (3.1b)

where S(t) is an exponentially stable C-semigroup with infinitesimal generator
A on the real Banach space X, u(f) and y(¢) are vectors in #” and x,€X. The
disturbances d, and d, are assumed to be constant vectors in X and ",
respectively. Let My>0 and «,>0 be constants such that

|'S(t)”L(k',x\>) = A’I()exp(_a()t), vt = 0. (32)

We need the following assumptions on the system (3.1) (cf. Curtain and

Pritchard, 1978) B

(A1) There exist real Banach spaces X and X (the output state-space and the
input state-space, respectively) such that XCX is dense in X and XCXis
dense in X. Moreover we assume that BEL(R™, X) and CEL(X, R™).

(A2) The canonical injection t: X—X, x—x is bounded.

(A3) S(HeLX, X)NL(X, X), vt>0. There exists t,>0 such that
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IS lxx) € LP(O, 1) and [|S()|oxx € LU0, b),

i—}—l:l, le.

p q
It follows from (A2) and (A3) that S(HeLX, X), vi>0. Furthermore, we
assume

(Ad) IS |0 € L7(0, o).

The following technical lemma will be useful for later purposes:

Lemma 3.1.  Suppose that (Al) and (A3) are satisfied. Then, we have
S(t)EL(X, X), vt>0 and ||S() || 2.5 ELHR +).

Proof. Let x€X and t>0. Then, it follows from (A1) and (A3) that

Sty = S g L
b(t)x—S(Z)S(Z)xE.X

I35l = 15 (5 ) lixanllS (5 ol

Hence, we have shown that S(t) €L(X, X). Moreover, we obtain for fixed
()<t()st1 and 0<£<a0.

and

[T
0

o fl
= l=20 [S(t+ito) || Lix.x exp(e(t+ity))dt

© f‘I“
=2 IIS( +ito+ - )”L(xmexp(lf(t'*'lto))dt
5,_,2_0 ||S( )||1(,\x,||3(1t0)||uxX,exp(ut(,)

”S( )”Lw vnexp(et)dt

= l.:Z()MoNeXD( (e—ag)ity)

1
1—exp((e—agy)ty)

= M()N < ®,

where N4 exp(st(,)j'(,'“ |]S(t/2)]|,‘(,\'“_\',||S(t/2) | Lt x,dt< by (A3), and Holder's
inequality.

Remark 3.1:  The idea behind the proof of Lemma 3.1 is due to Przyluski
(1980).

Corollary 3.1.  Assume that (A1) and (A3) are satisfied. Under this condition
the function CS(#)B is an element in (LA ,)"*™C(A )"*™. Hence, the
transfer matrix of (3.1) is in (A )™,
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Proof.  Notice that
S L]
HC (l)BH,‘M R = HCHL(,}',,W.HSU)”Ln,\,.\‘v“B”l,lw”\)
and apply Lemma 3.1.
4. Internal stabilization of system (3.1) by Pl-control
Consider the Pl-controller
2 = Ko(t),  2(0) = g, (4.1a)
w(t) = z(t) + K,u(t), (4.1b)
where v(t), w(t), 2(t), z0€ER™ and K, K,erm"m
We shall study the feedback interconnection of (3.1) and (4. Dnises
v(t) = r(t) — y(b), (4.2)
u(t) = w(t), (4.3)

where the external signal 7 is assumed to be locally integrable. Define

Smé{smo] BA[B o]

0 "I 0'%K;
F(' é [_fec (I) :lv xe(t) é [223]' xe() é x,(O).

Using these notations the dynamics of the closed-loop system given by (3.1),
(4.1), (4.2) and (4.3) are determined by
t

xe(t) = Se(t)xe() + J‘ Sg(t_T)Beue(r)dT
0

: K,(r(t)—d,)
4 Iosp(t—r)BF[ pr(‘t')—dl :Idr

: d
) J S,,(t-r)[ ()“]dr, (4.4)
0

u,(£) = Fox.(8). (4.5)

Let us assume for a moment that dy=0, d,=0and r(t)=0. Then (4.4) and (4.5)
become

t

x(’(t) = S('(t)xv(l + I St'(t—r)BEul‘(r)drv (46)
0

u,(t) = Fox.(8). (4.7)

It follows from (A1) and (A3) that S.(¢), B, and F, satisfy the assumptions of




D. H. OWENS
H NN. J. BONTSEMA AND
436 H. LOGEMA ]

Theorem 8.9 in Curtain and Pritchard (1978). Hence, Egs. (4.6) and (4.7) have 5
e .

unique solution,
x, () = V(xeo,

) is a Cy-semigroup on X AXXR m which is the unique solution of
0° =3

where V(¢ #
Sc(t—r)BeF,,V(r)x,,(,dr. (4.8)
0

V(t)x‘-() = Sg(t)xrﬂ +

s from (A1) and (A3) that the function

; K,(r(7)—dy1) do
x,() A V(Dxeo + _[0 V(t—1) LBc[ e }+[ 0 ]}dr (4.9)

Moreover, it follow

and (4.5). This can be shown using the
8, p.223) (cf. also Curtain, 1984). We omit
her use of the variation of constants

is well defined and solves Egs. (4.4)
methods of Curtain and Pritchard (197
the proof because we shall make no furt

formula (4.9). . .
Let G(s) and K(s) denote the transfer matrix of (3.1) and (4.1), respective-

ly, i.e.,

G(s) 4 I CS(t)Bexp(—st)dt,
0

K(s) A 1K, + K,

The next result shows that under certain conditions #/0-stability of the closed-
loop system implies internal stability of the closed-loop system.

Theorem 4.1.  Suppose that (A1)-(A4) are satisfied and that det(K;)=0. If
the feedback system given by (3.1), (4.1), (4.2) and (4.3) is i/o-stable, i.e.,
H(G, K)€A ?m*2™ then the feedback semigroup V(t) given by (4.8) is

exponentially stable.
Proof. Let dy=0, d;=0 and »(£)=0 (cf. (3.1) and (4.2)). Then an easy
computation yields

i = (I+KG) '3 — U+KG) 'Ky, (4.10)

where zo(1)42,0(8), y,(HACS()xp.

Using the fact that det(K;)#0 and the i/o-stability of the closed-loop system
it is not difficult to show that G (0) is non-singular (cf. Logemann and Owens, to
appear). Therefore we have (/+KG) '(0)=0 and by Remark 2.1 (i) there exist
My, a;>0 such that

I(((’()]#‘K*(}) l;kZ()H)(t)I < Mlexp(_alt)lz()l. vi = (). (4.11)

Define
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F A (I+KG) 'K,

y,(h 4 [y”(t)' IS5
0, t> to,

/==

¥, ()

)

[0, 04 =ty
yU(t)' t> tl)u

where t, € (0, t]1s fixed.
Let us suppose for a while that x, € X. Then

92| = [Cllgan Il | Moll S o) | ox

xexp(aotp)exp(—apt) || xoly, VI =0, (4.12)
where we have used the equality
S(Oxo = S(t))S(t—ty)1xy,

(A2), (A3) and (3.2). Moreover, we obtain

19, ] = [ClxanISOlgnlzoly, vE>o0,
and hence by (A4)
lyl([)l = Hcl L(L\’.ﬁ'bislitsuplls(t)“L(A’..Xv
xexp(to)exp(—t)|xoll, a.e.onR,. (4.13)

It follows from (4.12) and (4.13) via Remark 2.1 (ii) that there exist M., «,>0
such that

| (Fxy) (D] < Maexp(—azt)|x0]ly a.e. onR,. (4.14)
By (4.10), (4.11) and (4.14), there exist constants M3, a3>0 such that
lut)| = Maexp(—azt)(||xol x+ |20]) a.e.onR,. (4.15)
Using (3.1a) we obtain

x|y = “S(t())“LL\',,\»Il‘||M0ex[-’(”0t0)e"p(_““””x““l\
+ Myexp(—ast)(xolly+ [20]),  VE=to, (4.16)

where the positive constants M, and @, exist by Lemma 3.1, (4.15) and Remark
2.1 (ii). With appropriately chosen constants Ms, as>0, we can rewrite (4.16)
as follows:

2t |y < Msexp(—ast)(||xollx+ |20]), ¥t = to. (4.17)

Now realize that, by (4.3),
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u(t) = w(t) = z(t) — K,Cx(t). (4.3")

Hence, by (4.15) and (4.17), there exist positive constants M, and ag such that

lz(t)| = Msexp(—ash) (|20l + |20]), ¥t = lo-

Therefore

“V(t) “L(X,,X,) = M7exp(_a7t)y Vt = t()r (4 18)

where X,AXxA"™ and M7 and a7 are suitable positive constants. Define t,:
X, —~X,, x,—x,. For x,€X,, we have

(4.19)

X*

1VOx ]y, = Dl 1VE=t0) o0l VD 01 %e

Without restriction of generality, we can assume that V(fo) el{X;,-X,): This is
justified by Appendix. Combining (4.18) and (4.19), it follows for all x.€X,

V(D xlx, = el | V(to) | Lox.x M7exp(azto)exp(—azt) llze |l x..
Vi = 2t. (4.20)

Now X, is dense in X, and hence (4.20) holds vx, €X,. Therefore, letting
Mg A ||| V(o) |l Lex, x,M7exp(azto)
and
M, 4 ossrus%tl,” V(t) HL(X,,.\',)y
we obtain finally
V() | ix,. x, < max(Mg, Mo)exp(2azty)exp(—azt), vVt = 0.
5. Regulation of system (3.1) by PI-control
We shall study the feedback interconnection of (3.1) and (2.3), 1.e.,
v(t) = r6(t) — y(b), (5.1)
u(t) = w(t), (5:2)

where r0(t), rER™, is a constant reference signal.

Theorem 5.1.  Suppose that the system (3.1) satisfies (A1)-(A4) and that a
det(G(0))#0. Choose matrices K,, K; €R™ ™ such that K, stabilizes G and
K, satisfies the condition

o((I+G(0)K,) 'G(0)K,) C e..
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Then, there exists a number k*>( sych that VO<k<k*
V,(t) on X, given by

t
=S Iy 0
Velhxe = Se(Bx, + J‘“S.q(t—r)[ 0 kI, ]B,,Frl/,,(r)dr, % € X

is exponentially stable.
b m' hE fafige 0<k<k*, the closed-loop system given by (2.3),
(3.1), (5.1) and (5.2) tracks constant reference signals (i.e., lim,_.y(¢t)=7) in

the presence of arbitrary initial conditions (x0, 20) EXXAR™ and arbitrary
disturbances dy€X and d, eR ™. )

the feedback semigroup

Proof.  The exponential stability follows from Theorem 2.1 and Theorem 4.1.
Moreover, define

(Tx) (t) A CS(t)x,, (5.3)

t
d(t) A cj S(v)dydt + d,. (5.4)
0

If we show that T maps X into (LG (2 .))™ and that d€ (L3 (Z#.))”, then
application of Theorem 2.1 to the system (G, X, T) and disturbances d of the
form (5.4) proves the remaining part of the theorem. Let x,€X, then

(Txo) | 0.n11s in (L7(0, ¢,))” by (A4). For t=1t,, we have

| (Tx) (1) l = ICS(tl)S(t—tl)x0|
”C“Lu,\',-.'%"')lls(tl)“L(X.X)“S(t_tl)“L(X.X)”xu“.\’-

IA

Therefore (Txo) | (¢, ») € (L™ (t;, ©))™ and lim,_, .. | (Txy) (t)| =0, because S(¢#)
is exponentially stable on X.

Moreover, realize that the spectrum of the infinitesimal generator A of the
semigroup S(f) does not contain 0 (S(f) is exponentially stable), hence
A'€L(X, X). Recall from semigroup theory that

t
SHx — x = J S(r)Axdr, vy € D(A)
0

= S(f)A ld(, e Aild()

t
J. S(T)d()df, vd() €eEX
0

= I S(T)d()df —A—ldo, Vd() € X. (55)
0

The Bochner integral on the LHS of (5.5) has to be understood. in the space X.
However, it follows from the assumptions that it exists'also thh respect to .:X
and that both integrals coincide. It follows that the function d defined by (5.4) is
in (Ly™(R )™

6. Example

Consider the problem of heating a bar of length 1 with both endpoints at
temperature zero and with heat injection of magnitude u, () at Eht? point §,, 1=1,
2. The measurements are taken at the points 7, and 7,. The system to be
controlled can then be formulated as
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z(x, 1) = 2 (x, 1) + S(x—=E)Dur(t) + d(x—E,uz(t), (6.1a)
y,(H) = z(n,, 1), (6.1b)
¥,(8) = z(n,, 1), (6.1c)
(=sa=1 t=l, G<EB<L 0<n <1, t =1, 2)
20, ) =2(1, ) =0, Vvt=0, (6.1d)
(6.1e)

Z(x, 0) . Z()(x).

It follows from Curtain and Pritchard (1978) that the system (6. 1.) can be writtep
in the form (3.1) satisfying the assumption (A1)—(A4). In particular the semi-

group S(t) and the spaces X, X and X are given by
1

(S(Hz)(x) = ZIZexp(—nzﬂzt)sin(nnx)J. sin(nwA)z(A)dA,
"= 0

Xo= L2(0.51),
23 £
X=H"%0, D),
v +d
X=WX)*=H 0, 1),
where H?(0, 1) denotes the Sobolev space on [0, 1] of order o (0 EZ) and ¢1is

some sufficiently small positive number.
Let us consider the following situation:

n,=§ "G=1,2), (6.2a)
o e cp (6.2b)
nr= 53 (6.2¢)

A direct calculation of the transfer matrix G(s)=(g;(s)) by taking Laplace
transforms in (6.1a), (6.1b) and (6.1c¢) yields

il sinh((l—n')\/?)sinh(gj\/?)
8, = V5 Sinh(Vs ) (6.3)

if i=jand (4, 7) = (2, 1)

and

- sinh((1—-&,)Vs )sinh(nVs)
£12(8) = 5~ Sinh(Vs ) : it

Using (6.3) and (6.4) it is easy to show that gu(0)=(1—r;l);~'j for i=j and (i,
7)=(2, 1) and glz(()):(l—;‘z)r]l. As a consequence, we have

det(G(0)) = §,(1-n,)(&§,—n,)
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71y
—(6.1e), if and
&y

) or max(
and, therefore,

-

22

=0

-
o1

(0))#0, if and only if £, #17,.

1,)=min(

det(G(0))

\

an be made, if the conditions (6.2a)-

€ system given by (6.1a)
if max(n,,

to show that

5.1 cannot be applied in this case.
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Similar considerations ¢

1,) then it is possible

F0 and n,#1, it follows that det((

-
s
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L, F 1

¢
=t
S

min(7,,

For the special case that

n

)

(6.2c) are not satisfied. However
52
Theorem

1o

Hence, Theorem 5.1 can be applied to th
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Appendix

We prove the following Lemma which was used in the proof of Theorem 4.1.

Lemma 1.  Suppose that (A1) and (A3) are satisfied and that K, is non-
singular. Then V(t)ELX,, X,) a.e. on R ,.

Proof.  First realize that
1Sl ixx) € LA ). (A.1)

This can be shown using the same methods as in the proof of Lemma 3.1. We
obtain from (4.10) and (4.11)

lu()| = Myexp(—at)|z|
+ [ Kl C Ml Lx.am 1S [ Lox.xo 120 [l x
t
+ [ IPe=0lICLaan 15 s lsol,
vt = 0, (A.2)
where we have used the fact that F is of the form F=K,,b(,+F1 with

By &l MR Y=,
It follows from (A.1) and (A.2) that there exists ¢ €L_'(Z ) such that

lut)| = ¢t (lxollx + |20]),  VE=0. (A.3)
Moreover by (3.1)
lx® )y = {ISOexx + ”B”L(ﬁ"’,f)L:“S(t_’T) |2ce, o p(DdT}
x(|lzollx + l20]),  vE=0. (A.4)
Hence, there exists y, €L (R +) satisfying
x|y = w, O Uxollx + lz0]), vt=0. (A.5)

Furthermore, it follows from (4.3"), (A.3) and (A.5) that there exists a function
Y, €L (A ) such that

|Z(t)| = wz(t)(nxo“\' e |Zu|)- (A.6)

We conclude from (A.5) and (A.6) that, for a.e. t>0, there exists a number

0<N,<x satisfying

X Xo
vl 2 Jis. < w2 Jie fz]ex

Therefore

1V lx.z0 = Ne-



