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SUMMARY

Cylindrical algebraic decomposition is a powerful algorithmic technique in semi-algebraic

geometry. Nevertheless, there is a disparity between what algorithms output and what

the abstract definition of a cylindrical algebraic decomposition allows. Some work has

been done in trying to understand what the ideal class of cylindrical algebraic decom-

positions should be — especially from a topological point of view.

We prove a special case of a conjecture proposed by Lazard in [22]; the conjecture

relates a special class of cylindrical algebraic decompositions to regular cell complexes.

Moreover, we study the properties that define this special class of cell decompositions,

as well as their implications for the actual topology of the cells that make up the cell

decompositions.
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NOTATION AND CONVENTIONS

Let R denote a real closed field.

Unless explicitly mentioned otherwise, we endow Rn, for n ∈ N, with the “euclidean

topology”.

Let Bd(x, ε) denoted the open ball of Rd centred at x with radius ε; moreover, let

Bd = Bd(0, 1). We denote the boundary of Bd(x, ε), the (d − 1)-sphere centred at x

with radius ε, by S(x, ε) . Similarly to above, let Sd denoted the unit sphere in Rd+1.

When the dimension of Bd is clear, we drop the superscripts. Lastly, let Hn denote

{(x1, . . . , xn) ∈ Rn | xn ≥ 0}; this is sometimes referred to as the Euclidean half-space.

We use the standard notation for intervals: (a, b) ⊂ R denotes the open-intervals,

[a, b] ⊂ R denotes the closed intervals.

Unless mentioned otherwise, X and Y will denote a topological space; S a semi-

algebraic set; and C, D and E cells of some cell decomposition – see Definition 2.1.1

and Definition 2.1.2.
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CHAPTER 1

INTRODUCTION

Tarski proved in [37] that the theory of real closed fields admits quantifier elimination.

Collins introduced the concept of a cylindrical algebraic decomposition, c.a.d. for short,

in [8], as an effective method of eliminating quantifiers in the theory of real closed fields.

Loosely speaking, a cylindrical algebraic decomposition P is a partition of Rn into

cells, defined inductively, that satisfies the following condition: if π denotes the standard

projection, then, for all cells C and D in P, the projections π(C) and π(D) are either

disjoint or the same. Moreover, given a semi-algebraic set S, we can construct P so

that S is the union of cells of P.

While cylindrical algebraic decompositions show that the theory of real closed fields

is model complete – that is, the theory of real close fields admits quantifier elimination

– we will focus on its use to study semi-algebraic sets.

Cylindrical algebraic decomposition is a fundamental tool in the study of semi-

algebraic geometry. For example, we can determine whether a semi-algebraic set is

open, connected, or bounded; we can determine its dimension, closure or interior.

Furthermore, we can study motion planning problems — sometimes referred to as

Piano mover’s problem. See [30], [31], and more recently, [42]. Another application

is to compute branch cuts of algebraic expressions; see [14]. A brief survey of some

standard applications of cylindrical algebraic decompositions is contained in [21].

In this thesis, we view a c.a.d. not as a algorithm but as a result about the structure

of semi-algebraic sets. That is, from a semi-algebraic geometry point of view, we view

a c.a.d. as an object that encodes topological information about semi-algebraic sets. In

particular, we are interested in finding classes of cylindrical algebraic decompositions

that exhibit well-behaved properties.
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The next example serves as motivation for the questions studied in this thesis.

Example 1.0.1 (Motivating example). Suppose that we have a semi-algebraic set

S = {(x, y, z) ∈ D × R | z =
x2

y2
},

where D = {(x, y) ∈ R2 | 0 < x < 1,−x < y < x}. The set S is a subset of the Whitney

umbrella; that is, a subset of the surface defined by the locus of the polynomial x2−zy2.

We can partition S into cells: the set S, (0, 0) × [0, 1], {(x, y, 1) ∈ D × R | y = x},
{(x, y, 1) ∈ D × R | y = −x}, and {(x, 1, z) ∈ D × R | x2 = z}.

This cell decomposition yields a CW-complex of S. Computing the homological

information from a CW-complex is not straightforward. Nevertheless, if we could

construct a partition of S where each cell is regular — that is, for each cell C ⊂ S,

there exists a homeomorphism (B
d
, Bd) → (C,C) — then our CW-complex would

have enough structure to compute the homology of S combinatorially. Consequently,

we can ask what properties are required so that our c.a.d. is regular and whether we

can construct a c.a.d. with these properties.

The first paper to study the topological properties of a cylindrical algebraic de-

composition was [22]. More recently, [2] studied a specific class of cylindrical algebraic

decompositions where each cell is a semi-monotone set — see [1] for the definition and

basic results about semi-monotone sets.

Both [2] and [22] studied the following conjecture.
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Conjecture 1.0.2. Let S ⊂ Rn be a closed and bounded semi-algebraic set. Then,

there exists a cylindrical algebraic decompositions such that S is the union of regular

cells.

In [2], Basu et al. show that a class of cylindrical algebraic decompositions is such

that its bounded cells are regular. In the case of dimS ≤ 2 or n = 3, a proof of how to

construct the cylindrical algebraic decomposition is given; this gives a partial answer

to Conjecture 1.0.2.

In [22], Lazard conjectures – see Conjecture 4.0.1 – that a c.a.d. satisfying certain

conditions is composed of regular cells; moreover, Lazard showed that if n = 3, then

we can construct such cylindrical algebraic decomposition – this is proved in [22, Prop.

5.11]. Lazard’s approach in [22] is to find the necessary and sufficient conditions for a

c.a.d. cell to be regular. In this thesis, we follow the approach of [22]. In particular,

we present a proof of regularity, under one additional condition, for the case of where

R = R, and dimS ≤ 2 or n = 3 – Lemma 5.2.9 and Corollary 5.2.14. Moreover,

our proof gives a possible strategy of how to prove regularity in higher dimensions.

This thesis does not consider the question of how to construct such decompositions in

dimension n ≥ 4. As mentioned above, this was proved by Lazard in the case where

n = 3. See Chapter 7 for a discussion of the properties chosen by Lazard in [22]

Note that if we allow a change of coordinates, then we can show that cylindrical

algebraic decompositions are well-behaved and regularity follows – see Theorem 3.2.4;

A change of coordinates is not always desirable. Firstly, we want to understand which

cylindrical algebraic decompositions have good properties; in some sense, we are looking

for an ideal class of cylindrical algebraic decompositions. Furthermore, from a compu-

tational point of view, implementations of the c.a.d. algorithm can exploit sparseness

to improve their computational time; a change of coordinates can destroy sparseness.

The aim of this thesis is twofold: firstly, to compare the results surrounding the

basic theory cylindrical algebraic decompositions and study properties that make them

well behaved; secondly, to give an answer, even if partially, to Conjecture 1.0.2 – via

Conjecture 4.0.1 – and to questions posed by Lazard in [22, p. 111].

1.1 Contributions of this thesis

We summarise by chapter both the topics discussed and the contributions of this thesis.

• Chapter 2: we define the basic terminology of cell decompositions and its prop-

erties. We pay particular attention to properties that are related to the regularity

of cells. Moreover, we study the relation between these properties and their im-

plications to the topology of the closure of some cells.
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• Chapter 3: we define cylindrical algebraic decompositions and give a proof of

a well-known result(Theorem 3.2.4) that states that a well-behaved cylindrical

algebraic decomposition is a regular cell complex. We then discuss the informa-

tion contained in the index of cells and define the notion of a face of a c.a.d. cell

along an axis direction. The latter gives us information related to the dimension

of cells containing a point in the boundary – Lemma 3.3.1. Lastly, we show –

using the language of faces of a c.a.d. cell, that is, Definition 3.4.1 – that in the

case of a 3-dimensional cylindrical algebraic decomposition, two of the properties

discussed in Chapter 2 are equivalent – Proposition 3.5.1.

• Chapter 4: we formally state the main open question considered in this thesis

– Conjecture 4.0.1. Moreover, we briefly discuss the homotopy of unbounded

semi-algebraic sets.

• Chapter 5: we outline how we can prove Conjecture 4.0.1 in the case of R = R.

We then compute the homotopy type of the closure of a c.a.d. cell and use this

to prove Conjecture 4.0.1 in the case where dimS ≤ 2 or n = 3.

• Chapter 6: we briefly discuss a question posed by Lazard in [22] that relates

cylindrical algebraic decompositions to partially ordered sets. Firstly, We modify

it so it is well-defined. Secondly, we give an affirmative answer to the question.

• Chapter 7: we discuss how the work of this thesis can be continued.

The appendix chapters briefly discuss the background in semi-algebraic geometry

and topology, respectively, used in this thesis.
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CHAPTER 2

CELL DECOMPOSITIONS OF RN

The purpose of this chapter is to establish the basic language and framework which we

work with. We have two goals: to collect results scattered across different areas of the

literature, and to standardise the language on which these results are presented.

2.1 Cell decompositions

The most basic object we consider is a cell.

Definition 2.1.1 (Cell). A subset C of Rn is a d-cell if there exists a homeomorphism

Bd → C, for some d ∈ N. Moreover, we say that C has dimension d, denoted dimC.

The boundary of C, denoted ∂C, is the set C \C. If C is a point, then C is a cell of

dimension 0.

First note that the dimension of a cell is well-defined; by [18, Thm. 2.26], if a cell

is homeomorphic to Bd and Be, then d = e.

The boundary of a cell C does not, in general, coincide with the topological bound-

ary of C. Consider the cell

C = {(x, y, 0) ∈ R3 | x2 + y2 < 1},

endowed with the standard subspace topology. Recall that the topological boundary

of C is C \ int(C). Note that int(C) is empty and thus its topological boundary is C;

its boundary is

∂C = {(x, y, 0) ∈ R3 | x2 + y2 = 1}.
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Other authors – for example, see [4] or [38] – refer to the boundary of C as the frontier

of C.

We can study a set X ⊂ Rn by partitioning X into cells. For example, [6] con-

siders triangulations of real algebraic sets. We will study semi-algebraic sets of Rn by

considering an appropriate partition.

Definition 2.1.2 (Cell decomposition of Rn). Let X be a subset of Rn. We say that

a cell decomposition of X is a partition of X into cells.

Cell decompositions of R are straightforward.

Example 2.1.3 (Cell decomposition). Any partition of R into open intervals and points

is a cell decomposition of R. In fact, partitions of this form are the only possible cell

decompositions of R.

In general, a cell decomposition {Ci} of X is not enough to study the space X;

we can say little about X as there is little structure on the cell decomposition. For

example, we can define the dimension of a semi-algebraic set S by defining a suitable cell

decomposition but little about the topological properties of S. We want to understand

what additional structures on a cell decomposition are required so that we can study

a space X.

2.2 Properties of cells and cell decompositions

As discussed above, we want to study decompositions of a space with additional struc-

ture; we impose these additional conditions to capture the properties of the class of

subsets we want to study. For example, in [38], van den Dries studies definable subsets

by considering a special cell decomposition of definable subsets. A central theme in

this thesis is to understand how we can combine cells with a well-behaved boundary to

give topological information about semi-algebraic subsets of Rn.

2.2.1 Standard terminology

While a cell C is a simple object in a topological sense, ∂C does not have to be.

For example, ∂C can have arbitrarily many connected components: consider the cell

C = {(x, y) ∈ R2 | y < |csc(x)|}; the boundary of C has infinitely many connected

components in R2. Thus, we need to specify what we mean by a well behaved boundary.

More specifically, some of these conditions will ensure that the cell has a well-

behaved boundary in the intrinsic sense; that is, not depending in the cell decomposi-

tion. Other conditions will guarantee that the boundary of the cell is compatible, in

some sense defined below, with a cell decomposition.

13



The archetypal well-behaved cell, in the intrinsic sense, is a regular cell.

Definition 2.2.1 (Regular cells). Let C be a d-cell of Rn. We say that C is a regular

cell if there exists a homeomorphism (Bd, Bd)→ (C,C).

Example 2.2.2 (Cells of R are regular). Any cell of R is a regular cell.

More generally:

Example 2.2.3 (Hyper-cubes are regular cells). The hyper-cube (0, 1)d ⊂ Rn is a

regular cell via a map [0, 1]d → B
d
, defined by v 7→ v

‖v‖ ; this is a standard result from

topology.

This definition says that there exists a homeomorphism Bd → C that extends

to a homeomorphism B
d → C. This is equivalent to the existence of a relative

map(Definition B.0.1) (Bd, ∂Bd)→ (C, ∂C) that is a homeomorphism. Consequently,

if C is a regular cell, then C ∼= B
d

and ∂C ∼= Sd−1, for some d ∈ N.

Consider the following example from [23, p. 243].

Example 2.2.4 (Closure does not characterise regularity). The closure of the cell

C = {(x, y) ∈ R2 | x2 + y2 < 1} \ {(0, y) ∈ R2 | y ≥ 0} is equal to B
2
. However, C is

not regular; if p is any point in {(0, y) ∈ R2 | 0 < y ≤ 1} ⊂ ∂C, then C ∪ {p} is not

simply-connected.

This shows that we cannot determine whether or not a cell C is regular by con-

sidering the topology of C only. We need to understand how the cell relates to its

boundary.

Another difficulty in showing a cell is regular is that the defining map may be

unsuitable. Given a d-cell C ⊂ Rn we have a homeomorphism f : C → (0, 1)d, but f

does not need to extend to a homeomorphism f : [0, 1]d → C. Consider, for example,

the homeomorphism

(0, 1)2 → C,

(x, y) 7→ (x, xy),

where C = {(x, y) ∈ R2 | 0 < x < 1, 0 < y < x}. This map does not extend to [0, 1]2.

Nevertheless, C is a regular cell.

2.2.2 Additional terminology

The following definition is useful when determining whether a cell is regular.

14



Definition 2.2.5 (Equiregularity). We say that X ⊂ Rn and Y ⊂ Rm are equiregular

if there exists a homeomorphism (X,X) → (Y , Y ). In particular, a regular cell is a

cell equiregular to (B
d
, B).

As a consequence of Example 2.2.3, to show a cell is regular, it is enough to show

the existence of a homeomorphism ([0, 1]d, (0, 1)d)→ (C,C).

We establish a convention for naming cell decompositions where all cells have a

certain property.

Remark 2.2.6 (Naming convention for cell decompositions). In general, if all cells of

a cell decomposition P have property P , we say that P is a P cell decomposition.

Before we study properties related to the boundary of a cell and how it fits in a

cell decomposition, we need to describe what it means for two cells to be close to each

other.

Definition 2.2.7 (c.f. [22, Def. 2.6]). Suppose that C and D are cells of Rn. We say

that C and D are adjacent if C ∩D = ∅ or C ∩D = ∅. Moreover, if C ∩D 6= ∅ we

say that C is sub-adjacent to D.

The notion of sub-adjacency is necessary to capture the asymmetric behaviour of

the adjacency relation.

Example 2.2.8 (Sub-adjacency is asymmetric). Consider the cells

C = {(x, y) ∈ R2 | y = 0} and

D = {(x, y) ∈ R2 | x > 0, y > 0}.

Then C and D are adjacent, C is sub-adjacent to D, but D is not sub-adjacent to C.

The (sub-)adjacency relation is, in some sense, an analogue to the (proper) faces

relation of a simplex.

2.2.3 Closure finite and well-bordered

The next two properties we consider are finiteness conditions on the boundary of the

cell. They tell us how a cell fits in with the cell decomposition.

We discuss these properties together as, under the right assumptions, we can relate

them.

Definition 2.2.9 (Closure finite). Let C be a cell of a cell decomposition P. We say

that C is closure finite in P if C is the union of finitely many cells of P.
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The closure finite condition is found in the literature under different names. In

[22, Def. 2.7], Lazard refers to closure finite as boundary coherent. Both [4, Def. 2.4.1]

and [33, p. 4] refer to a cell C ∈ P satisfying the frontier condition if ∂C is the, not

necessarily finite, union of cells in a cell decomposition P. This language is used in

the study of topological stratifications. We use the term closure finite as it is more

descriptive than the terms above.

Note that C is closure finite in P if and only if ∂C is the union of finitely many cells of

P. Moreover, if a cell D ∈ P intersects ∂C, then, by [3, Thm. 5.42], dimD ≤ dimC−1.

As Example 2.2.14 demonstrates below, we do not necessarily have equality.

The closure finiteness property is not intrinsic to the cell; it depends on the cell

decomposition C lies in. When it is clear from context which cell decomposition C is

part of, we say that C is closure finite.

Example 2.2.10 (Failure of closure finiteness). Consider the following cell decompo-

sition of [0, 1]3:

The cube is closure finite but the 1-cell [0, 1] × {0} × {12} sub-adjacent to the cube is

not.

This example illustrates that the closure finite property does not permeate to the

cells in the boundary.

The closure finite property affects the adjacency relation.
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Example 2.2.11 (Closure finiteness controls sub-adjacency). Suppose we have two

cells C = {(x, 0) ∈ R2 | −1 < x < 2} and D = §2 \ {(x, y) ∈ R2 | x > 0 and y > 0} of

R2.

These cells are not closure finite; moreover, they are sub-adjacent to each other.

This behaviour is undesirable; the closure finite property guarantees that this

pathology cannot happen.

Lemma 2.2.12 (Closure finiteness and sub-adjacency connection). Let C be a cell of a

finite cell decomposition P. Then, C is closure finite if and only if D ∈ P sub-adjacent

to C implies that D ⊂ C. In particular, if two cells C and D are closure finite and

sub-adjacent to each other, then C = D.

Proof. Suppose that C is closure finite in P; that is, ∂C =
⋃k
i=1Di. If D 6= C is any

cell sub-adjacent to C, then it must intersect some Di, and thus D = Di. In particular

D ⊂ ∂C.

Conversely, if C contains all cells sub-adjacent to C, then C =
⋃k
i=1Di, where {Di}

is the collection of cells sub-adjacent to C.

In other words, a cell C is closure finite if and only if ∂C contains all of its sub-

adjacent cells. Note that the “only if” direction does not require a finite cell decompo-

sition.

We examine the significance of Lemma 2.2.12 in Section 6.2.

While the closure finite condition requires that the boundary is the union of cells

of P, it does not directly imposes restrictions on the topology of the boundary.
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As mentioned in the beginning of this chapter, the epitome of a well-behaved cell

is a regular cells. The next property ensures that the boundary of a cell C does not

have isolated components of codimension greater than 1.

Definition 2.2.13 (well-bordered). Let C be a cell of a cell decomposition P. We say

that C is well-bordered in P if there exists a finite collection of cells {Ci} in P such

that dimCi = dimC − 1 and ∂C = ∪iCi.

Similarly to closure finiteness, the well-bordered property is not intrinsic to the cell;

it depends on the cell decomposition. Unlike closure finite property, it does directly

imposes restrictions on the topology of the boundary: for example, if C is well-bordered,

then dim ∂C = dimC − 1.

Example 2.2.14 (Closure finite but not well bordered I). Consider the cell decompo-

sition of R3 consisting of the cells C = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1 and z < 1},
{(0, 0, 1)}, {(x, y, z) ∈ R3 | x2 + y2 + z2 < 1}, and {(x, y, z) ∈ R3 | x2 + y2 + z2 > 1}.
Then ∂C is such that its boundary does not have a cell of dimension one.

The following example from [22, Ex. 2.9] is an augmented version of Example 2.2.14.

Example 2.2.15 (Closure finite but not well-bordered II). Consider the following cell

decomposition of R3

defined by the cells
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C1 = {(x, y, z) ∈ R3 | x2 + y2 + z2 < 1},
C2 = {(x, y, z) ∈ R3 | (x2 + y2 + z2 > 1) and (z < 1 or x2 + y2 > 0)},
C3 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z < 1},
C4 = {(0, 0, z) ∈ R3 | z > 1}, and

C5 = {(0, 0, 1)}.

Two cells fail to be well-bordered. By Example 2.2.14, the 2-cell C3 fails to be well-

bordered as its boundary consists of a single 0-cell. The 3-cell C2 contains one 2-cell

in its boundary – that is, C1 – but the closure of this 2-cell does not contain the 1-

dimensional half-line with end-point C4 = (0, 0, 1). However, every cell is closure finite

and thus this cell decomposition is closure finite.

Like the closure finite property, the well-bordered property does not permeate to

sub-adjacent cells.

Example 2.2.16 (Well-bordered but not closure finite). Consider the following cell

decomposition

It consists of the open cube (0, 1)3; six 2-cells which make up the faces of the cube;

eleven 1-cells which are just rotation and translations of (0, 1) × {0} × {0}; the 1-cell

{0}×{0}×(−1, 1); and eight 0-cells (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0),

(1, 1, 1), and (0, 0,−1). We observe the following:

i. The cell (0, 1)3 is well-bordered but not closure finite.

ii. The faces that are adjacent to the cell {0}×{0}×(−1, 1) are neither well-bordered

or closure finite. Let D denote one of these faces.
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In general, as summarised by the following table, these conditions are not related.

well-bordered closure finite Example

T T Any cell decomposition of R.

T F (0, 1)3 in Example 2.2.16.

F T C1 in Example 2.2.15.

F F D in Example 2.2.16.

If we require that all sub-adjacent cells to a cell C also satisfy the well-bordered or

closure finite conditions, we can relate these two properties; in some circumstances, for

example when studying low-dimensional cell decompositions, they are equivalent.

Lemma 2.2.17. Let C ⊂ Rn be a cell of a cell decomposition P. If C and all cells

sub-adjacent to C are well-bordered, then C is closure finite.

Proof. In view of Lemma 2.2.12, it suffices to show that for all cells D such that

D ∩ C 6= ∅, then D is contained in ∂C; we may assume that D 6= C. We prove this

lemma by induction on the dimension of C. For a 0-dimensional cell, the two conditions

are equivalent.

As C is well-bordered, there exists a finite collection of cells {Ci}, with dimension

dimCi = dimC − 1, such that ∂C = ∪iCi. If D ∩ Ci 6= ∅, for some i, then D = Ci;

Otherwise, we may assume that D ∩ Ci 6= ∅, where dimCi = dimC − 1. Thus, by

induction, D ⊂ ∂Ci ⊂ ∂C and the result follows.

Corollary 2.2.18. Any well-bordered cell decomposition is closure finite.

The converse is not true, even if we assume that all sub-adjacent cells are closure

finite. A d-cell might fail to have a (d − 1)-cell in its boundary as Example 2.2.14

demonstrates.

In low dimension, these two conditions are equivalent.

Lemma 2.2.19. Let C ⊂ R2 be a cell. The following are equivalent:

i. C and all of its sub-adjacent cells are well-bordered.

ii. C and all of its sub-adjacent cells are closure finite.

Proof. The fact that i) implies ii) follows by Lemma 2.2.17.

Conversely, the result holds for 0- and 1-cells; thus, suppose that C is a 2-cell.

A closure finite 2-cell C ⊂ R2 fails to be well-bordered if there exists a isolated

point p in ∂C. As C is open, the boundary of C and its topological boundary coincide;

we use them interchangeably in this proof.
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Suppose that p ∈ C is an isolated point of ∂C; that is, there exists an r > 0 such

that B(p, r) ∩ ∂C = {p}. We can partition Rn as follows:

Rn = C t ∂C t int(Rn \ C),

By intersecting the decomposition above with B(p, r) \ {p} we have:

B(p, r) \ {p} = ((B(p, r) \ {p}) ∩ C) ∪
[
(B(p, r) \ {p}) ∩ int(Rn \ C)

]
.

As B(p, r) \ {p} is connected, either (B(p, r) \ {p}) ∩ C or B(p, r) \ {p} ∩ int(Rn \ C)

is empty. As p ∈ ∂C we have that B(p, r) \ {p} ∩ int(Rn \ C) = ∅ and

B(p, r) \ {p} = (B(p, r) \ {p}) ∩ C.

Thus, B(p, r) \ {p} ⊂ C; this contradicts the fact that C ⊂ R2 has trivial fundamental

group and completes the proof.

Corollary 2.2.20. A cell decomposition in R2 is well-bordered if and only if it is

closure finite.

For n ≥ 3, a closure finite cell decomposition of Rn is not necessarily well-bordered;

see Example 2.2.15. If our cells happen to be regular, then there enough structure to

relate the two.

Lemma 2.2.21. Let P be a regular cell decomposition of a compact set S ⊂ Rn. Then,

P is closure finite if and only if it is well-bordered.

Proof. By Corollary 2.2.18, any well-bordered cell decomposition is closure finite.

Conversely, suppose that C is a closure finite, regular d-cell. As ∂C is homeomorphic

to §d−1, the cell C is well-bordered.

In Proposition 3.5.1, we show that in another special type of cell decomposition,

the closure finite property is equivalent to well-bordered.

2.2.4 Locally boundary connected

Lastly, we consider the locally boundary connected property.

Definition 2.2.22 (c.f. [22, Def. 2.7]). A cell C is locally boundary connected1 –

l.b.c. for short – if, for all p ∈ ∂C, there exists an δ > 0 such that, for all 0 < ε < δ,

B(p, ε) ∩ C is connected.
1Lazard refers to this property as boundary smooth in [22, Def. 2.7]. We renamed this property

so as to not overload the label “smooth”, specially as we can consider C∞ cells
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Example 2.2.23 (Open cube is l.b.c.). The open cube (0, 1)d ⊂ Rn is l.b.c.

Example 2.2.24 (l.b.c. non-example). Consider the following cell:

C = {(x, y) ∈ R2 | x2 + y2 = 1} \ (0, 1).

For all 0 < ε < 2, B((0, 1), ε) has two connected components, and thus C is not locally

boundary connected.

In addition, this example illustrates that the l.b.c. property condition is not pre-

served under homeomorphisms. The l.b.c. property is intrinsic to C; it does not depend

on how the boundary of C is decomposed in some particular cell composition.

Note that the closure of a cell does not characterise the l.b.c. property via topological

type.

Example 2.2.25 (Closure does not characterise l.b.c.). Recall Example 2.2.4. The

closure of the 2-cell {(x, y) ∈ R2 | x2 + y2 ≤ 1} \ {(0, y) ∈ R2 | 0 < y < 1} is the closed

ball. Consider the following 2-cell:

The closure of these two 2-cells have different topological type.

Any such characterisation will have to take into account the relation between the

cell and its boundary. Lazard proved in [22] that we can characterise the l.b.c. property

in terms of the fundamental group.

Proposition 2.2.26 ([22, Prop. 2.12]). A cell C ⊂ Rn is l.b.c. if and only if, for all

p ∈ ∂C, {p} ∪ C is simply-connected.
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Note that if a cell C is such that {p} ∪ C is simply-connected for some p ∈ ∂C, it

does not imply that {q} ∪C is simply-connected for some q in some neighbourhood of

p; consider the origin in Example 2.2.25.

We defined locally boundary connectedness in such way that, for a fixed point p, the

one-parameter family of semi-algebraic sets {B(p, ε)} can detect whether or not {p}∪C
is simply-connected. We want to understand how crucial it is to use this specific family,

and in particular, whether we can replace it by a different family.

The naive idea of replacing it by a family whose members are strictly contained in

another and whose measure tends to zero does not work; for example, a family of open

neighbourhoods of p is not enough to characterise the l.b.c. property.

Example 2.2.27 (Not all open families characterise l.b.c.). Consider the one-parameter

family {Xε} of neighbourhoods of the origin defined as

Xε = {(x, y) ∈ R2 | x2 + y2 < ε, y +
ε

4
< |x− ε

2
|}.

Now the cell ((0, 1)2, [0, 1]2) is regular but Xε ∩ C is disconnected for all sufficiently

small ε > 0.

For now, we assume that our cells are semi-algebraic; this is necessary as we in-

voke Theorem A.4.5 – the local conic structure of semi-algebraic sets – to prove the

subsequent results.

Remark 2.2.28. Let C be a d-cell of Rn, p ∈ ∂C, and let the set Xp,ε denote the set

p ∗ (S(p, ε)∩C) \ ({p}∪S(p, ε)) for some ε > 0. From the local conic structure of semi-
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algebraic sets, we know that for sufficiently small ε > 0, there exists a homeomorphism

B(p, ε) ∩ C → Xp,ε.

From its definition, Xp,ε = {pλ + (1 − λ)b | b ∈ S(p, ε) ∩ C, λ ∈ (0, 1)}. Consequently,

there exists a homeomorphism

Xp,ε −→ (S(p, ε) ∩ C)× (0, 1),

pλ+ (1− λ)b 7−→ (b, λ).

A product X ×Y is connected if and only if X and Y are connected. In particular,

B(p, ε)∩C is connected if and only if S(p, ε)∩C is connected. This yields the following

corollary.

Corollary 2.2.29. Let C ⊂ Rn be a semi-algebraic cell. Then C is locally boundary

connected if and only if, for all p ∈ ∂C, there exists a δ > 0 such that, for all 0 < ε < δ,

S(p, ε) ∩ C is connected.

In other words, we can replace the one-parameter family {B(p, ε)} by the one-

parameter family {S(p, ε)}. Note that if B(p, ε) ∩ C is connected for 0 < ε < δ,

S(p, ε) ∩ C might not be connected. That is, we might need to choose a different δ.

We can adapt this proof to prove the following.

Lemma 2.2.30. Let C ⊂ Rn be a semi-algebraic cell. Then C is l.b.c. if and only if

for all p ∈ ∂C there exists a δ such that, for all 0 < ε < δ, B(p, ε) ∩ C is connected.

These results show that we can detect whether a cell is locally boundary connected

by using the one-parameter families {B(p, ε)∩C}, {B(p, ε)∩C} or {S(p, ε)∩C} – with

parameter ε > 0 – or the fundamental group of C ∪ {p}.

Corollary 2.2.31. Let C be a semi-algebraic l.b.c. cell. The δ > 0 that arises from

the local conic structure of C ∪{p} is such that, for 0 < ε < δ, B(p, ε)∩C is connected.

This is not surprising as we can detect l.b.c. by the fundamental group of C ∪ {p}
and the local conic structure can capture the local topology of a semi-algebraic set.

As mentioned above, regular cells are, in the intrinsic sense, the archetypal well-

behaved cell. In particular, regular cells are locally boundary connected.

Lemma 2.2.32 (cf. [31, Lem. 1]). Let C and D be equiregular. Then, C is l.b.c. if and

only if D is l.b.c. In particular, a regular cell locally boundary connected.

Here we do not need the semi-algebraic assumption.

24



Proof. As C and D are equiregular, we have a homeomorphism f : (D,D) → (C,C).

Then, for any x ∈ ∂C, the map

f |D∪{y} : D ∪ {y} → C ∪ {x}

is a homeomorphism, where f(y) = x. Thus, as D∪{y} is simply-connected if and only

if C ∪ {x} is simply-connected. If a cell C is regular, then {p} ∪C is simply-connected

as {f(p)} ∪ (0, 1)d is simply-connected for all p ∈ ∂C.

This was first pointed out in [31] and is the reason why the locally boundary con-

nected property is of interest: it is a necessary condition for regularity, and in particular,

a necessary condition for a cell decomposition to be a regular cell complex.
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CHAPTER 3

CYLINDRICAL ALGEBRAIC DECOMPOSITION

Cylindrical algebraic decomposition, or c.a.d. for short, is a cell decomposition of Rn

introduced by Collins in [8] to provide a practical, and thus computationally feasible,

method to eliminate quantifiers in the theory of real closed fields.

In the literature, there are two main types of results:

i. Results which are true for all, or classes of, cylindrical algebraic decompositions.

ii. Results which are true for cylindrical algebraic decompositions produced by a

specific algorithm. The main families of algorithms being:

(a) “Projection/Lifting” – [8],

(b) “Regular Chains”– [7], and very recently

(c) “Comprehensive Gröbner Systems” – [16].

This thesis is in the first camp; we take the approach of studying cylindrical alge-

braic decompositions independent of the algorithm that computes them.

This is similar to the view of Benedetti and Risler in [4]. In [4, Thm. 2.2.1],

Benedetti and Risler refer to a cylindrical algebraic decomposition as the first main

structure theorem of semi-algebraic sets; thus, we see a c.a.d. as a result about the

decomposition of semi-algebraic sets rather the output of some algorithm.

3.1 Cylindrical algebraic decomposition

We think of a cylindrical algebraic decompositions as a finite partition of Rn into semi-

algebraic cells, built inductively, and whose projection onto the first k variables, for
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k < n, are either disjoint or the same. These cells are not just arbitrary semi-algebraic

sets homeomorphic to (0, 1)d, for some d ∈ N, but cells that arise from graphs of

semi-algebraic functions.

The definition of a cylindrical algebraic decomposition is found in [3], [4], or [8].

Definition 3.1.1 (Cylindrical algebraic decomposition of Rn). A cylindrical alge-

braic decomposition of Rn is a sequence P = (P1, . . . ,Pn) where each Pk, for

1 ≤ k ≤ n, is a finite partition of Rk satisfying the following conditions:

i. Every C ∈ P1 is either a point or an open interval.

ii. For each CI ∈ Pk, we have continuous real-valued algebraic functions fI,j : CI →
R for 1 ≤ j ≤ uI . Moreover, these functions are such that fI,1 < · · · < fI,uI
point-wise on CI . If uI = 0, the we set CI,1 = CI ×R. Otherwise, we define CI,j

as follows:

CI,1 = {(a, b) ∈ CI × R | b < fI,1(a)},
CI,2j = {(a, b) ∈ CI × R | b = fI,j(a)} for 1 ≤ j ≤ uI ,

CI,2j+1 = {(a, b) ∈ CI × R | fI,j(a) < b < fI,j+1(a)} for 1 ≤ j < uI , and

CI,2uI+1 = {(a, b) ∈ CI × R | fI,uI (a) < b}.

Note that the projection of a c.a.d. of Rn is a c.a.d. of Rn−1. If πP is the projection

of a c.a.d. P, we say that πP is induced from P.

We say that Ci1,...,in is a section if in is even and a sector otherwise. Moreover, the

set Ci1,...,in−1 ×R is called the cylinder above Ci1,...,in−1 and we say that Ci1,...,in−1in

lies above Ci1,...,in−1.

Example 3.1.2 (c.f. [3, Ex. 5.4]). We start by defining a c.a.d. of R and then building

a c.a.d. of R2 above it.

Consider the c.a.d. of R consisting of five cells: C1 = (−∞,−1), C2 = {−1},
C3 = (−1, 1), C4 = {1}, and C5 = (1,∞). We define the c.a.d. of R2 as follows:
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i. C1,1 = C1 × R.

ii. Above the cell C2:

(a) C2,1 = {(x, y) ∈ C2 × R | −∞ < y < 0},

(b) C2,2 = {(−1, 0)}, and

(c) C2,3 = {(x, y) ∈ C2 × R | 0 < y <∞}.

iii. Above the cell C3:

(a) C3,1 = {(x, y) ∈ C3 × R | −∞ < y < −
√

1− x2},

(b) C3,2 = {(x, y) ∈ C3 × R | y = −
√

1− x2},

(c) C3,3 = {(x, y) ∈ C3 × R | −
√

1− x2 < y <
√

1− x2},

(d) C3,4 = {(x, y) ∈ C3 × R | y =
√

1− x2}, and

(e) C3,5 = {(x, y) ∈ C3 × R |
√

1− x2 < y <∞}.

iv. Above the cell C4:

(a) C4,1 = {(x, y) ∈ C4 × R | −∞ < y < 0},

(b) C4,2 = {(1, 0)}, and

(c) C4,3 = {(x, y) ∈ C4 × R | 0 < y <∞}.

v. C5,1 = C5 × R.

It is not a coincidence that this looks like a cell decomposition of §1.
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Remark 3.1.3. We can deduce the following facts about a c.a.d. P:

i. P is a finite partition of Rn.

ii. If C,D ∈ P, then π(C) and π(D) are either disjoint or equal, where π is the pro-

jection onto the first n− 1 coordinates. We refer to this property as cylindrical.

An important feature of a c.a.d. is that it yields a finite cell decomposition of Rn.

From Definition 2.1.2 and Remark 3.1.3, it is enough to show that each subset which

makes up the partition is a cell.

Lemma 3.1.4 ([3, Prop. 5.3]). Suppose P = {CI} is a c.a.d. of Rn. Then, every

CI in P is a semi-algebraic cell; that is, there exists a semi-algebraic homeomorphism

between CI and (0, 1)d, for some d ∈ N.

Corollary 3.1.5. Any c.a.d. of Rn is a finite cylindrical semi-algebraic cell decompo-

sition of Rn.

The converse is false in general.

Example 3.1.6 (cylindrical semi-algebraic cell decomposition but not c.a.d.). Consider

the cell decomposition of R2 consisting of seven cells:

The 1-dimensional “section” is the intersection of the zero set of 3x2 − y3 + y − 1

and (−1, 1)× R.
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As we use cylindrical algebraic decompositions as a tool to study semi-algebraic

sets, we want to relate a c.a.d. to a semi-algebraic set.

Definition 3.1.7 (F -invariant cad). Let F be a finite set of polynomials in R[x1, . . . , xn].

A c.a.d. is F -invariant, if for every f ∈ F , sign(f) is constant for each C ∈ P.

Definition 3.1.8 (c.a.d. adapted to semi-algebraic set S). Let S be a semi-algebraic

set. A c.a.d. P of Rn is adapted1 to S if S is the union of cells of P.

Remark 3.1.9. A F -invariant c.a.d. is adapted to the semi-algebraic set
⋃
fi∈F V (fi).

An important result of semi-algebraic geometry, is that given any semi-algebraic

set S, there exists a cylindrical algebraic decomposition adapted to S. We can take

Collins’ algorithm as the proof of such fact. See [4, Thm. 2.2.1] for a more theoretical

approach.

In Example 3.1.2 above, we have a c.a.d. which is invariant with respect to the

polynomial f(x, y) = x2 + y2 − 1.

Lemma 3.1.10. A F -invariant c.a.d. P of Rn is adapted to any semi-algebraic set

defined by inequalities of polynomials in F .

Proof. Let {Ci} be the cells of P where sign(f) take the same values that define S, for

all f ∈ F . As P is a cell decomposition and sign(f) is invariant on each Ci, the Ci

partition S.

In particular, we can study a semi-algebraic set S via a F -invariant cylindrical

algebraic decomposition by ensuring that F includes all polynomials necessary to define

S.

To determine the exactly which polynomials we need is more complicated. As

presentations of semi-algebraic sets are not canonical in general, the question of a

“minimal” set F is not straightforward.

There are different notions of invariance with respect to a semi-algebraic set. What

we called a S-invariant c.a.d. is referred to as a sign-invariant c.a.d. in [15]. There are

other notions of invariance, such as order-invariance which is defined in [24]. We will

not need to make such distinctions.

Remark 3.1.11. An application of cylindrical algebraic decomposition is to decide

whether or not a semi-algebraic set S is empty. Some definitions of c.a.d. such as

Collins’ in [8], require that each cell comes with a sample point; that is, for each C

in some c.a.d. we require the decomposition to specify the extra data of a real algebraic

1The c.a.d. P is sometimes said to be compatible to S
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point in C. Thus, computing such a c.a.d. adapted to S allows us to decide whether

S = ∅. This is particularly of interest if S is a real algebraic variety.

From [3, Ex. 5.34], given a c.a.d. adapted to a semi-algebraic set S, we cannot

recover the topology of S. To elaborate further, if we are given a cell decomposition

of Rn that was induced by an F -invariant c.a.d.– where F is unknown F – then we

cannot recover F .

Given a c.a.d. adapted to a compact semi-algebraic set S, we have a cell decompo-

sition for S; we can ask how close this is to a CW-complex of S. In general, a c.a.d. it

not a CW-complex as a c.a.d. can fail to be closure finite. See Chapter 7.

As cylindrical algebraic decompositions are cell decompositions, the naming con-

ventions of Remark 2.2.6 applies. For example, Example 3.1.2 is both well-bordered

and locally boundary connected.

We will now defined an important family of cylindrical algebraic decompositions;

this family is central to this thesis.

Definition 3.1.12. We say that a c.a.d. P of Rn is a strong c.a.d. if P is well-

bordered and locally boundary connected.

Note that, a priori, this definition is weaker than the definition of a strong c.a.d.

given by Lazard in [22]. By Corollary 2.2.18 these definitions are equivalent; that is,

the closure finite requirement is superfluous.

We end this section by discussing a convenient extra condition we can impose on

a cylindrical algebraic decomposition. First, we discuss a way on which we can relate

two cylindrical algebraic decompositions.

Definition 3.1.13 (refinement of a c.a.d.). Let P and Q be cylindrical algebraic de-

compositions of Rn. We say that P is a refinement of Q if every cell of Q is a union

of cells of P.

For example, if F ⊂ F ′, then any F ′-invariant c.a.d. is a refinement of a F -invariant

c.a.d.

Consider the following refinement of Example 3.1.2.

Example 3.1.14 (non-reduced c.a.d.). Suppose that the cylinder C1,1 × R in Exam-

ple 3.1.2 was instead split into three cells C1,1 = {(x, y) ∈ R2 | x < 0, y < 0},
C1,2 = {(x, y) ∈ R2 | x < 0, y = 0}, and C1,3 = {(x, y) ∈ R2 | x < 0, y > 0}. If

we wanted to study the 1-sphere via this cell decomposition, it is clear that this new

augmented cylinder is unnecessary.
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As the definition of a cylindrical algebraic decomposition does not restrict the cell

decomposition from having unnecessary cells, we require that any section is defined by

sign conditions on F .

Definition 3.1.15. We say that a F -invariant c.a.d. is reduced if for every section

C, there exists some f ∈ F such that sign f = 0 in C.

See Chapter 7 for a discussion between the relation of reduced cylindrical algebraic

decompositions and minimal.

3.2 Well-based c.a.d.

We can ask whether we can impose extra conditions so that a c.a.d. adapted to a

compact semi-algebraic set S yields a CW-complex of S. In [31], Schwartz and Sharir

showed that a special type of c.a.d. is not only a CW-complex of S but a regular cell

complex of S.

The main idea is to use the projection mapping π on the closure of C to give a

homeomorphism between (C,C) and (π(C), π(C)); this homeomorphism together with

an inductive hypothesis allows us to prove the regularity of C.

Consider the following example.

Example 3.2.1 (regular cell but not via π). Consider the real surface of R3 defined

by the zero set of f(x, y, z) = x2− zy2. We can construct a closure finite {f}-invariant

c.a.d. of R3 which contains the following cell:

C = {(x, y, z) ∈ R3 | 0 < x < 1,−x < y < x, z =
x2

y2
}.

As C is not locally boundary connected, it is not regular. We can partition this cell

further so that C is the union of regular cells. For example, we can partition C into:

{(x, y, x) ∈ C | y < 0},
{(x, y, x) ∈ C | y = 0}, and

{(x, y, x) ∈ C | y > 0}.

While the lack of local boundary connectedness is not an issue in this refinement, we

cannot prove regularity via π; the fibre of (0, 0) under π is a closed segment.

We want to impose conditions on the c.a.d. so that the lack of injectivity of π is

not an issue.
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Definition 3.2.2 (c.f. [22, Def. 4.1]). Let P = (P1, . . . ,Pn) be a F -invariant c.a.d. of

Rn. We say that D ∈ Pn−1 is a bad cell of (P, F ) if, for some f ∈ F , f(a, x) = 0 for

a ∈ D.

When the context is clear, we will just say that D is a bad cell.

Example 3.2.3 (bad cell). In Example 3.2.1, (0, 0) is a bad cell.

The concept of bad cells is important due to the following result.

Theorem 3.2.4 (c.f. [31, Thm. 2]). Let P be a F -invariant strong c.a.d. of Rn adapted

to a compact semi-algebraic set S. If (P, F ) has no bad cells, then P is a regular cell

complex of S.

This result is stated in [31, Thm. 2] in terms of a well-based cylindrical algebraic

decomposition. A well-based c.a.d. – see [31, Def. 5] – is a F -invariant c.a.d. that does

not have any bad cells.

Remark 3.2.5. In [22, Thm. 4.4], Lazard showed that the output P of Collins’ algo-

rithm to compute a F -invariant c.a.d.– see [8] – is a strong c.a.d. if (P, F ) does not

have any bad cells.

Before we proceed with the proof of Theorem 3.2.4 we prove a few auxiliary lemmas.

The following result is a small generalisation of [6, Lem. 2.5.6].

Lemma 3.2.6. Let P be a reduced F -invariant c.a.d. of Rn, where F is closed under

the ∂
∂xn

operator. Moreover, suppose C is a bounded section of P. If g : D → R is the

semi-algebraic continuous bounded function that defines C and (G,P) has no bad cells,

where G is the set of polynomials that vanish at C, then g can be extended continuously

to D.

Proof. The proof follows [6, Lem. 2.5.6]. Let p ∈ ∂D and note that it suffices to extend

g continuously to a function with domain g : D ∪ {p} → R.

By the curve selection lemma, [6, lemma 2.5.5], there exists a continuous, semi-

algebraic function h : [0, 1] → Rn−1 such that h(0) = p and h((0, 1]) ⊂ D. We then

define the function ϕ(0, 1]→ R as

ϕ = g ◦ (h|(0,1]).

As g is a bounded function, ϕ is bounded. We use [6, Lem. 2.5.3] to extend ϕ

continuously to 0; we define g(p) = ϕ(0) and claim that g : D ∪ {p} → R is continuous.

Suppose that g is not continuous: then there exists a µ ∈ R, µ > 0, such that for

all δ ∈ R, δ > 0, there exists an x ∈ D with ‖x− p‖ < δ and |g(x)− ϕ(0)| ≥ µ.
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Now, consider the following semi-algebraic subset of D:

Sµ = {x ∈ D : |g(x)− ϕ(0)| ≥ µ}.

As p ∈ Sµ, we can apply the curve selection lemma to Sµ and p. We get a continuous,

semi-algebraic function h∗ : [0, 1] → Rn−1 such that h∗(0) = p and h∗((0, 1]) ⊂ Sµ.

Similarly to ϕ, we define ψ : (0, 1]→ R as

ψ = g ◦ (h∗|(0,1]).

As g is bounded, ψ is bounded; we use [6, Lem. 2.5.3] to extend ψ continuously

to 0. As a consequence of the continuity of ϕ and ψ at 0, we have |ϕ(0) − ψ(0)| ≥ µ;

in particular, ϕ(0) 6= ψ(0). Moreover, sign(fk(p, ψ(0))) ∈ ε(k) and sign(fk(p, ϕ(0))) ∈
ε(k), for all fk ∈ F .

Let Aε(k) = {y ∈ R | sign(fk(p, y)) = ε(k)} — see Definition A.1.6 for notation. As

F is closed under the ∂
∂xn

operator, by Thom’s Lemma(Theorem A.1.8), Aε(k) is empty,

a point, or an interval. Since at least one ε(k), for fk ∈ G, must equal 0, and there

are no bad cells, Aε(k) is not an open interval; without loss of generality say ε(1) = 0.

Invoking Thom’s Lemma for a second time, Aε(1) = A
ε(1)

which now is either empty or

a point; this contradicts the observation that – for all fk ∈ F , and in particular k = 1

– sign(fk(p, ψ(0))) ∈ ε(k) and sign(fk(p, ϕ(0))) ∈ ε(k). Hence g is continuous.

Lemma 3.2.7. Let C be a bounded, locally boundary connected section of a F -invariant

c.a.d. of Rn, where C is defined by a semi-algebraic continuous function g : D → R.

Moreover, suppose that {Ci} partitions C, where each Ci is the graph of gi : Di → R.

If all the gi extend continuously to Di, then g extends continuously to D.

Proof. We define the function g : D → R by

g(x) = gi(x) if x ∈ Ci.

We only need to show that g is well-defined; more specifically, show that gi and gj

agree on Ci ∩ Cj for all i 6= j.

As g is well-defined if p ∈ C or p ∈ ∂C ∩ ∂Ci for a single i, we need to show that if

p ∈ ∂C ∩ ∂Ci ∩ ∂Cj , for some i 6= j, then gi(p) = gj(p).

Since determining whether gi and gj agree at p is a local question, we consider

whether g is well-defined at C∩B(p, ε), for some ε > 0. We choose ε so that C∩B(p, ε)

satisfies the following properties:
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i. The set C∩B(p, ε) is connected; we can choose such ε > 0 as C is, by assumption,

locally boundary connected.

ii. If Ci and Cj are such that their intersection with B(p, ε) is non-empty, then the

semi-algebraic set Ci∩Cj ∩B(p, ε) ⊂ C consists of a single connected component

whose closure contains p. We can choose a smaller ε > 0 so that, if p ∈ Ci,

then Ci ∩ B(p, ε) 6= ∅. Moreover, since Ci ∩ Cj is semi-algebraic, it has finitely

many connected components; we restrict ε further so that the second condition

is satisfied.

We have two cases to consider.

Firstly, suppose that {p} ( ∂Ci ∩ ∂Cj : by (ii) above, p lies in the closure of a

semi-algebraic set contained in Ci ∩ Cj ∩ C and thus gi and gj agree at p.

Secondly, suppose that {p} = ∂Ci∩∂Cj : we show that gi(p) = gj(p) by constructing

a sequence of cells

Ci = Cl1 , · · · , Clk = Cj

where consecutive cells satisfy {p} ( ∂Clr ∩∂Clr+1 for 1 ≤ r ≤ k− 1; thus, by applying

the first case to consecutive cells we can show that gl1(p) = gl2(p) = · · · = glk(p) as

desired.

We need to show how to construct such a sequence.

The idea is to consider a semi-algebraic path between Ci ∩B(p, ε) and Cj ∩B(p, ε);

this is possible as C ∩B(p, ε) is semi-algebraic and connected, and thus – by [6, Prop.

2.5.13] – semi-algebraically path-connected. The path gives us a way of selecting the

correct consecutive cells which satisfy the desired property.

Let γ : [0, 1]→ C ∩B(p, ε) be a semi-algebraic path between a point in Ci ∩B(p, ε)

and a point in Cj ∩B(p, ε). As γ([0, 1]) semi-algebraic, γ([0, 1]))∩Cr has finitely many

connected components; thus γ−1(Cr) is a finite collection of intervals contained in [0, 1].

Considering the preimage of every cell Cr, we get a finite partition [0, 1] =
⋃k
r=1 Is

where sup Ii = inf Ii+1. Let Clr be the cell associated with Ir; that is, Ir ⊂ γ(Clr).

It remains to show that {p} is strictly is contained in ∂Clr ∩ ∂Clr+1 for 1 ≤ r ≤ k.

By assumption on ε, it is enough to show that Cr ∩ Cr+1 ∩ C 6= ∅. Let x ∈ Ir ∩ Ir+1,

and consider any open ball around γ(x). This open ball intersects both Cr and Cr+1 .

This completes the proof.

We now give a proof of Theorem 3.2.4.

Proof of Theorem 3.2.4. As a strong c.a.d. P of Rn is closure finite, we just need to

show that any C ∈ P contained S is a regular cell. Moreover, if we can show that the
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sections of P are regular, then by [31, Lem. 5], so are the sectors; for a more detailed

discussion about the regularity of sectors, see Section 4.1.

We will show that a section C is a regular cell by proving that (C,C) is homeo-

morphic to (D,D), where D ∈ Pn−1 is the cell below C. The result then follows by

induction.

As C is a section, it is the graph of some function g : D → R. Thus, it suffices to

show that the g extends continuously to D.

Let F ′ be the closure of F under ∂
∂xn

; that is, the smallest set that contains F and

is closed under partial differentiation with respect to xn. Then a F ′-invariant c.a.d. of

Rn is a refinement of P. This gives us the following data: a partition {Ci} of C, and

functions gi : Di → R such that g|Di = gi and Ci is the graph of gi.

Now, applying Lemma 3.2.6 to the F ′-invariant c.a.d. and C with G ⊂ F the set

of polynomials that define C, using the notation from Lemma 3.2.6, each gi can be

extended continuously to Di.

Finally, we use Lemma 3.2.7 to extend g continuously to D.

Corollary 3.2.8. Let C be a bounded cell of a F -invariant strong c.a.d. of Rn, where

C is the graph of function g : D → R. The function g extends continuously to a point

p ∈ D away from the bad cells of (P, F ).

We can give an upper bound for the dimension of bad cells.

Definition 3.2.9 (Primitive w.r.t. xn). We say a polynomial f ∈ R[x1, . . . , xn] is

primitive with respect to xn if there are no irreducible factors that are constant in

xn. We say a finite set F ⊂ R[x1, . . . , xn] is primitive with respect to xn if each f ∈ F
is primitive with respect to xn.

Lemma 3.2.10 ([22, Lem. 4.3]). Let P be a F -invariant c.a.d. of Rn. If C ⊂ Rn−1 a

(P, F ) bad cell, then C has codimension at least 1 in Rn−1. Moreover, if F is primitive

with respect to xn, then C has codimension at least 2 in Rn−1

Proof. The bad cells of (P, F ) consist of the points of Rn−1 where the coefficients of

some polynomial f ∈ F ⊂ R[x1, . . . , xn] – if we view f as an element of R[x1, . . . , xn−1][xn]

– vanish simultaneously.

If f is not primitive with respect to xn, then C has at least codimension 1 in

Rn−1; otherwise, the set where two polynomials with no common factor vanish has

codimension at least 2 in Rn−1.

The extra condition of F being primitive in xn is not an obstruction. If f = gh ∈ F ,

with g ∈ R[x1, . . . , xn−1] and h ∈ R[x1, . . . , xn], is not primitive with respect to xn, we
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consider a refinement defined by F ′ = (F \ {f})∪{g, h}. In particular, if a F -invariant

c.a.d. is adapted to some compact semi-algebraic set S, so is its F ′-invariant refinement.

Consequently, we may assume that F is primitive with respect to xn when studying

compact semi-algebraic sets.

Corollary 3.2.11. Any F -invariant strong c.a.d. P of R2 adapted to a compact semi-

algebraic set S, with F primitive in x2, is a regular cell complex of S.

Proof. As the cell decomposition is, by assumption, closure finite, we only need to show

that every cell contained in S is a regular cell. By Lemma 3.2.10, (P, F ) does not have

any bad cells, and thus, by Theorem 3.2.4, P is a regular cell complex.

To compute regular cell complexes of a compact semi-algebraic set S via strong

cylindrical algebraic decompositions, the main obstruction, apart from computing the

strong c.a.d. adapted to S, is the presence of bad cells. We can, after a change of

coordinates, ensure that this obstruction is not an issue. See [38, Ch. 2, 3.5] for a

description in how to choose the change of coordinates.

More specifically, if P is a F -invariant strong c.a.d. of Rn adapted to S, then there

exists a change of coordinate ν : Rn → Rn such that, for any ν(F )-invariant c.a.d.

P ′ of Rn, (ν(F ),P ′) does not have any bad cells. Consequently, any ν(F )-invariant

strong c.a.d. of Rn is a regular cell complex of ν(S). Thus, we can study ν(S), and in

particular S, via cylindrical algebraic decompositions.

Proposition 3.2.12 (cf. [6, Thm. 9.1.6]). Let S be a semi-algebraic set of Rn. There

exists a finite set of polynomials F ⊂ R[x1, . . . , xn] and a linear automorphism ν : Rn →
Rn such that any F -invariant c.a.d. P is adapted to ν(S) and (F,P) contains no bad

cells.

Example 3.2.13 (Change of coordinates). Recall that not all cells in Example 3.2.1

were regular via the projection mapping. By taking the change of coordinates ν defined

by

(x, y, z) 7−→ (x+ z, y, z),

We eliminate the bad cell obstruction.

As mentioned in Chapter 1, when studying semi-algebraic sets via cylindrical alge-

braic decompositions, a change of coordinates is not always desirable. In Chapter 4 we

state a conjecture that states that we can obtain regularity of cells without the change

of coordinates.
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3.3 c.a.d. cell indexing

The index of a c.a.d. cell contains information about the dimension of cells and their

adjacency relation.

Lemma 3.3.1 (index determines dimension). Let Ci1,...,in be a c.a.d. cell of Rn and k

be the number of odd ij in the index of C. Then

dim(C) = k

Proof. This follows directly from the inductive definition of a c.a.d.; that is, Defini-

tion 3.1.1.

The indexing also contains partial information about the adjacency relation between

cells. In dimension 1, the indexing characterises the adjacency relations. Two cells C

and D are adjacent if and only if their index differs by at most one; that is, one of the

cells has index k and the other k+1, for some positive k. Moreover, we can characterise

the sub-adjacency relation by considering whether or not k is even or odd.

In higher dimension, the situation is more intricate. Suppose that C = Ci1,...,in−1,r

and D = Di1,...,in−1,s are cells of a c.a.d. of Rn which lie in the same cylinder. Then C

is adjacent to D if and only if |r − s| < 2. Similarly to above, we can decide whether

one is sub-adjacent to the other by considering whether r or s is even.

This yields a necessary, but crude, condition for two cells to be adjacent. Suppose

that C = Ci1,...,in and D = Dj1,...,jn are two cells of Rn. We can project C and D

enough times so that they lie in the same cylinder. We then use the argument above

to determined whether two cells are not adjacent.

In [38], Van den Dries defines an alternative index of a c.a.d. cell. It encodes the

dimension of the cell but does not contains any information about adjacency of the

cells. Note that the n-tuples associated to a cell of Rn in [38] does not actually index

the cells.

Definition 3.3.2 ([38, Def. 2.3, Ch. 3]). We define the index of a cell inductively. For

a c.a.d. of R, we say that a cell C is a (0)-cell if it is a section. If C is a sector, we

say that C is a (1)-cell. Now suppose that C is a cell of a c.a.d. of Rn. Then C is a

(i1, . . . , in−1, 0)-cell if it is a section and a (i1, . . . , in−1, 1)-cell if it is a sector.

The value of ik is determined by whether the projection πn−k(C) is a section or

sector. A cell C = Ci1,...,in is a (i
′
1, . . . , i

′
n)-cell, where i

′
j ≡ ij + 1 mod 2.

This alternative index yields a more straightforward formula for the dimension of

a cell.
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Lemma 3.3.3. Let C be a (i1, . . . , in)-cell of a cylindrical algebraic decomposition of

Rn. Then

dim(C) =
n∑
j=1

ij .

The proof follows directly from the definition of a (i1, . . . , in)-cell and Lemma 3.3.1.

3.4 Cell crafting

We want to study the additional structure on the boundary of a cell that arises from a

cylindrical algebraic decomposition. In particular, we can partition the boundary of a

c.a.d. cell by taking into consideration where the boundary is relative to the coordinate

axis; in some sense, we generalise the notion of faces of the cube.

We first consider the part of the boundary directly above and below, called top

and bottom respectively, of a cell. The idea of the top, bottom and sidewalls of a cell

is defined by Basu, Gabrielov and Vorobjov in [2, Def. 3.1]. We will use a modified

version of top and bottom compared to [2].

Definition 3.4.1 (Top and bottom of cells). Let C = Ci1,...,in be a cell of a c.a.d. of

Rn. We define the top of C, denoted CT , to be the semi-algebraic set

CT =

Ci1,...,in+1 if in is odd and Ci1,...,in+1 exists,

∅ otherwise.

We can define the bottom of C, denoted CB, to be Ci1,...,in−1 if in is odd and Ci1,...,in−1

exists.

First note that if CT and CB exist, they are cells and their dimension is clear:

dim(CT ) = dim(CB) = dim(C)− 1.

The top and bottom, CT and CB are the portions of the boundary that lie above

and below C respectively, along the xn-coordinate. We generalise this notion to all

directions along a coordinate xk.

Definition 3.4.2 (Face of cell in the xk direction). Let C be a c.a.d. cell of Rn. We

define the face above C in the xk-direction, denoted C+
xk

as follows:

If πn−k(C) is a section or (πn−k(C))+xk is empty, then

C+
xk

= ∅.
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Otherwise, the face above C is the xk-direction is the semi-algebraic set

C+
xk

=
[
(πn−k(C))+xk × Rn−k

]
∩ C,

where (πn−k(C))+xk consists of the cells lying above πn−k(C) in the xk-direction; that

is, (πn−k(C))+xk = (πn−k(C))T . Mutatis mutandis, we define C−xk , the face below C

in the xk-direction.

Note that C±xk is, in general, not a cell but the union of cells.

Example 3.4.3 (Faces of 2-sphere). Let C be the open 3-ball in [3, Ex. 5.4] — this

example contains the standard c.a.d. of the 2-sphere. Then

C+
z = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z > 1}

C−z = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z < 1}

That is, both the top and bottom are the upper and lower half-spheres. The faces in the

y-direction, C+
y and C−y , are the half-circles {(x, y, 0) ∈ R3 | x2 + y2 = 1, y > 1} and

{(x, y, 0) ∈ R3 | x2 + y2 = 1, y < 1}, respectively. Lastly, C+
x and C−x are the points

(1, 0, 0) and (−1, 0, 0), respectively.

As mentioned above, this is different from the definition in [2]. We make the

convention that a section has empty top or bottom; we think of a section as the top

and bottom of a sector instead. We can recover the definition of CT and CB given in

[2, Def. 3.1].

Remark 3.4.4. In [2, Def. 3.1], the CT of a section is defined in the following way: let

C be a (i1, . . . , in−1, 0)-cell defined by a function g : D → Rn−k where k ∈ {0, . . . , n−1}
is the largest number such that ik = 1. The top of C, according to [2], is π−1(DT ) where

π : C → D is the projection mapping. This is equivalent to defining the top of a section

C to be C+
xk

where k ∈ {0, . . . , n− 1} is the largest k such that πn−k(C) is a sector and

C+
xk

is non-empty.

We can think of our CT and CB as the absolute top and bottom of a cell and the

definition given in [2] as the relative top and bottom.

Proposition 3.4.5. Let C be a c.a.d. cell of Rn. For all 1 ≤ k ≤ n, C±xk is connected.

Before we prove this result, we need a auxiliary lemma.

Lemma 3.4.6. Let P be a c.a.d. of Rn and C a cell in P. For all k ≤ n− 1,

π(C±xk) = (π(C))±xk
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Proof. From its definition,

C±xk =
[
(πn−k(C))±xk × Rn−k

]
∩ C ⊂ Rn;

applying π to it, we get

π(C±xk) =
[
(πn−k(C))±xk × Rn−k−1

]
∩ π(C) ⊂ Rn−1.

Applying the definition of faces along xk to the c.a.d. cell π(C) of Rn−1 we get

(π(C))±xk =
[
(πn−k−1(π(C)))±xk × Rn−k−1

]
∩ π(C) ⊂ Rn−1,

=
[
(πn−k(C))±xk × Rn−k−1

]
∩ π(C) ⊂ Rn−1,

as required.

Proof of Proposition 3.4.5. The result holds for n = 1. Suppose n > 1 and that C±xk is

not connected; that is, there exists closed X and Y , such that, C±xk = X tY . Consider

the open surjection

π : C±xk → (π(C))±xk .

By [22, Prop. 5.2], π−1(q) is connected, for all q ∈ (π(C))±xk . Consequently, X and Y

cannot intersect the same fibre. In particular, π(X) ∩ π(Y ) = ∅ and (π(C))±xk is not

connected. This contradicts the inductive assumption.

The faces of C partition ∂C.

Lemma 3.4.7 (Faces partition boundary of cell). Suppose that C is a c.a.d. cell of

Rn. Then

∂C = (∪nk=1C
+
xk

) ∪ (∪nk=1C
−
xk

)

is a partition of ∂C. Moreover, if C is closure finite, then, for all k ∈ {0, . . . , n}, C±xk
is the union of cells.

Proof. It is straightforward to see the equality between ∂C and (∪ni=1C
+
xi)∪ (∪ni=1C

−
xi);

consequently, we only need to show that these are disjoint.

Firstly, C+
xi ∩ C

−
xi = ∅ for all i. Let ♣ and ♠ ∈ {+,−}, and consider C♣xi and C♠xj

with i < j. Then

πn−i(C)♣xn−i

π−−→ · · · π−−→ πn−j(C).

Therefore C♣xi lies above πn−j(C) but C♠xj lies above πn−j(C)♠xn−j
.

Lastly, if C is closure finite, any cell D sub-adjacent to C is contained in ∂C. If

D ∩ C±xk , then it projects to (πn−k(C))±xk and thus, is contained in C±xk .
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An implication of Lemma 3.4.7 is that if D intersects C±xm , then we can give a lower

bound to the dimension of D.

The case of C±xn(= CT or CB) is discussed above. Suppose that C±xn−1
exists, then

π(C) is a (i0, . . . , in−2, 1)-cell and, in particular, π(C)±xn−1
is a (i0, . . . , in−2, 0)-cell.

The cylinder above π(C)±xn−1
will have cells of dimension dim(C) − 1 or dim(C) − 2.

Similarly, we give a proof of the general case.

Lemma 3.4.8. Let C be a (i1, . . . , in)-cell of a c.a.d. of Rn. For any cell D such that

D ∩ C±xk 6= ∅, we have the following lower bound for dimD:

n−k−1∑
j=1

ij ≤ dim(D).

Proof. If D intersects C±xk , then by cylindricity it must project to (πn−k(C))+xk . Thus,

the first n− k − 1 entries of the indices of C and D agree.

Corollary 3.4.9. Suppose P is a c.a.d. of Rn, C is a (i1, . . . , in)-cell of P, and D ∈ P
is a d-cell contained in boundary of C. Then, D is not contained in any C±k such that∑k

j=1 ij > dim(D)

By Lemma 3.4.8, the combinatorial structure of a cylindrical algebraic decomposi-

tion yields a lower bound for the dimension of cells which are contained in C±xk . If we

try to compute an upper bound for the cells in C±xk , the combinatorial structure yields

an upper bound no better than an upper bound coming from simple considerations in

semi-algebraic topology; that is, the dimension of cells in C±xk is less than or equal to

dimC − 1.

We instead need to consider how the closures of C±xk interact with each other.

Remark 3.4.10. If C is a n-cell of a c.a.d. of Rn and CT ∩ CB ∩ C±xn−1
6= ∅, then

dimC±xn−1
= n− 2.

While we might be able to understand how this affects the dimension of C±xk in low-

dimensional Rn, it is unclear how to proceed in the cases where n > 3. See Chapter 7.

3.5 Closure finite c.a.d.

We have seen in Corollary 2.2.18 that any well-bordered cell decomposition is closure

finite; moreover, we have seen that any cell decomposition of R2 is well-bordered if and

only if it is closure finite. We show that, with the added structure of a cylindrical alge-

braic decomposition, we can prove the equivalence of these two properties in dimension

3.
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Proposition 3.5.1. Any closure finite c.a.d. of R3 is well-bordered.

Proof. The cases of 0- and 1-cells are trivial.

For any 2-dimensional cell C, we have to show that if D is a 0-cell in the boundary

of C, there exists a 1-cell E ⊂ ∂C, such that D ⊂ E.

Suppose that C is a (0, 1, 1)-cell. By Lemma 3.4.8, D ⊂ C±y . As D is a section,

then either there exists a 1-cell E above or below D such that D ⊂ E, or E ⊂ CT . If

C is a (1, 0, 1)-cell, then we can proceed similarly, with the adjustment that D ⊂ C±x .

Suppose that C is a (1, 1, 0)-cell. Away from any bad cells, by Corollary 3.2.8, π

is a homeomorphism. Consequently, suppose that {p} is bad cell in the boundary of

π(C). Now, by [22, Prop. 5.2], π−1(p) is a closed segment; thus, any cell in this closed

segment is either a 1-cell or in the closure of a 1-cell.

Lastly, we consider 3-dimensional cells C ⊂ R3. Suppose that D is a cell contained

in ∂C. If D is a 2-cell, there is nothing to prove. Moreover, if D is a section, then

either there exists a sector above or below D, or D ⊂ CT . This leaves us with the

case where D is a 1-dimensional sector not contained in the closure of CT or CB. By

Lemma 3.4.8, D ⊂ C±x .

Suppose that there does not exists a 2-dimensional E ⊂ ∂C in C±x such that D ⊂ E.

Then there does not exists a 1-dimensional cell E′ in (π(C)±x such that π(D) ⊂ E′.

Thus, π(D) ⊂ (π(C))T , and in particular, there exists some 2-cell in C±y that contains

D in its closure.

This completes the proof.

If we try to extend this proof to R4, and subsequently to Rn, we run into difficulties.

Suppose that C is a (1, 1, 1, 0)-cell of a c.a.d. of R4 and C a single 0-dimensional bad

cell D. We cannot use the argument above to show that a 1-cell E above D is contained

in the closure of a 3-cell.

In any case, it seems from the structure on the boundary of a c.a.d. C cell – the

faces C along the axis directions – that well-bordered is equivalent to closure finite in

this setting. This is discussed in Chapter 7; more specifically, in Conjecture 7.2.1.
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CHAPTER 4

REGULARITY VIA STRONG CYLINDRICAL ALGEBRAIC

DECOMPOSITION

Recall Definition 3.1.12: a strong c.a.d. of Rn is a cylindrical algebraic decomposition

that is locally boundary connected and well-bordered.

In Section 3.2, we showed that if P is a F -invariant strong c.a.d. of Rn adapted

to closed and bounded S and (P, F ) does not have any bad cells, then P is a regular

cell complex of S. Lazard conjectured in [22] that we can drop the “no bad cells”

requirement and still have regularity.

Conjecture 4.0.1. Let P be a strong c.a.d. of Rn adapted to a closed and bounded

semi-algebraic set S. Then, P is a regular cell complex of S.

The main aim of this thesis is to prove Conjecture 4.0.1.

As our cell decomposition may have bad cells, we need to show regularity by means

other than standard projection mappings. In Chapter 5, using theory which arises from

the study of manifolds with boundary, we give a proof for the case where dimS = 2;

Moreover, we show that if we strengthen the assumption, we can give a proof of the

case where n = 3. Furthermore, we discuss why the choice of assumptions by Lazard

in [22] might not be sufficient for regularity in higher dimensions.

In Chapter 7, we discuss how we might be able to use blow-ups and semi-algebraic

partitions of unity to give a proof of Conjecture 4.0.1.

4.1 Sector bounded by regular cells

Suppose that C is a sector of c.a.d. of Rn. If the functions that define CT and CB are

well-behaved, it is a well-known result that C is a regular cell.
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Lemma 4.1.1 (c.f. [31, Lem. 5]). Let C be a sector above D and suppose that CT and

CB are the graph of the semi-algebraic functions fT , fB : D → R, respectively. If we

extend fT and fB continuously to D, then C is a regular cell.

In particular, we use lemma in Theorem 3.2.4 to show a F -invariant c.a.d. P with

no bad cells is a regular cell complex by extending all the functions defining the sections

of P.

Let E be a sector bounded below and above by regular cell. Suppose further that

E lies above a regular cell D. We want to show that E is regular. In [31, Lem. 5],

we assume that the functions gT : D → R and gB : D → R that define CT and CB,

respectively, are well-defined continuous functions in D. Consequently, we prove that

E is a regular cell. If we look at the case of a F -invariant strong c.a.d. P of Rn, gT

and gB are only well-defined on D when P has no bad cells. As our ultimate aim is to

prove Conjecture 4.0.1, it would be desirable to show that E is a regular cell regardless

of the bad cells. We conjecture – Conjecture 7.2.2 – that this the case.

4.2 Homotopy of non-bounded S via c.a.d.s

In the statement of Conjecture 4.0.1, we required that the semi-algebraic set S is closed

and bounded. We might ask whether we can compute the homology of unbounded a

semi-algebraic sets S via strong cylindrical algebraic decompositions of Rn.

Proposition 4.2.1 ([6, Cor. 9.3.7]). If S ⊂ Rn is semi-algebraic, then, there exists an

r > 0, such that S ∩B(0, r) is a semi-algebraic deformation retract of S.

In particular, if S is a locally closed subset of Rn, we can use Conjecture 4.0.1 to

compute the homology of S.

According to [6, Rem. 9.3.8], [10] shows that every semi-algebraic set S ⊂ Rn

contains a closed and bounded subset K which is a semi-algebraic deformation retract

of S.

Remark 4.2.2. When computing cylindrical algebraic decompositions, we can replace

the hypercube [−r, r]n by B(0, r).
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CHAPTER 5

REGULARITY OF STRONG C.A.D.S OF RN VIA

MANIFOLDS

As mentioned in Chapter 4, we study Conjecture 4.0.1 with the use of manifold theory.

Suppose we have a compact semi-algebraic set S, a strong c.a.d. P of Rn adapted to

S, and let C ⊂ S be a cell of P; we want to show that the cell C is regular.

If we have a regular d-cell C — that is, there exists a homeomorphism between

(C,C)→ (B
d
, Bd) — we can endow C with a manifold with boundary structure, where

we view the boundary of the cells as the boundary of the manifold. Consequently, a

necessary condition for C to be regular is that we can view C as a manifold with

boundary. We make the proviso that whenever we discuss a cell with the structure of

a manifold with boundary, the boundary of the manifold is the boundary of the cell.

This gives us the following heuristic to prove Conjecture 4.0.1: try to find what

conditions, together with the manifold with boundary structure, are sufficient for C to

be regular.

We need to determine when C is homeomorphic, as a manifold with boundary, to

B
d
. As the closure of a regular cells can be viewed as a compact, contractible manifold

with boundary, we can ask whether the converse is true. Following [32, p. 388f], we need

to determine when a compact, contractible manifold with boundary X homeomorphic

to B
d
?

Before we proceed, we introduce some auxiliary terminology.

Definition 5.0.1 (Homology and Homotopy sphere). Let X be a closed d-manifold.

We say that X is a homology d-sphere if X has the same homology groups as Sd.

Moreover, we say that X is a homotopy d-sphere if X has the same homotopy type

as Sd.
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Remark 5.0.2. From Definition 5.0.1, it is clear that any homotopy sphere is a ho-

mology sphere. By Hurewicz’s and Whitehead’s Theorem — [40, Thm. 7.1,IV] and

Theorem B.3.2, respectively — any simply-connected homology sphere is a homotopy

sphere.

Given a compact contractible manifold with boundary X, it is well known that we

can compute the homology of ∂X.

Lemma 5.0.3. Let X be a d-dimensional compact, contractible manifold with bound-

ary. The boundary of X is a homology (d− 1)-sphere.

Proof. Consider the relative homology group Hi(X, ∂X). An application of the Snake

Lemma is the following long exact sequence:

· · · → Hi(∂X)→ Hi(X)→ Hi(X, ∂X)→ Hi−1(∂X)→ · · ·

By the Lefschetz-Poincaré duality, Hk(X, ∂X) ∼= Hd−k(X). In particular

Hi+1(X, ∂X) Hi(∂X) Hi(X) Hi(X, ∂X)

Hn−i−1(X) Hi(∂X) Hi(X) Hn−i(X)

As X is contractible,

Hi(X) ∼= H i(X) ∼=

Z if i = 0,

0 otherwise.

Applying this to the long exact sequence above yields the desired result:

Hi(∂X) ∼=

Z if i = 0, n;

0 otherwise.

Consequently, this reduces to answering the following question: when is a homology

(d− 1)-sphere homeomorphic to §d−1

In general, a homology sphere is not a sphere. The Poincaré sphere – see [29] –

is an example of a homology 3-sphere that is not simply-connected, and in particu-

lar, not homeomorphic to §3. If we can show that our ∂X is simply-connected, then

∂X is a homotopy (d − 1)-sphere and, by the Generalised Poincaré Conjecture, it is

homeomorphic to the (d− 1)-sphere.
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We have the following breakdown depending on the dimension.

If d ≤ 2, then ∂X is a homology (d − 1)-sphere for a for d = 0, 1. In this case,

we can use the low-dimension classification of closed manifolds to conclude that ∂X is

homeomorphic to §d−1

If d = 3, then an equivalent statement – see [19, Conj. 3.5’]— of the Poincaré

Conjecture asserts that X is homeomorphic to the 3-disk. The Poincaré Conjecture

was proved by Perelman; see [28].

If d ≥ 4, by Remark 5.0.2 and the Generalised Poincaré Conjecture, a compact,

contractible manifold with boundary X is homeomorphic to the d-disk if and only if

∂X is simply-connected.

Suppose that d ≤ 3 and S is a compact d-dimensional semi-algebraic set of Rn, and

that P is a strong c.a.d. of Rn adapted to S. To show that P is a regular cell complex of

S, it therefore suffices to show that every cell C ⊂ S is a compact, contractible manifold

with boundary. In particular, this gives us a proof of Conjecture 4.0.1 for n = 3. For

the case where d ≥ 4, we need to show additionally that ∂C is simply-connected.

Consequently, the aim of this chapter is to show that if C is a bounded d-cell of a

strong c.a.d. of Rn, then:

i. If d ≤ 3: C is a compact, contractible manifold with boundary.

ii. If d ≥ 4: C is a compact, contractible manifold with boundary with simply-

connected boundary.

5.1 Homotopy type of C

The first step in proving regularity is to compute the homotopy type of the closure of

a c.a.d. cell C. More specifically, show that C is contractible.

By [22, Prop. 5.2], if C is a c.a.d. cell of P — where π(C) = D and Pn−1 is a strong

c.a.d. — then the fibres of the standard projection mapping π : C → D are contractible.

We exploit this fact to show that C and D have the same homotopy type.

Theorem 5.1.1 (Closure of c.a.d. cell is contractible). Suppose that C ⊂ Rn is a

bounded c.a.d. cell of P and the induced c.a.d. P ′ of Rn−1 is strong. Then C is con-

tractible.

Proof. We show that C and D have the same homotopy type and then, by induction

on n, C is contractible.

Note that C and D are bounded. Consequently, C and D are compact and thus, by

[6, Thm. 9.4.1], C and D admit a CW-complex structure. By Whitehead’s theorem,

Theorem B.3.2, it suffices to show that C and D are weakly homotopic equivalent.

48



If n = 1, the result is true. Suppose that n > 1.

To show the existence of a weak homotopy between C and D, we invoke Smale’s

theorem(Theorem B.3.3). We just need to verify that the map π : C → D satisfies all

the assumptions required by Smale’s theorem.

The spaces C and D are connected as they are the closure of connected spaces.

Moreover, as they are also Hausdorff compact metric spaces, they are locally compact

and separable. The set C is locally contractible, by Corollary A.4.6, as semi-algebraic

sets are locally contractible. As π is a continuous map between a compact space and a

Hausdorff space; thus, π is closed and proper. Moreover, continuity together with fact

that π is proper implies that π(C) = π(C) = D; thus π is surjective.

By [22, Prop. 5.2], the fibres of π are closed segments and thus contractible. More-

over, invoking Corollary A.4.6 again, the fibres are locally contractible.

Finally, by Smale’s theorem, π induces a weak homotopy equivalence between C

and D. This completes the proof.

Note that we do not need the c.a.d. P to be strong. In particular, we allow cells C

that are not locally boundary connected. We need the requirement that the induced

c.a.d. in Rn−1 is strong as we invoke [22, Prop. 5.2]. We conjecture Theorem 5.1.1 is

true without this assumption.

See Chapter 7 for a conjecture on the homotopy type of ∂C.

5.2 C is a manifold with boundary

Recall the definition of a manifold with boundary.

Definition 5.2.1 (c.f. [18, p. 252f]). We say that M is a n-dimensional manifold

with boundary if, for each x ∈ M , there exists a neighbourhood V of x such that

either:

i. V is homeomorphic to Rn, or

ii. V is homeomorphic to a open neighbourhood in Hn = {(x1, . . . , xn) ∈ Rn | xn ≥
0}.

The boundary of M , denoted ∂M , is the set of points of M with no neighbourhood

homeomorphic to Rn. In particular, any chart maps a boundary point p ∈ ∂M to

(x1, . . . , xn−1, 0) ∈ Hn.

Tautologically, any d-cell is a d-manifold. Consequently, to show the closure of a

cell is a manifold with boundary, we only need to worry about the neighbourhoods of

the boundary points.
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In general, a c.a.d. cell does not admit a manifold with boundary structure.

Example 5.2.2 (c.a.d. cell that cannot be a manifold with boundary). Recall Exam-

ple 3.2.1. Let C be the non-l.b.c. 2-cell and p ∈ ∂C be a point over the bad cell (0, 0);

that is, {p}∪C is not simply-connected. There does not exist a homeomorphism between

a neighbourhood of p and Hn that sends boundary to boundary.

The l.b.c. condition is a necessary condition for the closure of any cell to be realised

as a manifold with boundary. If C is a manifold with boundary and p ∈ ∂C, then, for

sufficiently small ε > 0, B(p, ε) ∩ C is connected.

For (low-dimensional) c.a.d. cells, the l.b.c. condition is sufficient to show that C is

a manifold with boundary.

Lemma 5.2.3. If C is a locally boundary connected 0- or 1-cell of Rn, then C is a

manifold with boundary.

This is immediate from the definition of manifold with boundary.

Using a more involved argument, we can show that, under certain conditions, 2-cells

are manifolds with boundary.

Definition 5.2.4 (Homology Manifold – [27, Def. 1.2]). We say a locally compact space

X is a homology n-manifold if, for all x ∈ X, its local homology groups satisfy:

Hi(X,X \ {p}) =

Z if i = n,

0 otherwise.

We think of a homology manifold as a space whose local homology structure is

similar to that of a topological manifold. In fact, every manifold is a homology man-

ifold. The term generalised n-manifold is also used to refer to homology n-manifolds.

Homology manifolds are not, in general, topological manifolds. In low dimension, they

coincide.

Lemma 5.2.5 (c.f. [41, p. 287ff]). Suppose that X is a homology n-manifold. If n ≤ 2,

then X is a topological manifold.

In addition, homology manifold satisfy a property not shared with topological man-

ifolds.

Lemma 5.2.6 ([35]). Suppose X and Y are topological spaces. If X×Y is a topological

manifold, then X and Y are homology manifolds.
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Before we proceed, we comment on the local behaviour of semi-algebraic cells.

Remark 5.2.7. Let p ∈ ∂C for a d-cell C. For any ε > 0, we denote by Xp,ε the set

p ∗ (S(p, ε) ∩C) \ ({p} ∪ S(p, ε)). From the local conic structure of semi-algebraic sets,

we know that for sufficiently small ε > 0, there exists a homeomorphism

B(p, ε) ∩ C → Xp,ε.

From its definition, Xp,ε = {pλ + (1 − λ)b | b ∈ S(p, ε) ∩ C, λ ∈ (0, 1)}. Consequently,

there exists a homeomorphism

Xp,ε −→ (S(p, ε) ∩ C)× (0, 1),

pλ+ (1− λ)b 7−→ (b, λ).

Note that B(p, ε)∩C is a open subset of a manifold and thus a manifold. Consider

the homeomorphism

B(p, ε) ∩ C → (S(p, ε) ∩ C)× (0, 1).

Now, by Lemma 5.2.6, S(p, ε) ∩ C is a homology manifold. In particular, if d ≤ 3,

then – by Lemma 5.2.5 – S(p, ε) ∩ C is a manifold. This will be instrumental when

proving the regularity of low dimensional cells.

We can determine when locally boundary connected 2-cells of a cell decomposition

are manifolds with boundary.

Lemma 5.2.8. Let C be a l.b.c. 2-cell of Rn. If, for all p ∈ ∂C, the set S(p, ε) ∩ C
is homeomorphic to (0, 1) — where ε > 0 arises from the local conic structure of semi-

algebraic sets — then C is a manifold with boundary.

The requirement that S(p, ε) ∩ C is homeomorphic to (0, 1) is necessary – see Ex-

ample 2.2.14.

Proof. Let γ denote the homeomorphism between (0, 1) and S(p, ε) ∩ C.

By [6, Prop. 2.5.3], γ extends continuously to a map γ on [0, 1]. Moreover, the

l.b.c. condition implies that γ(0) 6= γ(1). In particular, we have a homeomorphism

γ : [0, 1]→ S(p, ε) ∩ C.

Now, by the local conic structure of semi-algebraic sets, B(p, ε)∩C is homeomorphic

to a cone whose base is homeomorphic to [0, 1]; thus, B(p, ε) ∩ C is homeomorphic to

[0, 1]2.

Lastly, we can send [0, 1]2 to H2 and thus show that C is a manifold with boundary.
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The key point is that 2-cells of a strong cylindrical algebraic decompositions of Rn

satisfies all the condition of the lemma above.

Lemma 5.2.9. Let C be a 2-cell of a strong c.a.d. of Rn. Then C is a manifold with

boundary.

Proof. By Remark 5.2.7 and Lemma 5.2.5, S(p, ε) ∩ C is a connected 1-manifold, and

thus, homeomorphic to either S1 or (0, 1); it suffices to show that S(p, ε) ∩ C is not

homemorphic to §1.
As a strong c.a.d. is well-bordered, there exists a 1-cell Ci ⊂ ∂C, such that p ∈ C.

If S(p, ε) ∩ C were homeomorphic to §1, then this would imply that p is an isolated

point in the boundary.

We have proved the following result.

Corollary 5.2.10. Let S ⊂ Rn be a 2-dimensional compact semi-algebraic set. If P is

a strong c.a.d. adapted to S, then P yields a regular cell complex of S.

In view of Lemma 5.2.3 and Lemma 5.2.9, if we can show that 3-cells of a strong

c.a.d. of R3, we can give a proof of Conjecture 4.0.1 for the case n = 3. We give a proof

with a slightly stronger assumption.

Definition 5.2.11. We say that a cell C ⊂ Rn is locally boundary k-connected

if, there exists a δ > 0, such that, for all 0 < ε < δ and for all p ∈ ∂C, B(p, ε) ∩ C is

k-connected.

Recall that X is a k-connected space if it is non-empty, path connected, such that

πi(X) = 0 for 0 ≤ i ≤ k,

where πi(X) denotes the i-th homotopy group.

For future use we make the following additional definition.

Definition 5.2.12. We say that a cell C ⊂ Rn is locally boundary contractible

if, there exists a δ > 0, such that, for all 0 < ε < δ and for all p ∈ ∂C, B(p, ε) ∩ C is

contractible.

In particular, a locally boundary contractible cell is locally boundary k-connected,

for all k.

Theorem 5.2.13. Let P be a strong c.a.d. of R3. If C is a locally boundary 1-connected

3-cell of P, then C is a manifold with boundary.
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Proof. We will use a similar argument to Lemma 5.2.9.

By Remark 5.2.7 and Lemma 5.2.5, for all p ∈ ∂C and sufficiently small ε > 0,

S(p, ε) ∩ C is a 2-manifold. We claim that S(p, ε) ∩ C is a 2-cell that satisfies the

conditions of Lemma 5.2.8. Thus, S(p, ε) ∩ C is a regular cell and, in particular, the

cone with base homeomorphic to [0, 1]2 is homeomorphic to [0, 1]3.

If S(p, ε) ∩ C is a 2-cell, then it must satisfy the l.b.c. condition; otherwise, this

contradicts the fact that C is locally boundary connected. If q ∈ ∂(S(p, ε) ∩ C), then

by invoking the local conic structure of semi-algebraic sets and the homology manifold

reasoning, (S(p, ε) ∩ C) ∩ S(q, ε′) is a manifold; moreover, this manifold cannot be

homeomorphic to §1 otherwise we have a contradiction with the fact that S(p, ε) ∩ C
is a cell.

Lastly, we prove that S(p, ε) ∩ C is a 2-cell.

As S(p, ε) ∩ C is a 2-manifold, it suffices to show that S(p, ε) ∩ C is contractible.

By [25, Cor. 1], it has CW-type. Thus, by Theorem B.3.2, it suffices to show that

S(p, ε)∩C has trivial homotopy groups. Moreover, Hurewicz’s theorem states that the

first non-vanishing homology group is isomorphic to the first non-vanishing homotopy

group.

We have a homeomorphism between B(p, ε)∩C and (S(p, ε)∩C)× (0, 1), and thus,

by assumption, S(p, ε) ∩ C is 1-connected. As S(p, ε) ∩ C is a non-compact connected

2-manifold, by [13, Cor. VIII.3.4], H2(S(p, ε) ∩ C) = 0. Moreover, Hi(S(p, ε) ∩ C) = 0

for all i ≥ 3. Thus, the space S(p, ε) ∩ C is contractible.

This concludes the proof.

Corollary 5.2.14. Suppose that S ⊂ R3 is semi-algebraic and P is a strong c.a.d.

adapted to S such that every 3-cell of P is locally boundary 1-connected. Then, P
yields a regular cell complex of S.

The author of this thesis is working on proving Corollary 5.2.14 under Lazard’s

original assumption. See Chapter 7 for a discussion on this assumption and possible

changes for the n-dimensional case.
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CHAPTER 6

COMBINATORIAL TOPOLOGY CONNECTION

Suppose that S ⊂ Rn is a compact semi-algebraic set, then by Conjecture 4.0.1, we can

compute a regular cell complex of S via cylindrical algebraic decompositions.

The advantage of a regular cell complex of S over a CW-complex is that the addi-

tional combinatorial structure. We give an affirmative answer to a question posed by

Lazard in [22] which states that a poset, defined later in the chapter, built using the

sub-adjacency relation between cells captures homological information.

We start by defining this dictionary between combinatorics and topology.

6.1 Posets and Topology

The material in this section follows [5, Sec. 9]. For a more detailed treatment of the

relation between partially ordered sets and topology see [5, Sec. 9] or [39].

Definition 6.1.1 (Partial order). A partial order is a reflexive, antisymmetric, and

transitive binary relation ≤ on a set. A partially ordered set is a pair (P,≤), where

P is a set and ≤ a partial order on P .

A totally ordered subset {x0, . . . , xk} such that x0 < · · · < xk is said to be a chain

of length k. We say that supremum of lengths of all chains is called the rank or

length of P . We say that a poset is pure if all maximal chains have the same length.

A poset P is a lattice if every pair of elements x, y ∈ P has a least upper bound,

denoted x ∨ y, and a greatest lower bound, denoted x ∧ y.

Example 6.1.2 (Poset). The following Hasse diagram of the 3 point set {x, y, z} rep-

resents a partially ordered set.
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{x, y, z}

{y, z} {x, z} {x, y}

{z} {y} {x}

We define structure preserving functions between these objects.

Definition 6.1.3 (Arrows in the category of posets). Let P and Q be posets and

f : P → Q be a function. We say that f is isotone if, for all x,y ∈ P , x ≤ y implies

that f(x) ≤ f(y). In other words, f is order preserving. Moreover, a isomorphism

between posets is an isotone map which has a two-sided isotone inverse.

Posets arise naturally in different areas of mathematics. We focus in a specific poset

that arises from topology.

Definition 6.1.4 (Face poset). Let ∆ be a simplicial complex. We define the face

poset of ∆, denoted P(∆), to be the set of faces of ∆ ordered by inclusion.

We can view a poset as a topological space via the order complex.

Definition 6.1.5 (Order complex of a poset). Let P be a poset. The order complex

of a poset P , denoted ∆(P ), is the simplicial complex whose vertex set is P and k-faces

are the k-chains x0 < x1 < · · · < xk in P .

We now associate a topological space to a poset by using the geometric realisation

of an order complex ‖P‖ = ‖∆(P )‖.

Example 6.1.6 (Order-complex). Suppose that we have the following poset:

x1

x2 x3

x4 x5
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The vertex set of our order complex is {x1, x2, x3, x4, x5}. We have five 1-faces and

four 2-faces.

Definition 6.1.7 (First barycentric subdivision). The first barycentric subdivision

of ∆ is the simplicial complex sd(∆) = ∆(P(∆)).

The geometric realisation of ∆ and sd(∆) are homeomorphic. In particular, to

study the topology of some simplicial complex we can study the poset associated to

it, and vice versa. The face poset and the order complex behave functorially; that

is, if two posets are isomorphic, the geometric realisation of their order complex is

homeomorphic.

6.2 Posets, Regularity, and CADs

In [22], Lazard poses the following question.

“Let us consider a compact semi-algebraic set which is the union of a subset E of the

cells of a strong c.a.d. and the corresponding set of sample points. Consider a subset

Ek of k elements of E whose dimensions are all different and such that, for any pair of

element of Ek, one is adjacent to the other (i.e. contained in its closure). Let Sk be

the (k − 1)-simplex whose vertexes are the sample points of the cells in Ek. Is the set

of all these simplexes Sk a triangulation (a simplicial complex)? Is the union of these

simplexes homeomorphic to the given semi-algebraic set? . . . ”

We rephrase Lazard’s question as a proposition.

Proposition 6.2.1. Let S be a compact semi-algebraic set of Rn and P a strong c.a.d.

adapted to S. Then, the order complex of the partially ordered set of cells – whose union

is S – ordered by sub-adjacency is a triangulation of S. In particular, the geometric

realisation of this order complex is homeomorphic to S.

Firstly, we need to show that the sub-adjacency relation together with a set of cells

of a strong c.a.d. yields a partial order set.
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Note that, if C and D are cells of a closure finite cell decomposition, then, by

Lemma 2.2.12, C is sub-adjacent to D if and only if C ⊂ D. Moreover, if C 6= D, then

C ⊂ ∂D and dimC < dimD. Consequently, the relation defined by sub-adjacency is a

partial order on the set of cells of a closure finite cell decomposition.

Lemma 6.2.2. Let P be a set containing cells of some closure finite cell decomposition

P of Rn. If ≤ denotes the sub-adjacency between cells, then (P,≤) is a poset.

Proof. From its definition, this relation is reflexive. To see its transitive note the

following. If C ⊂ D and D ⊂ E, then we can apply the closure operator to show that

C ⊂ D ⊂ E.

Lastly, we need to show this relation is anti-symmetric. Suppose that C ⊂ D and

D ⊂ C but C 6= D. Then C ⊂ ∂D, which implies that dimC < dimD. However, as

D ⊂ C, dimC < dimD ≤ dimC, which is a contradiction.

Hence, sub-adjacency is partial order on the set of cell of P.

Recall that we can think of a regular cell complexes as a CW-complex that is one

barycentric subdivision from being a triangulation.

Lemma 6.2.3 ([5, 12.4 (ii)]). Let Σ be a regular cell complex and P(Σ) be the partially

ordered set of all closed cells ordered by inclusion. Then ‖Σ‖ ∼= ‖∆(P(Σ))‖.

Example 6.2.4 (Regular cell complex is not a triangulation). The poset in Exam-

ple 6.1.6 is the poset associated to the regular cell complex in Example 3.1.2 of the

2-disk. The order complex gives us a triangulation of the 2-disk.

In particular, a order complex of a poset of closed cells ordered by inclusion asso-

ciated to a regular cell complex of S is a triangulation of S.

If we can prove that the partially ordered set of cell with respect to sub-adjacency is

isomorphic to the partially ordered set of closed cells with respect to inclusion, we can

use Conjecture 4.0.1 and Lemma 6.2.3 to give an affirmative answer to Proposition 6.2.1.

Lemma 6.2.5. Let P be a strong c.a.d. of Rn. The partially ordered set of cell with

respect to sub-adjacency is isomorphic to the partially ordered set of closed cells with

respect to inclusion.

Proof. There is a natural bijection between the two as sets; that is, Ci 7→ Ci. Let ≤s
denoted the sub-adjacency relation and let ⊂ be the inclusion relation on closed cells.

We need to show that C ≤s D if and only if C ⊂ D. This is a corollary of

Lemma 2.2.12.

We now have all the ingredients necessary to answer the question posed by Lazard.
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Proof of Proposition 6.2.1. The poset of cells ordered by sub-adjacency is isomorphic

to the poset of closed cells ordered by inclusion. The order complex of the latter yields

a triangulation of S.
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CHAPTER 7

OPEN QUESTIONS

In this chapter we discuss possible ways the work of this thesis can be extended.

7.1 Faces of c.a.d. cells

In Chapter 3, the notion of faces along an axis direction was defined. We proved that,

if we have a closure finite c.a.d. P and a cell C ∈ P, we can give a lower bound for the

dimension of the cells contained in C±xi . We observed in Remark 3.4.10, for r > s, the

behaviour of C±xr affects the dimension of C±xs .

Question 7.1.1. Let P be a c.a.d. of Rn and C a cell in P. For r > s, what is the

precise relation between C±xr and the dimension of C±xs?

We have proved in Proposition 3.4.5 that the C±xi are connected.

Conjecture 7.1.2. Let C be a c.a.d. cell of Rn. For all 1 ≤ k ≤ n, C±xk and C±xk are

contractible.

Another possible application of information about C±xi is to adjacency between

cells and constructing minimal cylindrical algebraic decompositions. We discussed in

Section 3.3 how we can obtain adjacency information from the index of a c.a.d. cell.

Question 7.1.3. If the C±xi give lower, and possible upper, bound for cells sitting along

the axis directions, does this help us test for the adjacency of cells?

We say P is the minimal c.a.d. adapted to S if, for all cylindrical algebraic

decompositions Q adapted to S, then Q is a refinement of P.

Question 7.1.4. Does minimal cylindrical algebraic decompositions always exists? if

so, can we construct it effectively?
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7.2 Topology of a c.a.d. via manifolds

We proved in Lemma 2.2.19 that for n ≤ 2, any cell decomposition is well-bordered if

and only if it is closure finite. Moreover, in Proposition 3.5.1 that for 3-dimensional

cylindrical algebraic decompositions, closure finite is equivalent to well-bordered. We

conjecture that this is the case in all dimensions.

Conjecture 7.2.1. A c.a.d. P of Rn is closure finite if and only if it is well-bordered.

In Chapter 4, we discussed the question of regular sectors. We conjecture that if a

sector C has regular top and bottom, then C is a regular cell.

Conjecture 7.2.2. Let C be a sector of a c.a.d. P of Rn such that C is bounded above

and below by regular sections CT and CB respectively. Then C is a regular cell.

In Theorem 5.1.1, we proved that if P ⊂ Rn is a c.a.d. whose induced c.a.d. P ′

of Rn−1 is strong, then the closure of any cell C of P is contractible. We require

the condition that the induced c.a.d. is strong as we use [22, Prop. 5.2]. This result

states that the fibre of the projection map is a closed segment. We conjecture that

Lazard’s result can be extended so that it still holds without the requirement that P ′

is strong. In particular, contractibility of the fibres is intrinsic to cylindrical algebraic

decompositions.

Conjecture 7.2.3. Suppose that P is a c.a.d. of Rn, C is a cell of P, and let π : C → D

denote the standard projection mapping. Then, for all p ∈ D, the fibre π−1(p) is a closed

segment. In particular, the fibre is always contractible.

Consequently, we can extend Theorem 5.1.1.

Conjecture 7.2.4. Suppose that P is a c.a.d. of Rn. If C is a cell of P, then C is

contractible.

Conjecture 4.0.1 states that a strong c.a.d. adapted to a closed and bounded semi-

algebraic set S is a regular cell complex of S. Conjecture 7.2.5 below is a weaker version

of this result.

Conjecture 7.2.5. Suppose that S ⊂ Rn is a closed and bounded semi-algebraic set

and P a closure finite c.a.d. adapted to S. The c.a.d. P is a CW-complex of S.

We proved Conjecture 4.0.1 in the case of n = 3 under a stronger condition —

we assumed that all 3-cells were locally boundary 1-connected. The question remains

whether Conjecture 4.0.1 can be proved under Lazard’s original assumptions.
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If we are dealing with general cells, locally boundary connected and locally boundary

1-connected are not equivalent. Let p = (0, 0, 1) in the boundary of the 2-sphere

minus the north pole — which we denote by C here — in Example 2.2.14. Then, for

sufficiently small ε > 0, B(p, ε)∩C is connected but not 1-connected. In fact, if we have

a regular cell, then for sufficiently small ε > 0, and any p ∈ ∂C, the set B(p, ε) ∩ C is

contractible. Thus, locally boundary 1-connected is a necessary condition for a general

cell to be regular. We conjecture that this is not needed for c.a.d. cells.

Conjecture 7.2.6. A c.a.d. cell C is locally boundary connected if and only if it is

locally boundary contractible.

If Conjecture 7.2.6 is false, the assumptions in Conjecture 4.0.1 will need to be

revised.

We used the Poincaré Conjecture to give a proof of a weakened Conjecture 4.0.1. To

extend this method to arbitrary dimensions, we need to understand the fundamental

group of the boundary of c.a.d. cells.

Conjecture 7.2.7. Let P be a locally boundary connected c.a.d. of Rn and C a cell of

P. If dimC ≥ 3, then ∂C is simply connected.

For dimC < 3, the boundary of C is not simply-connected. Thus, we need to our

base case to be dimC = 3.

Question 7.2.8. Can the results of manifold theory used in Chapter 5 be extended —

possibly using the theory of semi-algebraic spaces; see [12] — to work over any real

closed field R?

7.3 Regularity via Blow-ups

The approach described in this section is a result of private conversation between the

author and Gregory Sankaran.

Let C be a semi-algebraic d-cell whose closure is containes in a bounded open

set U ⊂ Rn (or Rn): we shall probably need to assume that C is locally boundary

contractible (which should make sense over R also).

Here is a possible approach to proving that C is actually regular. There are several

places where the argument is lacking in detail. This is a sketch of an idea only.

Denote the cube (0, 1)d by ∆ and [0, 1]d by ∆̄. We say that two semialgebraic sets

X ⊂ Rn and Y ⊂ Rn are equiregular if there is a homeomorphism (not necessarily

semi-algebraic) X̄ → Ȳ that restricts to a homeomorphism X → Y where X̄ and Ȳ

denote the topological closure. X is said to be regular if X and ∆ are equiregular.
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By definition, there is a semi-algebraic homeomorphism f : C → ∆. In general this

does not extend even as a continuous map to C̄. However, since f is semialgebraic we

may use Hironaka’s resolution of singularities theorem to resolve the singularities of

f . More precisely, we can give an algebraic morphism π : U ′ → U such that π is an

isomorphism above C and such that f lifts to a continuous, in fact semi-algebraic, map

f ′ : C̄ ′ → ∆̄, where C ′ = π−1(C) ⊂ U ′.
In general f ′ will not be a homeomorphism but will contract some part of the bound-

ary of C̄ ′. However, under the assumption that C is locally boundary contractible, we

expect that f ′ should have connected fibres and in fact should be a composite of blow-

ups at boundary points of ∆. We expect that this is enough to ensure that C ′ is

regular.

If so, it would be sufficient to prove that C ′ and C are equiregular. The map π will

not do: it is far from injective at the boundary. It is, however, a composition of blow-

ups: therefore, locally one the base U , it is a projection map. Locally on the fibres,

we may replace π with a nearby generic projection, which will be a local isomorphism

onto its image in U . Patching these maps together by using (semi-algebraic) partitions

of unity, and the compactness of C̄, we obtain a map ρ : U ′ → U (shrinking both U ′

and U if necessary, which is locally injective on the whole of U ′, i.e. near any point of

C ′.

We claim that it should be possible to choose ρ to be globally injective, again

because of C being locally boundary contractible. The map ρ will be determined by

finitely many points in some Grassmannian (parametrising the projection directions)

and the condition that ρ is injective should be given by some non-empty open conditions

associated with each choice.

Now ρ(C ′) is equiregular with C ′ and close to C. By using the local conic structure

of the semialgebraic sets ρ(C) and C we may contract or expand ρ(C ′) along the rays

near each boundary point until we reach the boundary of C. Doing this locally near

to enough points of ∂ρ(C ′), and gluing with partitions of unity again, we would obtain

a map ρ(C ′)→ C ′ that extends to a homeomorphism ¯ρ(C)→ C̄.

If all these steps can be carried out successfully, we have then proved that C is

regular.

7.4 Miscellaneous

We conjecture that the manifold structure of C is finer than just a manifold with a

boundary.

62



Conjecture 7.4.1. Let C ⊂ Rn be a l.b.c. c.a.d. cell. Then C is a manifold with

corners.

The definition and basic development of manifolds with corners can be found in

[20]. Instead of having looking at open neighbourhoods inside [0,∞) × Rn−1 we look

at open neighbourhoods inside [0,∞)k × Rn−k.
Our current proof is limited by the local conic structure and thus cannot detect all

the manifold with corners structure.

Another question posed by Lazard in [22] is about the relation of smooth cylindrical

algebraic decompositions and Whitney stratifications; here, by a smooth c.a.d. we mean

that every d-cell is diffeomorphic to (0, 1)d.

Question 7.4.2 (c.f. [22, p. 111]). What is the relation between smooth strong cylin-

drical algebraic decompositions and Whitney stratifications?
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APPENDIX A

SEMI-ALGEBRAIC GEOMETRY

The material in Chapter A is discussed in standard references of semi-algebraic geom-

etry: [3], [4], [6], or [38].

Semi-algebraic sets arise naturally in real algebraic geometry. Consider the elliptic

curve X over R defined by the equation y2 = x3−x. We cannot describe the connected

components of X in terms of varieties over R only. Similarly, we can consider the

one-parameter family {x2−a}a∈R, and ask for which values of a, the polynomial x2−a
has real roots. The set of values for which this holds, [0,∞), cannot be described in

terms of varieties over the reals. In particular, we cannot describe these sets without

the use of inequalities.

In fact, different frameworks to study real algebraic sets rely heavily on machinery

that arises from the study of semi-algebraic sets. Consequently, the study of the geo-

metric and topological properties of semi-algebraic sets are of interest. For a more in

depth treatment, see one of the references above.

A.1 Semi-algebraic sets

We think of a semi-algebraic set S ⊂ Rn as a set defined by a finite number of polyno-

mial equations and inequalities.

Definition A.1.1 ([4, Def. 2.1.1]). We say S ⊂ Rn is semi-algebraic if it is a finite

union of sets of the form

{x ∈ Rn | f1(x) = 0, . . . , fr(x) = 0, gi(x) > 0, . . . , gs(x) > 0}.
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We can define semi-algebraic sets to be the smallest family F of sets of Rn such

that: F contains all the sets of the form {x ∈ Rn | f(x) > 0}, for some f ∈ R[t]; and

F is closed under finite unions, finite intersections, and taking complements. In fact,

the family of semi-algebraic sets form a boolean algebra.

Examples A.1.2 (Semi-algebraic sets).

i. All real algebraic sets are semi-algebraic.

ii. S = {(x, y) ∈ R2 | y = |x|} is a semi-algebraic that is not algebraic.

Example A.1.3 (Semi-algebraic non-example). The set X = {(x, y) ∈ R2 | y = bxc} is

not semi-algebraic. Semi-algebraic sets have a finite number of connected components.

In keeping with the maxim of studying a family of objects via functions, we define

what it means for a function to be semi-algebraic.

Definition A.1.4 ([4, Def. 2.3.2]). Let S ⊂ Rn and T ⊂ Rm be semi-algebraic sets.

We say that a function f : S → T is semi-algebraic if the graph of f , denoted Γ(f),

is a semi-algebraic subset Rn+m.

The next result forms the foundation for a large body of results in semi-algebraic

geometry.

Theorem A.1.5 (Tarski-Seidenberg principle). Let f : X → Y be a semi-algebraic

function. The image of f is a semi-algebraic set. In particular, the projection of a

semi-algebraic set is semi-algebraic.

This is often referred to as the Geometric formulation of the Tarski-Seidenberg

principle. The original equivalent formulation of the Tarski-Seidenberg principle states

that theory of real closed fields admits quantifier elimination – see [37].

As a consequence of the Tarski-Seidenberg principle, we can show that S, intS,

and the boundary of S is semi-algebraic, for a semi-algebraic set S. Moreover, we can

show that if f : S → Rm is a semi-algebraic function, then, for T ⊂ Rm semi-algebraic,

f−1(T ) is semi-algebraic — see [4, p. 60f]. In particular, the fibre of a semi-algebraic

function is semi-algebraic.

The Tarski-Seidenberg principle illustrates one of the differences between algebraic

and semi-algebraic sets. The projection of algebraic is not necessarily algebraic. In

fact, the family of semi-algebraic sets is the smallest family containing algebraic sets

that is closed under projection — see [4, Prop. 2.3.10].

Often, we will study semi-algebraic sets that arise from inequality and equality

relations from a given finite set of polynomials F . We will call such semi-algebraic
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sets, F -semi-algebraic; see [3, Def. 5.5]. We have a convenient way of presenting such

semi-algebraic sets.

Definition A.1.6. Given a finite set of polynomials F = {f1, . . . , fm} ⊂ R[x1, . . . , xn]

and a function ε : {1, . . . ,m} → {−1, 0, 1}, we can associate a semi-algebraic set Aε

defined as

Aε =

m⋂
k=1

{x ∈ R | sign(fk(x)) = ε(k)}.

The function ε is called a sign condition on F and Aε the realisation of ε; see [38,

p. 32] or [3, Def. 2.2.5].

Given some value of ε, say ε(k), we define ε(k) to be the relaxation of the inequalities

they represent; that is, {−1} = {−1, 0}, {0} = {0}, and {1} = {0, 1}. We denote the

realisation of a sign condition with relaxed inequalities, denoted by Aε by:

Aε =

m⋂
k=1

{x ∈ R | sign(fk(x)) ∈ ε(k)}.

Note that some sign conditions on F might yield empty sets; we say ε is realisable if

Aε is non-empty.

One nuance of semi-algebraic sets is that their presentation is not canonical. More-

over, certain presentations are better behaved, in some sense, than others. As we saw

above, a corollary of the Tarski-Seidenberg principle is that if S is semi-algebraic, then

so is S. We might try to compute the closure of S by relaxing the inequalities in some

presentation of S. This does not work in general.

Example A.1.7 (Relaxation of inequalities). Consider the semi-algebraic set S =

{x ∈ R | x2(x − 1) > 0}. The closure of S is [1,∞) which is different than {x ∈ R |
x2(x− 1) ≥ 0} = {0} ∪ [1,∞).

Another example of such occurrence is [6, p. 27]. The issue is not with a semi-

algebraic set S but with the presentation of S. The next result shows that in R, certain

families of polynomials of R[x] are such that we can compute the closures through an

easy procedure.

Theorem A.1.8 (Thom’s Lemma, c.f. [6, Prop. 2.5.4]). Let F = {f1, . . . , fm} ⊂ R[x]

be a set of polynomials closed under differentiation; that is, if f ∈ F , then f ′ ∈ F or

f ′ = 0. Then

i. Aε is either empty, a point, or an open interval.

ii. If Aε is non-empty, then Aε = Aε.
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iii. If Aε is empty, then Aε is either empty or a point.

A decomposition of a semi-algebraic set called stratifying family of polynomials

generalises Thom’s Lemma to Rn; see [4, Thm. 2.4.4] or [6, Chap. 9].

A.2 Semi-algebraic maps

If S and T are semi-algebraic sets and S and T are homeomorphic, it does not imply

that S and T are semi-algebraic homeomorphic. In [34], Shiota and Yokoi showed the

existence of two homeomorphic compact semi-algebraic sets that are not semi-algebraic

homeomorphic.

An important fact, provided without proof, about semi-algebraic sets is that they

admit semi-algebraic partitions of unity.

Proposition A.2.1 ([11, Prop. 1.5]). Let {Ui}i∈I be a finite semi-algebraic open cover

of an semi-algebraic S. Then, there exists a family {fi}i∈I of semi-algebraic functions

fi on M with values in [0, 1] such that:

i. supp(fi) = {x ∈ S | fi(x) 6= 0} ⊂ Ui for every i ∈ I.

ii.
∑

i∈I fi(x) = 1 for every x ∈ S.

A.3 Semi-algebraic connectedness

The usual definition of connectedness does not capture the desired notion when we

work with real closed fields different than R. In fact, if R 6= R, then we can show that

R is totally disconnected. To mend this pathology of real closed fields we restrict to

looking ourselves solely to semi-algebraic sets.

Definition A.3.1 ([6, Def. 2.4.2]). We say a semi-algebraic set S ⊂ Rn is semi-

algebraically connected if, for closed U and V in S, U ∪ V = S implies that U = S

or V = S.

By [6, Thm. 2.4.5], if R = R, the notion of connectedness agrees with the notion of

semi-algebraic connectedness.

We also have an analogue of path connectedness for semi-algebraic sets.

Definition A.3.2 ([6, Def. 2.5.13]). We say that a semi-algebraic set S ⊂ Rn is

semi-algebraically path-connected if, for all x,y ∈ S, there exists a continuous

semi-algebraic function ϕ : [0, 1]→ S such that ϕ(0) = x and ϕ(1) = y.
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Unlike general subsets of Rn, semi-algebraic path-connectedness and semi-algebraic

connectedness coincide when dealing with semi-algebraic subsets.

Theorem A.3.3 ([6, Thm. 2.5.13]). Let S ⊂ Rn be semi-algebraic. Then S is semi-

algebraically connected if and only if S is semi-algebraically path-connected.

A.4 Semi-algebraic triviality and its applications

We think of trivial maps as functions which look like a projection mapping. More

specifically, maps which factor through the standard projection map, with the appro-

priate domain. Such maps form a special class of continuous functions as they are, in

some sense, simple. In the section, we discuss Hardt’s Theorem(Theorem A.4.2), which

says that locally, in some sense, continuous semi-algebraic maps are always trivial. This

result has many application to the topology of semi-algebraic sets.

Hardt’s theorem original proof can be found in [17]. Some standard, more current,

references for Hardt’s theorem and the material discussed in this section are [3, Sect.

5.8] or [6, Sect. 9.3].

Firstly, we define precisely what we mean by a trivialisation of a continuous semi-

algebraic function.

Definition A.4.1 ([6, Def. 9.3.1]). Let S ⊂ Rn and T ⊂ Rm be semi-algebraic sets and

f : S → Rm a continuous semi-algebraic map. We say that f is semi-algebraically

trivial over T if there exists a semi-algebraic set F ⊂ S and a homeomorphism

θ : f−1(T )→ T × F such that the diagram

f−1(T ) T × F

T

θ

f π

commutes. As usual, π denotes the standard projection mapping. Moreover, we say

that a trivialisation is compatible to S’, for a subset S′ ⊂ S, if there exists an F ′ ⊂ F
such that θ(S′ ∩ f−1(T )) = T × F ′.

For the rest of this section, let S,T and f be denoted as in definition above.

If a trivialisation exists, then for any t ∈ T , f−1(t) is homeomorphic to F ; we can

thus choose F to be equal to f−1(t), for some t ∈ T , with θ(x) = (x, t). In particular,

we can choose F and θ to be semi-algebraic.

The following result, proved by Hardt in [17], shows that we can always partition

Rm into finitely many {Ti} in such way that f is semi-algebraically trivial over each

Ti.
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Theorem A.4.2 (Hardt’s semi-algebraic triviality). Let S ⊂ Rn be a semi-algebraic

set and f : S → Rm a continuous semi-algebraic map. There exists a finite semi-

algebraic partition {Ti} of Rm such that f is semi-algebraically trivial over each Ti.

Moreover, if {Sj} is a finite collection of semi-algebraic subsets of S, we can choose

this trivialisation to be compatible to each Sj.

Given a semi-algebraic set S ⊂ Rn,a cylindrical algebraic decomposition gives us

an effective, in the computational sense, trivialisation of the projection map that is

compatible with respect to S.

Example A.4.3 (Trivialisation of the projection). A cylindrical algebraic decompo-

sition(see Definition 3.1.1), gives us an effective way of constructing a semi-algebraic

trivialisation of the standard projection which is compatible to any semi-algebraic set.

More specifically, if we build a c.a.d.adapted to S ⊂ Rn(Definition 3.1.8), then there

exists a finite partition of Rn−1 into semi-algebraic sets {Ci} such that π : Rn → Rn−1

is trivial over each Ci in a way compatible to S.

An application of Hardt’s Theorem is that to the local topology of semi-algebraic

sets.

Definition A.4.4. Let B ⊂ Rm be a semi-algebraic set and v some point Rm. The

cone over B with vertex v, denoted v ∗B, is the set of points in Rn of the form

[b, λ] = λv + (1− λ)b,

where λ ∈ [0, 1] and b ∈ B.

The following result, first proved by Milnor in [26], shows that locally, semi-algebraic

sets behave like cones. More precisely, it states that if we choose a non-isolated point x

of a semi-algebraic set, then there exists a neighbourhood of x which looks like a cone

with vertex x.

Theorem A.4.5 (c.f. [6, Thm. 9.3.6]). Let T be a semi-algebraic set and v ∈ T a

non-isolated point. Then there exists a δ > 0, such that for 0 < ε < δ, there exists a

semi-algebraic homeomorphism φ : B(v, ε) ∩ T → v ∗ S(x, ε) ∩ T such that:

i. ‖φ(x)− v‖ = ‖x− v‖ for all x ∈ B(v, ε) ∩ T , and

ii. φ(S(v, ε)) = S(v, ε).

In particular, φ(v) = v.
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An immediate consequence of the local conic structure of semi-algebraic sets is the

following corollary.

Corollary A.4.6. Every semi-algebraic set is locally contractible.

This holds as a cone is contractible via strong deformation retract

F : v ∗B × [0, 1]→ v ∗B,

F ([b, λ], t) = [b, (1− λ)t+ λ].

Remark A.4.7. Analogues to the results in the section can be proved in the framework

of o-minimal structures.

71



APPENDIX B

TOPOLOGY

For the remainder of the chapter, let X and Y denote topological spaces.

Suppose A and B are sub-spaces of X and Y , respectively. Then a relative map

f : (X,A)→ (Y,B).

is a map f : X → Y such that f(A) ⊂ B. In other words, the restriction f |A : A→ B is

a map. We say that such f is a homeomorphism if f : X → Y is a homeomorphism

which induces a homeomorphism on f |A : A→ B.

Definition B.0.1. We say a mapping f : (X,A)→ (Y,B) is a relative homeomor-

phism if f |X\A : X \A→ Y \B is a homeomorphism.

Any homeomorphism f : (X,A)→ (Y,B) is a relative homeomorphism; the converse

does not hold. See Example 2.2.4.

B.1 CW-complexes

There are two main ways of defining CW-complex. One approach uses adjunction

spaces and an inductive step to build the complex from the bottom up. As we will

start with a topological space and want to build a CW-complex associated to this

space, we build the cell complex by describing a defining homeomorphism for each cell.

Standard references for CW-complexes are [9] or [40].

Definition B.1.1. Suppose X is a non-empty Hausdorff topological space. A CW-

complex of X is a finite collection of relative homeomorphisms ϕi : (B
di , Bdi) →

(Ci, Ci) such that the Ci are disjoint and X = ∪iCi.
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For a more complete treatment of CW-complexes, see [40].

B.2 Regular cell complex

Definition B.2.1. We that a CW-complex is a regular cell complex if relative

homeomorphism ϕi : (B
di , Bdi)→ (Ci, Ci) is a homeomorphism.

As Whitehead explains in [40], a regular cell complex is a compromise between

simplicial and CW-complexes. The reason for this remark is due to the following fact:

Lemma B.2.2 ([5, 12.4 (ii)]). Let Σ be a regular cell complex and P(Σ) be the partially

ordered set of all closed cells ordered by inclusion. Then ‖Σ‖ ∼= ‖∆(P(Σ))‖.

As per the analysis of Bjorner in [5], an important consequence of this result is

that we can think of regular cell complexes as objects of combinatorial nature. They

are a barycentric sub-division away from a simplicial complex. We can view them as

posets without any loss of topological information. This is particularly important in

Chapter 6.

B.3 Whitehead’s and Smale’s Theorem

The next two results will are important results from homotopy theory. We start with

a useful definition.

Definition B.3.1. We say that a space X has CW-type if X has the homotopy type

of a CW-complex.

Theorem B.3.2 (Whitehead’s Theorem — [18, Thm. 4.5]). Suppose that X and Y

are connected and have CW-type. If f : X → Y induces a weak homotopy equivalent

between X and Y , then X and Y are homotopy equivalent.

The next theorem states that under certain conditions, we can deduce contractibility

of a space via contractible fibres.

Theorem B.3.3 (Smale’s Theorem). Let X and Y be connected, locally compact sep-

arable metric spaces. Assume also that X is locally contractible. Consider a proper

surjective continuous map f : X → Y . Assume that for all y ∈ Y , the space f−1(y) is

contractible and locally contractible. Then f is a weak homotopy equivalence.

See [36] for the proof of Smale’s theorem.

Note that if X and Y are of CW-type, this result implies that X and Y are in fact

homotopy equivalent.
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mathématiques. Hermann, 1990.

[5] A. Björner. Topological methods. In R. L. Graham, M. Grötschel, and L. Lovász,

editors, Handbook of Combinatorics (Vol. 2), chapter 34, pages 1819–1872. MIT

Press, Cambridge, MA, USA, 1995.

[6] J. Bochnak, M. Coste, and M.-F. Roy. Real Algebraic Geometry, volume 36 of

A Series of Modern Surveys in Mathematics. Springer Berlin Heidelberg, Berlin,

1998.

[7] C. Chen, M. M. Maza, B. Xia, and L. Yang. Computing cylindrical algebraic

decomposition via triangular decomposition. In Proceedings of the 2009 Inter-

national Symposium on Symbolic and Algebraic Computation, ISSAC ’09, pages

95–102, New York, NY, USA, 2009. ACM.

[8] G. E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Alge-

braic Decomposition. ACM SIGSAM Bulletin, 10(1):10–12, 1976.

74



[9] G. E. Cooke, R. L. Finney, and N. E. Steenrod. Homology of cell complexes.

Mathematical notes. Princeton University Press, Princeton, NJ, 1967.

[10] H. Delfs and M. Knebusch. On the homology of algebraic varieties over real

closed fields. Journal für die reine und angewandte Mathematik (Crelles Journal),

1982(335):122–163, 1982.

[11] H. Delfs and M. Knebusch. Separation, retractions and homotopy extension in

semialgebraic spaces. Pacific Journal of Mathematics, 114(1):47–71, 1984.

[12] H. Delfs and M. Knebusch. Locally semialgebraic spaces, volume 1173 of Lecture

Notes in Mathematics. Springer, 1985.

[13] A. Dold. Lectures on Algebraic Topology. Springer Berlin Heidelberg, 1995.

[14] M. England, R. Bradford, J. Davenport, and D. Wilson. Understanding branch

cuts of expressions. In J. Carette, D. Aspinall, C. Lange, P. Sojka, and W. Wind-

steiger, editors, Intelligent Computer Mathematics, volume 7961 of Lecture Notes

in Computer Science, pages 136–151. Springer Berlin Heidelberg, 2013.

[15] M. England, R. Bradford, J. Davenport, and D. Wilson. Choosing a variable or-

dering for truth-table invariant cylindrical algebraic decomposition by incremental

triangular decomposition. In H. Hong and C. Yap, editors, Mathematical Software

ICMS 2014, volume 8592 of Lecture Notes in Computer Science, pages 450–457.

Springer Berlin Heidelberg, 2014.

[16] R. Fukasaku, H. Iwane, and Y. Sato. Real Quantifier Elimination by Computation
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