Abelian surfaces with odd bilevel structure

G.K. Sankaran

April 28, 2003

Abelian surfaces with weak bilevel structure were introduced by S. Mukai in [14]. There is a coarse moduli space, denoted $\mathcal{A}_t^{\text{bilevel}}$, for abelian surfaces of type $(1,t)$ with weak bilevel structure. $\mathcal{A}_t^{\text{bilevel}}$ is a Siegel modular threefold, and can be compactified in a standard way by Mumford’s toroidal method [1]. We denote the toroidal compactification (in this situation also known as the Igusa compactification) by $\mathcal{A}_t^{\text{bilevel}}$. It is a projective variety over \mathbb{C}, and it is shown in [14] that $\mathcal{A}_t^{\text{bilevel}}$ is rational for $t \leq 5$. In this paper we examine the Kodaira dimension $\kappa(\mathcal{A}_t^{\text{bilevel}})$ for larger t. Our main result is the following (Theorem VIII.1).

Theorem. $\mathcal{A}_t^{\text{bilevel}}$ is of general type for t odd and $t \geq 17$.

It follows from the theorem of L. Borisov [2] that $\mathcal{A}_t^{\text{bilevel}}$ is of general type for t sufficiently large. If $t = p$ is prime, then it follows from [7] and [12] that $\mathcal{A}_p^{\text{bilevel}}$ is of general type for $p \geq 37$. Our result provides an effective bound in the general case and a better bound in the case $t = p$. As far as we know, all previous explicit general type results (for instance [7, 12, 15, 8, 16]) have been for the cases $t = p$ or $t = p^2$ only.

It is for brevity that we assume t is odd. If t is even the combinatorial details are more complicated, especially when $t \equiv 2 \mod 4$, but the method is still applicable. In fact the method is essentially that of [12], with some modifications.

Acknowledgement. Part of this work resulted from conversations with my research student Alfio Marini.

I Background

If A is an abelian surface with a polarisation H of type $(1,t)$, $t > 1$, then a **canonical level structure**, or simply **level structure**, is a symplectic isomorphism

$$\alpha : \mathbb{Z}_2^2 \longrightarrow K(H) = \{ x \in A \mid t_{\mathfrak{L}}^x \mathcal{L} \cong \mathcal{L} \text{ if } c_1(\mathcal{L}) = H \}.$$

The moduli space $\mathcal{A}_t^{\text{level}}$ of abelian surfaces with a canonical level structure has been studied in detail in [11], chiefly in the case $t = p$.
A *coleval structure* on A is a level structure on the dual abelian surface A^\vee: note that H induces a polarisation H on A, also of type $(1, t)$. Alternatively, a coeval structure may be thought of as a symplectic isomorphism

$$\beta : \mathbb{Z}_t^2 \rightarrow A[t]/K(H)$$

where $A[t]$ is the group of all t-torsion points of A. Obviously the moduli space A_t^col of abelian surfaces of type $(1, t)$ with a coeval structure is isomorphic to A_t^lev, and each of them has a forgetful morphism $\psi^\text{lev}, \psi^\text{col}$ to the moduli space A_t of abelian surfaces of type $(1, t)$. We define

$$A_t^\text{biv} = A_t^\text{lev} \times A_t^\text{col}.$$

The forgetful map $\psi^\text{lev} : A_t^\text{lev} \rightarrow A_t$ is the quotient map under the action of $\text{SL}(2, \mathbb{Z})$ given by

$$\gamma : [(A, H, \alpha)] \mapsto [(A, H, \alpha \gamma)]$$

where $\gamma \in \text{SL}(2, \mathbb{Z})$ is viewed as a symplectic automorphism of \mathbb{Z}_t^2. The action is not effective, because (A, H, α) is isomorphic to $(A, H, -\alpha)$ via the isomorphism $x \mapsto -x$; so $-1 \in \text{SL}(2, \mathbb{Z})$ acts trivially. Thus ψ^lev is a Galois morphism with Galois group $\text{PSL}(2, \mathbb{Z}) = \text{SL}(2, \mathbb{Z})/\pm 1_2$.

A point of A_t^biv thus corresponds to an equivalence class $[(A, H, \alpha, \beta)]$, where (A, H) is a polarised abelian surface of type $(1, t)$, α and β are level and coeval structures, and (A, H, α, β) is equivalent to $(A', H', \alpha', \beta')$ if there is an isomorphism $\rho : A \rightarrow A'$ such that $\rho^*H' = H$, $\rho \alpha = \alpha'$ and $\rho^*\beta = \beta'$.

In particular, for general A, we have $(A, H, \alpha, \beta) \cong (A, H, -\alpha, -\beta)$ but $(A, H, \alpha, \beta) \not\cong (A, H, -\alpha, \beta)$. Another way to express this is to say that the wreath product $\mathbb{Z}_2 \wr \text{PSL}(2, \mathbb{Z})$, acts on A_t^biv with quotient A_t.

Theorem I.1 (Mukai [14]) A_t^biv is the quotient of the Siegel upper half-plane \mathbb{H}_2 by the group

$$\Gamma_t^\text{biv} = \Gamma_t^1 \cup \zeta \Gamma_t^1$$

where

$$\Gamma_t^1 = \{ \gamma \in \text{Sp}(4, \mathbb{Z}) \mid \gamma - 1_4 \in \begin{pmatrix} \mathbb{Z}^3 & \mathbb{Z}^2 & \mathbb{Z} \\ \mathbb{Z}^2 & \mathbb{Z}^2 & \mathbb{Z} \\ \mathbb{Z}^3 & \mathbb{Z}^2 & \mathbb{Z} \\ * & * & \mathbb{Z} \end{pmatrix} \}$$

and $\zeta = \text{diag}(1, -1, 1, -1)$, acting by fractional linear transformations.

Thus Γ_t^biv should be thought of as a subgroup of the paramodular group

$$\Gamma_t = \{ \gamma \in \text{Sp}(4, \mathbb{Q}) \mid \gamma - 1_4 \in \begin{pmatrix} \mathbb{Q}^3 & \mathbb{Q}^2 \mathbb{Q} \\ \mathbb{Q}^2 & \mathbb{Q} \mathbb{Q} & \mathbb{Q} \mathbb{Q} \\ \mathbb{Q}^3 & \mathbb{Q} \mathbb{Q} & \mathbb{Q} \mathbb{Q} \\ * & * & \mathbb{Q} \end{pmatrix} \}.$$
(The paramodular group is the group denoted Γ_0^1, t in [11] and [5].)

For some purposes it is more convenient to work with the conjugate $\tilde{\Gamma}_1^{1,0} = R_1 \tilde{\Gamma}_1^{1,0} R_2$, of $\tilde{\Gamma}_1^{1,0}$ by $R_1 = \text{diag}(1, 1, 1, t)$, and with the corresponding conjugates $\tilde{\Gamma}_1^1, \tilde{\Gamma}_1^{1,0}$, etcetera. These groups have the advantage that they are subgroups of $\mathrm{Sp}(4, \mathbb{Z})$ rather than $\mathrm{Sp}(4, \mathbb{Q})$, and are defined by congruences mod t, not mod t^2, but their action on \mathbb{H}_2 is not the usual one by fractional linear transformations.

If E_i are elliptic curves and $(A, H) = (E_1 \times E_2, \tau_1 (E_1(1) \otimes E_2(t)))$, we say that (A, H) is a product surface. In this case $K(H) = \{0_{E_1}\} \times E_2[t]$, so a level structure on A may be thought of as a full level-t structure on E_2. The automorphism $(x, y) \mapsto (x, -y)$ of $A = E_1 \times E_2$ induces an isomorphism $(A, H, \alpha, \beta) \to (A, H, -\alpha, \beta)$ in this case, so a product surface with a weak bidegree structure still has an extra automorphism. The corresponding locus in the moduli space arises from the fixed locus of ζ in \mathbb{H}_2, and will be of great importance in this paper.

The geometry of $\mathcal{A}_{1,0}^{1,0}$ shows many similarities with that of $\mathcal{A}_{1,0}^{1,0}$, which was studied (in the case of t an odd prime) in the book [11]. In many cases where the proofs of intermediate results are very similar to those of corresponding results in [11] we omit the details and simply indicate the appropriate reference.

II Modular groups and modular forms

We first collect some facts about congruence subgroups in $\mathrm{SL}(2, \mathbb{Z})$ and some related combinatorial information. For $r \in \mathbb{N}$ we denote by $\Gamma_1(r)$ the principal congruence subgroup of $\mathrm{SL}(2, \mathbb{Z})$. We denote the modular curve $\Gamma_1(r) \backslash \mathbb{H}$ by $X^*(r)$, and the compactification obtained by adding the cusps by $X(r)$.

For $m, r \in \mathbb{N}$, define

$$\Phi_m(r) = \{ a \in \mathbb{Z}_r^* \mid a \text{ is not a multiple of a zerodivisor in } \mathbb{Z}_r \},$$

that is, $a \in \Phi_m(r)$ if and only if $a = za'$ implies $z \in \mathbb{Z}_r^*$; and put $\phi_m(r) = \# \Phi_m(r)$. We also put $\Phi_m(r) = \Phi_m(r) / \pm 1$.

Lemma II.1 If the primes dividing r are $p_1 < p_2 < \ldots < p_n$ then

$$\phi_m(r) = \sum_{i=0}^n (-1)^i \sum_{p_1, \ldots, p_i} \left(r \prod_{k=1}^i p_j^{-1} \right)^m = r^m \prod_{p | r} (1 - p^{-m}).$$

Proof. We first prove that $\phi_m(p)$ is a multiplicative function. First we suppose that $r = pq$, with $\gcd(p, q) = 1$. It is easy to see that $a \in \Phi_m(p)$ if and only if $a_p \in \Phi_m(p)$ and $a_q \in \Phi_m(q)$, where a_p denotes the reduction of a mod p.
We divide \(\mathbb{Z}_r^m \) into residue classes mod \(p \); that is, we write \(\mathbb{Z}_r^m \) as the disjoint union of subsets \(S_c \) for \(c \in \mathbb{Z}_r^m \), where \(S_c = \{ a | a_r = c \} \). There are \(\phi_m(p) \) subsets \(S_c \) such that \(r \in \Phi_m(p) \).

The reduction mod \(q \) map \(S_c \rightarrow \mathbb{Z}_q^m \) is bijective, since it is the inverse of the injective map \(b \mapsto c + pb \in \mathbb{Z}_r^m \). Hence in each of the \(\phi_m(p) \) subsets \(S_c, c \in \Phi_m(p) \) there are \(\phi_m(q) \) elements whose reduction mod \(q \) belongs to \(\Phi_m(q) \). It follows that \(\phi_m(r) = \phi_m(p)\phi_m(q) \).

Finally, we check that if \(r = p^k \), \(p \) prime, then \(\phi_m(r) = r^m(1 - p^{-m}) \). If \(a \notin \Phi_m(r) \), then \(a = pa' \) for a unique \(a' \in \mathbb{Z}_{r^f}^m \), so there are \((p^k - 1)^m \) such elements \(a \).

Note that \(\phi_1 \) is the Euler \(\phi \) function, and \(\Phi_1(r) \) is the set of non-zerodivisors of \(\mathbb{Z}_r^m \).

Corollary II.2 The order of \(\text{SL}(2, \mathbb{Z}_t) \) is given by

\[
| \text{SL}(2, \mathbb{Z}_t) | = t\phi_2(t) = t^3 \prod_{p | t} (1 - p^{-2}).
\]

Proof. (See also [18, §1.6].) If \(A \in \text{SL}(2, \mathbb{Z}_t) \), then \(A_1 = (a_{11}, a_{12}) \in \Phi_2(t) \).

So by Euclid’s algorithm we can find \(A'_2 = (a'_{21}, a'_{22}) \) such that \(\det \begin{pmatrix} A_1 \\ A'_2 \end{pmatrix} = \gcd(a_{11}, a_{12}) = r \). Replacing \(A'_2 \) by \(A_2 = r^{-1}A'_2 \), we get a matrix \(A \) with \(\det(A) = 1 \). Furthermore, if \(B_j = \begin{pmatrix} A_1 \\ A_2 + jA_1 \end{pmatrix} \), \(j = 0, \ldots, t - 1 \), then \(\det(B_j) = \det(A) = 1 \), and \(B_j \neq B_{j'} \) if \(j \neq j' \). So \(| \text{SL}(2, \mathbb{Z}_t) | = t\phi_2(t) \). \(\square \)

For \(r > 2 \), put \(\mu(r) = [\text{PSL}(2, \mathbb{Z}) : \Gamma_1(r)] \). By Corollary II.2 we have

\[
\mu(r) = r^3 \prod_{p | r} (1 - p^{-2}).
\]

We need the following well-known lemma.

Lemma II.3 If \(r > 2 \) then \(X(r) \) has

\[
\nu(r) = \mu(r)/r = r^2 \prod_{p | r} (1 - p^{-2})
\]

cusps and is a smooth complete curve of genus \(g = 1 + \frac{\mu(r)}{12} - \frac{\nu(r)}{2} \).

Proof. See [18, pp. 23–24]. \(\square \)

We denote \(\mu(t) \) by \(\mu \) and \(\nu(t) \) by \(\nu \). Note that \(\phi_2(1) = \nu(1) = 1 \) and \(\phi_2(r) = 2\nu(r) \) for \(r > 2 \).
Now we turn to subgroups of Sp(4, \mathbb{Q}) and to modular forms. Denote by \(\mathcal{S}_n^*(\Gamma) \) the space of weight \(n \) cusp forms for \(\Gamma \subseteq \text{Sp}(4, \mathbb{Q}) \). We need the groups \(\Gamma(1) = \text{PSp}(4, \mathbb{Z}) \) and, for \(\ell \in \mathbb{N} \),

\[
\Gamma(\ell) = \{ \gamma \in \text{Sp}(4, \mathbb{Z}) \mid \gamma = 1_4 \in \text{Sp}(4, \mathbb{Z}, \ell) \}.
\]

If \(\ell^2 \mid \ell \) then \(\Gamma(\ell) \triangleleft \Gamma_\ell^{1\text{al}} \), because \(\Gamma(\ell) \subseteq \Gamma_\ell^{1\text{al}} \) and \(\Gamma(\ell) \) is normal in \(\Gamma(1) = \text{Sp}(4, \mathbb{Z}) \).

By a previous calculation [19] we know that

\[
\dim \mathcal{S}_n^*(\Gamma(\ell)) = \frac{n^3}{8640} \left[\Gamma(1) : \Gamma(\ell) \right] + O(n^2)
\]

(as long as \(\ell > 2 \) we can consider \(\Gamma(\ell) \) as a subgroup of \(\text{PSp}(4, \mathbb{Z}) \) rather than \(\text{Sp}(4, \mathbb{Z}) \)). A standard application of the Atiyah–Bott fixed-point theorem (see [9], or in this context [12]) gives

\[
\dim \mathcal{S}_n^*(\Gamma_\ell^{1\text{al}}) = \frac{a}{[\Gamma_\ell^{1\text{al}} : \Gamma(\ell)]} \dim \mathcal{S}_n^*(\Gamma(\ell)) + O(n^2)
\]

where \(a \) is the number of elements \(\gamma \in \Gamma_\ell^{1\text{al}} \) whose fixed locus in \(\mathbb{H}_2 \) has dimension 3. Thus \(a \) is the number of elements of \(\Gamma_\ell^{1\text{al}} \) that act trivially on \(\mathbb{H}_2 \). In \(\text{Sp}(4, \mathbb{Z}) \) there are two such elements, \(\pm 1_4 \), but if \(t > 2 \) then \(-1_4 \not\in \Gamma_\ell^{1\text{al}} \). So \(a = 1 \), and hence

\[
\dim \mathcal{S}_n^*(\Gamma_\ell^{1\text{al}}) = \frac{1}{[\Gamma_\ell^{1\text{al}} : \Gamma(\ell)]]} \dim \mathcal{S}_n^*(\Gamma(\ell)) + O(n^2)
\]

\[
= \frac{n^3}{8640} \left[\Gamma(1) : \Gamma(\ell) \right] + O(n^2)
\]

\[
= \frac{n^3}{8640} \left[\Gamma(1) : \Gamma_\ell^{1\text{al}} \right] + O(n^2).
\]

(1)

The number \([\tilde{\Gamma}(1) : \Gamma_\ell^{1\text{al}}] \) is equal to the degree of the map \(\mathcal{A}_\ell^{1\text{al}} \rightarrow \mathcal{A}_1 \) (actually there are two such maps of the same degree), where \(\mathcal{A}_1 \) is the moduli space of principally polarized abelian surfaces. Now

\[
[\tilde{\Gamma}(1) : \Gamma_\ell^{1\text{al}}] = \frac{1}{2} [\tilde{\Gamma}(1) : \Gamma_\ell^{1\text{lev}}]
\]

\[
= \frac{1}{2} \left[\Gamma(1) : \Gamma_\ell^{1\text{lev}} \right] \left[\Gamma_\ell^{1\text{lev}} : \Gamma_\ell^{1\text{al}} \right].
\]

We can see directly that \(\Gamma_\ell^{1\text{lev}} \supset \Gamma_\ell^{1} \) since

\[
\Gamma_\ell^{1\text{lev}} = \left\{ \gamma \in \text{Sp}(4, \mathbb{Z}) \mid \gamma - 1_4 \in \begin{pmatrix}
* & * & * & \mathbb{Z} \\
\mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z}^2 \\
* & * & * & \mathbb{Z} \\
* & * & * & \mathbb{Z}
\end{pmatrix} \right\}.
\]
Lemma II.4 The map
\[\varphi : \Gamma_{t}^{\text{lev}} \rightarrow \text{SL}(2, \mathbb{Z}_t), \quad A \mapsto \begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix} \]
is a surjective group homomorphism, and the kernel is \(\Gamma_{t}^{1} \).

Proof. The surjectivity follows from the well-known fact that the reduction mod \(t \) map \(\text{red}_t : \text{SL}(2, \mathbb{Z}) \rightarrow \text{SL}(2, \mathbb{Z}_t) \) is surjective, and the rest is obvious. \(\square \)

Lemma II.5 For \(t > 2 \), the index \([\bar{\Gamma}(1) : \Gamma_{t}^{\text{lev}}] \) is equal to \(t\phi_4(t)/2 \).

Proof. The proof is almost the same as proof of [13, Lemma 0.5]. In place of the chain of groups \(\Gamma_{1,p} < \Gamma_{1,p} < \Gamma' = \Gamma(1) \), we use the chain \(\Gamma_{t}^{\text{lev}} < \Gamma_{1,t} < \Gamma(1) \). Furthermore, we use the set \(\Phi_4(t) \) where \(\text{SL}(4, \mathbb{Z}_t) \) acts. Note that \(\text{SL}(4, \mathbb{Z}) \) still acts transitively on \(\Phi_4(t) \), via
\[
\begin{pmatrix} b_{11} & 0 & 0 \\ 0 & 1 & 0 \\ b_{21} & 0 & b_{22} \\ 0 & 0 & 1 \end{pmatrix}
\quad \text{and} \quad \begin{pmatrix} B & 0 \\ 0 & tB^{-1} \end{pmatrix},
\]
for \(B \in \text{SL}(2, \mathbb{Z}) \).
Following the same steps as in [13], and substituting \(\phi_m(t) \) for \(p^m - 1 = \phi_m(p) \), we then find that \([\Gamma_{1,t} : \Gamma_{t}^{\text{lev}}] = t\phi_1(t) \) and \([\Gamma_{1,t} : \Gamma(1)] = \phi_4(t)/\phi_1(t) \), so \([\bar{\Gamma}(1) : \Gamma_{t}^{\text{lev}}] = t\phi_4(t)/2 \). \(\square \)

Theorem II.6 The number of cusp forms of weight \(n \) for \(\Gamma_{t}^{\text{kl}} \) (for \(t > 2 \)) is given by
\[
\dim \mathfrak{S}_{n}(\Gamma_{t}^{\text{kl}}) = \frac{r^3}{34560} \phi_2(t)\phi_4(t) = \frac{r^3}{34560} \prod_{p|t} (1 - p^{-2})(1 - p^{-4}).
\]

Proof. Immediate from equation (1), Corollary II.2 and Lemma II.5. \(\square \)

III Torsion in the modular group

We know that \(\Gamma_{t}^{\text{kl}} \subset \text{Sp}(4, \mathbb{Z}) \), and the conjugacy classes of torsion elements in \(\text{Sp}(4, \mathbb{Z}) \) are known ([6, 20]). See [10] for a summary of the relevant information.
If $\gamma \in \Gamma_t^1$ then the reduction mod t of γ is

$$\bar{\gamma} = \begin{pmatrix} 1 & * & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & * & 1 & 0 \\ * & * & * & 1 \end{pmatrix} \in \text{Sp}(4, \mathbb{Z}_t),$$

so the characteristic polynomial $\chi(\bar{\gamma})$ is $(1-x)^4 \in \mathbb{Z}_t[x]$. On the other hand, if $\gamma \in \zeta \Gamma_t^1$ then

$$\bar{\gamma} = \zeta \begin{pmatrix} 1 & * & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & * & 1 & 0 \\ * & * & * & 1 \end{pmatrix} = \begin{pmatrix} 1 & * & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ * & * & * & -1 \end{pmatrix} \in \text{Sp}(4, \mathbb{Z}_t),$$

so $\chi(\bar{\gamma}) = (1-x)^2(1+x)^2 \in \mathbb{Z}_t[x]$.

The only classes in the list in [20], up to conjugacy, where the characteristic polynomials have this reduction mod t ($t > 2$) are I(1), where $\chi(\gamma) = (1-x)^4$, $\Pi(1)a$ and $\Pi(1)b$. Class I(1) consists of the identity; class $\Pi(1)a$ includes ζ so this just gives us the conjugacy class of ζ. Class $\Pi(2)b$ is the Sp($4,\mathbb{Z}$)-conjugacy class of ξ, where

$$\xi = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix} \in \Gamma_t^{1b}.$$

Proposition III.1 Every nontrivial element of finite order in Γ_t^{1b} (for $t > 2$) has order 2, and is conjugate to ζ or to ξ in Γ_t^{1b} if t is odd.

Proof. It follows from the list in [20] that the only torsion for $t > 2$ is 2-torsion (this is still true if t is even). The 2-torsion of the group Γ_t^{1v} was studied by Brasch [3]. There are five types but only two of them occur for odd t. The representatives for these conjugacy classes given in [3] are (up to sign) ζ and ξ; so the assertion of the theorem is that the Γ_t^{1b}-conjugacy classes of ζ and ξ coincide with the intersections of their Γ_t^{1v}-conjugacy classes with Γ_t^{1b}. This is checked in [17, Proposition 3.2] for the case $t = 6$ (the relevant cases are called ζ_0 and ζ_3 there), but the proof is valid for all $t > 2$. \[\Box\]

We put

$$\mathcal{H}_1 = \left\{ \begin{pmatrix} \tau_1 & 0 \\ 0 & \tau_3 \end{pmatrix} \left| \begin{array}{c} \text{Im} \tau_1 > 0, \text{Im} \tau_3 > 0 \end{array} \right. \right\} \subset \mathbb{H}_2$$

and

$$\mathcal{H}_2 = \left\{ \begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2 & \tau_3 \end{pmatrix} \left| 2\tau_2 + \tau_3 = 0 \right. \right\} \subset \mathbb{H}_2.$$
These are the fixed loci of ζ and ξ respectively. We denote by H_1^i and H_2^i the images of H_1 and H_2 in $\mathcal{A}_t^{4\text{cl}}$, and by H_1 and H_2 their respective closures in $\mathcal{A}_t^{4\text{cl}}$.

Lemma III.2 H_i^i is irreducible for $i = 1, 2$.

Proof. This follows at once from Proposition III.1 together with equations (2) and (3). \hfill \Box

The abelian surfaces corresponding to points in H_1^i and H_2^i are, respectively, product surfaces and bielliptic abelian surfaces, as described in [13] for the case t prime.

We define the subgroup $\Gamma(2t, 2t)$ of $\Gamma(t) \times \Gamma(t)$ by

$$\Gamma(2t, 2t) = \{(M, N) \in \Gamma(t) \times \Gamma(t) \mid M \equiv N^{-1} \mod 2\}$$

Lemma III.3 H_1^i is isomorphic to $X^0(t) \times X^0(t)$, and H_2^i is isomorphic to $\Gamma(2t, 2t) \backslash \mathbb{H} \times \mathbb{H}$.

Proof. Identical to the proofs of the corresponding results [11, Lemma I.5.43] and [11, Lemma I.5.45]. The level-t structure now occurs in both factors, whereas in [11] there is level-1 structure in the first factor and level-p structure in the second. In [11] the level p is assumed to be an odd prime but this fact is not used at that stage: p odd suffices, so we may replace p by t. Thereafter one simply replaces all the groups with their intersection with $\Gamma_t^{4\text{cl}}$, which imposes a level-t structure in the first factor and causes it to behave exactly like the second factor. \hfill \Box

Lemma III.4 H_1^i and H_2^i are disjoint.

Proof. The stabiliser of any point of \mathbb{H}_2 in $\Gamma_t^{4\text{cl}}$ is cyclic (of order 2), since $\Gamma_t^{4\text{cl}}$ is torsion-free and therefore has no fixed points. A point of $H_1 \cap H_2$ would be the image of a point of \mathbb{H}_2 stabilised by the subgroup generated by ζ and ξ, which is not cyclic. \hfill \Box

IV Boundary divisors

We begin by counting the boundary divisors. These correspond to $\tilde{\Gamma}_t^{4\text{cl}}$-orbits of lines in \mathbb{Q}^4: we identify a line by its unique (up to sign) primitive generator $\nu = (v_1, v_2, v_3, v_4) \in \mathbb{Z}^4$ with $\text{hcf}(v_1, v_2, v_3, v_4) = 1$. We denote the reduction of ν mod t by $\tilde{\nu} = (\tilde{v}_1, \tilde{v}_2, \tilde{v}_3, \tilde{v}_4) \in \mathbb{Z}_t^4$. To fix things we shall say, arbitrarily, that ν is positive if the first non-zero entry \tilde{v}_1 of $\tilde{\nu}$ satisfies $\tilde{v}_1 \in \{1, \ldots, (t-1)/2\}$ (remember that we have assumed that t is odd). Then each line has a unique positive primitive generator.

If $\nu = (v_1, v_2, v_3, v_4) \in \mathbb{Z}^4$, we define the t-divisor to be $r = \text{hcf}(t, v_1, v_3)$.
Proposition IV.1 The lines \(\mathbb{Q}v \) and \(\mathbb{Q}w \) spanned by positive primitive vectors \(v, w \in \mathbb{Z}^4 \) are in the same \(\Gamma_l^{\text{pl}} \)-orbit if and only if \((\bar{v}_1, \bar{v}_3) = (\bar{w}_1, \bar{w}_3)\) (in particular \(v \) and \(w \) have the same \(t \)-divisor, \(r \)), and \((v_2, v_4) \equiv \pm (w_2, w_4) \mod r \).

Proof. Note that if \(\Gamma(t) \) is the principal congruence subgroup of level \(t \) in \(\text{Sp}(4, \mathbb{Z}) \) then \(\Gamma(t) < \Gamma_t^1 \) and the quotient is

\[
\Gamma^1_t(t) = \left\{ \begin{pmatrix} 1 & k & 0 & k' \\ 0 & 1 & 0 & 0 \\ 0 & l & 1 & l' \\ 0 & 0 & 0 & 1 \end{pmatrix} \in \text{Sp}(4, \mathbb{Z}_t) \right\} \cong \mathbb{Z}_t^4.
\]

We claim that two primitive vectors \(v \) and \(w \) are equivalent modulo \(\Gamma(t) \) if and only if \(\vec{v} = \vec{w} \). It is obvious that \(\Gamma(t) \) preserves the residue classes \(\mod t \). Conversely, suppose that \(\vec{v} = \vec{w} \). Then we can find \(\gamma \in \text{Sp}(4, \mathbb{Z}) \) such that \(\gamma v = (1, 0, 0, 0) \) (the corresponding geometric fact is that the moduli space \(\mathcal{A}_2 \) of principally polarised abelian surfaces has only one rank 1 cusp). Since \(\Gamma(t) < \text{Sp}(4, \mathbb{Z}) \) this means that in order to prove the claim we may assume \(v = (1, 0, 0, 0) \). Then we proceed exactly as in the proof of [5, Lemma 3.3], taking \(p = 1 \) and \(q = t \) (the assumptions that \(p \) and \(q \) are prime are not used at that point).

The group \(\Gamma^1_t(t) \) acts on the set \((\mathbb{Z}_t^4)^\times \) of non-zero elements of \(\mathbb{Z}_t^4 \) by \(\vec{v}_2 \mapsto \vec{v}_2 + k\vec{v}_1 + l\vec{v}_3 \) and \(\vec{v}_4 \mapsto \vec{v}_4 + k'\vec{v}_1 + l'\vec{v}_3 \); so \(\vec{v} \) is equivalent to \(\vec{w} \) if and only if \((\vec{v}_1, \vec{v}_3) = (\vec{w}_1, \vec{w}_3) \), so they have the same \(t \)-divisor, and \(\vec{v}_2 \in \vec{w}_2 + \mathbb{Z}_t r \) and \(\vec{v}_4 \in \vec{w}_4 + \mathbb{Z}_t r \). These are therefore the conditions for primitive vectors \(v \) and \(w \) to be equivalent under \(\Gamma^1_t \). For equivalence under \(\Gamma^{\text{pl}}_l \), we get the extra element \(\zeta \) which makes \((v_1, v_2, v_3, v_4) \equiv (v_1, -v_2, v_3, -v_4) \) equivalent to \((v_1, v_2, v_3, v_4) \).

Since we are interested in orbits of lines, not primitive generators, we may restrict ourselves to positive generators \(v \).

The irreducible components of the boundary divisor of \(\mathcal{A}^{\text{pl}}_l \) correspond to the \(\Gamma^{\text{pl}}_l \)-orbits (or equivalently to \(\Gamma^1_l \)-orbits) of lines in \(\mathbb{Q}^4 \). We denote the boundary component corresponding to \(\mathbb{Q}v \) by \(D_v \). We shall be chiefly interested in the cases \(r = t \) and \(r = 1 \). We refer to these as the standard components. They are represented by vectors \((0, a, 0, b)\) and \((a, 0, b, 0)\) respectively, in both cases with \(\gcd(a, b) = 1 \), \(0 \leq a \leq (t-1)/2 \) and \(0 \leq b < t \). Note that there are \(\nu \) of each of these.

Corollary IV.2 If \(t \) is odd then the number of irreducible boundary divisors of \(\mathcal{A}^{\text{pl}}_l \) with \(t \)-divisor \(r \) is \(\#\Phi_2(h) \#\overline{\Phi}_2(r) \), where \(h = t/r \). For \(r \neq 1, t \), this is equal to \(\frac{1}{4} \phi_2(h) \phi_2(r) \).

Proof. See above for the standard cases. In general, the \(\Gamma^1_t \)-orbit of a primitive vector \(v \) is determined by the classes of \((v_1/r, v_3/r) \) in \(\Phi_2(h) \) and of
$(\bar{v}_2, \bar{v}_4) \in \Phi_2(r)$. The extra element ζ and the freedom to multiply v by $-1 \in \mathbb{Q}$ allow us to multiply either of these classes by -1 and the choices therefore lie in $\Phi_2(h)$ and $\Phi_2(r)$.

\section{Jacobi forms}

In this section we shall describe the behaviour of a modular form $F \in S_k^+(\Gamma_{h}^{\text{hol}})$ near a boundary divisor D_v. The standard boundary divisors are best treated separately, since it is in those cases only that the torsion plays a role: on the other hand, the standard boundary divisors occur for all t and their behaviour is not much dependent on the factorisation of t. We assume at first, then, that D_v is a nonstandard boundary divisor. Since all the divisors of given t-divisor are equivalent under the action of $\mathbb{Z}_2 \wr \text{SL}(2, \mathbb{Z}_2)$, (because the t-divisor is the only invariant of a boundary divisor of \mathcal{A}_t: see [5]) it will be enough to calculate the number of conditions imposed by one divisor of each type. That is to say, we only need consider boundary components in A_t^+. In view of this we may take $v = (0, 0, r, 1)$ for some $r \mid t$ with $1 < r < t$. We write $(0, 0, 0, 1) = v_{(0, 1)}$ (for consistency with [11]) and we put $h = t/r$. Since we want to work with Γ_h^{hol} rather than Γ_h^1 (so as to use fractional linear transformations) we must consider the lines $\mathbb{Q}vR_t = \mathbb{Q}v'$, where $v' = (0, 0, 1, h)$, and $\mathbb{Q}v_{(0, 1)}R_t = \mathbb{Q}v_{(0, 1)}$. Note that $v'Q_r = v_{(0, 1)}$, where

$$Q_r = \begin{pmatrix} 1 & 1 & 0 & 0 \\ h - 1 & h & 0 & 0 \\ 0 & 0 & h & 1 - h \\ 0 & 0 & -1 & 1 \end{pmatrix} \in \text{Sp}(4, \mathbb{Z}).$$

Proposition V.1 If v has t-divisor $r \neq t$, 1, and $F \in S_k^+(\Gamma_{h}^{\text{hol}})$ is a cusp form of weight k, then there are coordinates τ_1^v, τ_2^v such that F has a Fourier expansion near D_v as

$$F = \sum_{u \geq 0} \theta_v^u(\tau_1^v, \tau_2^v) \exp 2\pi i uw\tau_2^v/r.$$

Proof. As usual (cf. [11]) we write P_v' for the stabiliser of v' in Sp(4, \mathbb{R}), so $P_v = Q^{-1}P_{v_{(0, 1)}}Q$. We take $P_v^t = P_v' \cap \Gamma_h^{\text{hol}}$: this group determines the structure of A_t^+. It is shown in [11, Proposition I.3.87] that $P_{v_{(0, 1)}}$ is generated by $g_1(\gamma)$ for $\gamma \in \text{SL}(2, \mathbb{R})$, $g_2 = \zeta$, $g_3(m, n)$ and $g_4(s)$ for $m, n, s \in \mathbb{R}$, where

$$g_1(\gamma) = \begin{pmatrix} a & 0 & b & 0 \\ 0 & 1 & 0 & 0 \\ c & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{for} \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$
and g_3 and g_4 are given by

$$g_3(m, n) = \begin{pmatrix} 1 & 0 & 0 & n \\ m & 1 & n & 0 \\ 0 & 1 & 0 & -m \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad g_4(s) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & s \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

So P_v' includes the subgroup generated by all elements of the form $Q_{r}^{-1}g_iQ_r$ with $a, b, c, d, m, n, s \in \mathbb{Z}$ which lie in Γ_{t}^{isl}. In particular it includes the lattice

$$\{Q_{r}^{-1}g_{i}(rts)Q_r \mid s \in \mathbb{Z}\}.$$

If we take $Z^v = Q_{r}^{-1}(Z)$ for $Z = \begin{pmatrix} \tau_1 & \tau_2 \\ \tau_2 & \tau_3 \end{pmatrix}$ then we obtain

$$Z^v = \begin{pmatrix} h^2\tau_1 - 2h\tau_2 + \tau_3 & -h(h - 1)\tau_1 + (2h - 1)\tau_2 - \tau_3 \\ -(h - 1)^2\tau_1 - 2(h - 1)\tau_2 + \tau_3 \end{pmatrix}.$$

One easily checks that

$$Q_{r}^{-1}g_i(rt)Q_r : Z^v \rightarrow \begin{pmatrix} \tau_1^v & \tau_2^v \\ \tau_2^v & \tau_3^v + rt \end{pmatrix}$$

and this proves the result. \hfill \Box

We define a subgroup $\Gamma(t, r)$ of $\text{SL}(2, \mathbb{Z})$ by

$$\Gamma(t, r) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a \equiv d \equiv 1 \text{ mod } t, \ b \equiv 0 \text{ mod } r^2, \ c \equiv 0 \text{ mod } r \right\}.$$

Lemma V.2 If D_v is nonstandard then P_v' is torsion-free.

Proof. The only torsion in Γ_{t}^{isl} is 2-torsion and a simple calculation shows that if $1_4 \neq g \in P_v(0, 1)$ and $g^2 = 1_4$, then $Q_{r}^{-1}gQ_r \in \Gamma_{t}^{\text{isl}}$ for $r \neq 1, t$. \hfill \Box

Proposition V.3 If D_v is nonstandard and $F \in \mathcal{H}_v^*(\Gamma_{t}^{\text{isl}})$ then $\theta_v^*(r\tau_1^v, t\tau_2^v)$ is a Jacobi form of weight k and index w for $\Gamma(t, r)$.

Proof. By direct calculation we find that $Q_{r}^{-1}g_1(\gamma)Q_r \in \Gamma_{t}^{\text{isl}}$ if $\gamma \in \Gamma(t, r)$ and $Q_{r}^{-1}g_3(rm, tn)Q_r \in \Gamma_{t}^{\text{isl}}$ for $m, n \in \mathbb{Z}$. Using these two elements, another elementary calculation verifies that the transformation laws for Jacobi forms given in [4] are satisfied, since

$$Q_{r}^{-1}g_3(rm, tn)Q_r : Z^v \rightarrow \begin{pmatrix} \tau_1^v & \tau_2^v + rm\tau_1^v + tn \\ \tau_2^v + rm\tau_1^v + tn & \tau_3^v + 2rm\tau_2^v + r^2m^2\tau_1^v \end{pmatrix}$$

and

$$Q_{r}^{-1}g_1(\gamma)Q_r : Z^v \rightarrow \begin{pmatrix} \gamma(\tau_1^v) & \tau_2^v/(c\tau_1^v + d) \\ \tau_2^v/(c\tau_1^v + d) & \tau_3^v - c\tau_2^v/(c\tau_1^v + d) \end{pmatrix}.$$

\hfill \Box
Lemma V.4 The index of $\Gamma(t,r)$ in $\Gamma(1)$ is equal to $rt\phi(t)$ for $r \neq 1, t$.

Proof. Consider the chain of groups

$$
\Gamma(1) = \text{SL}(2, \mathbb{Z}) > \Gamma_0(t) > \Gamma_0(t)(r) > \Gamma(t,r)
$$

and the normal subgroup $\Gamma_1(t) \triangleleft \Gamma_0(t)$, where

$$
\Gamma_0(t) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z}) \mid \begin{array}{l}
 a \equiv d \equiv 1 \pmod{t}, \\
 b \equiv 0 \pmod{t}
\end{array} \right\},
$$

$$
\Gamma_1(t) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z}) \mid \begin{array}{l}
 a \equiv d \equiv 1 \pmod{t}, \\
 b \equiv c \equiv 0 \pmod{t}
\end{array} \right\},
$$

$$
\Gamma_0(t)(h) = \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z}) \mid \begin{array}{l}
 a \equiv d \equiv 1 \pmod{t}, \\
 b \equiv 0 \pmod{t},
 c \equiv 0 \pmod{h}
\end{array} \right\}.
$$

Thus $\Gamma_0(t)(r)$ is the kernel of reduction mod r in $\Gamma_0(t)$. By Corollary II.2, $[\Gamma(1) : \Gamma_1(t)] = t\phi(t)$. By the exact sequence

$$
0 \longrightarrow \Gamma_1(t) \longrightarrow \Gamma_0(t) \longrightarrow \left\{ \begin{pmatrix} 1 & 0 \\ \bar{c} & 1 \end{pmatrix} \mid \bar{c} \in \mathbb{Z}_t \right\} \cong \mathbb{Z}_t \longrightarrow 0
$$

we have $[\Gamma_0(t) : \Gamma_1(t)] = t$, and similarly

$$
0 \longrightarrow \Gamma_0(t)(r) \longrightarrow \Gamma_0(t) \longrightarrow \left\{ \begin{pmatrix} 1 & 0 \\ \bar{c} & 1 \end{pmatrix} \mid \bar{c} \in \mathbb{Z}_r \right\} \cong \mathbb{Z}_r \longrightarrow 0
$$

gives $[\Gamma_0(t) : \Gamma_0(t)(r)] = r$.

To calculate $[\Gamma(t)(r) : \Gamma(t,r)]$ we let $\Gamma_0(t)(r)$ act on $\mathbb{Z}_t \times \mathbb{Z}_{t^2}$ by multiplication on the right, i.e. by $\gamma : (x, y) \mapsto (ax + cy, bx + dy)$. The stabilizer of $(1, 0) \in \mathbb{Z}_t \times \mathbb{Z}_{t^2}$ is then $\{ \gamma \in \Gamma_0(t)(r) \mid a \equiv 1 \pmod{t}, b \equiv 0 \pmod{t^2}, \}$, which is $\Gamma(t,r)$. On the other hand the orbit of $(1,0) \in \mathbb{Z}_t \times \mathbb{Z}_{t^2}$ is $\left\{ (a, b) \in \mathbb{Z}_t \times \mathbb{Z}_{t^2} \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(t)(r) \right\}$: that is, the set of possible first rows of a matrix in $\Gamma_0(t)(r)$ taken mod t in the first column and mod t^2 in the second. This is evidently equal to $\{(1, t'b') \mid b' \in \mathbb{Z}_t\}$, and hence of size t. Thus $[\Gamma(t)(r) : \Gamma(t,r)] = t$, which completes the proof. \hfill \Box

The standard case is only slightly different, but now there is torsion.

Proposition V.5 If D_v is standard and $F \in \mathfrak{S}_k^1(\Gamma^k_{11})$ then $\theta^+_w(r^2\gamma, t^2\gamma^2)$ is a Jacobi form of weight k and index w for a group $\Gamma^k(t,r)$, which contains $\Gamma(t,r)$ as a subgroup of index 2.

Proof. Although the standard boundary components are most obviously given by $(0,0,0,1)$ for $r = t$ and $(0,0,1,0)$ for $r = 1$, we choose to take advantage of the calculations that we have already performed by working instead with $(0,0,t,1)$ and $(0,0,1,1)$. Lemma V.3 is still true, but we also have $Q^{-1}_r(1)Q_t \in \Gamma^k_{11}$ and $Q^{-1}_t(-z)Q_1 \in \Gamma^k_{11}$. These give rise to the stated extra invariance. \hfill \Box
Lemma V.6 The dimension of the space $J_{3k, w}(\Gamma'(t, r))$ of Jacobi forms of
weight $3k$ and index w for $\Gamma'(t, r)$ is given as a polynomial in k and w by
$$\dim J_{3k, w}(\Gamma'(t, r)) = \delta rtv \left(\frac{kw}{2} + \frac{w^2}{6} \right) + \text{linear terms}$$
where $\delta = \frac{1}{2}$ if $r = 1$ or $r = t$ and $\delta = 1$ otherwise.

Proof. By [4, Theorem 3.4] we have
$$\dim J_{3k, w}(\Gamma'(t, r)) \leq \sum_{i=0}^{2w} \dim \mathcal{S}_{3k+i}(\Gamma'(t, r)). \tag{4}$$
Since $\Gamma'(t, r)$ is torsion-free, the corresponding modular curve has genus
$$1 + \frac{\mu(t, r)}{12} - \frac{\nu(t, r)}{2},$$
where $\mu(t, r)$ is the index of $\Gamma'(t, r)$ in $\text{PSL}(2, \mathbb{Z})$ and $\nu(t, r)$
is the number of cusps (see [18, Proposition 1.40]). Hence by [18, Theorem 2.23] the space of modular forms satisfies
$$\dim \mathcal{S}_k(\Gamma'(t, r)) = k \left(\frac{\mu(t, r)}{12} - \frac{\nu(t, r)}{2} \right) + \frac{k^2}{2} \nu(t, r) + O(1)$$
$$= \frac{k\mu(t, r)}{12} + O(1) \tag{5}$$
as a polynomial in k. By Lemma V.4 we have $\mu(t, r) = \frac{1}{2}rt\phi_2(t) = rtv$ for the nonstandard cases, $\mu(t, 1) = \frac{1}{2}tv$ and $\mu(t, t) = \frac{1}{2}t^2v$. Now the result follows from equations (5) and (4).

If $F \in \mathcal{S}_{3k}^{\infty}(\Gamma'_t)$ then $F,(d\tau_1 \wedge d\tau_2 \wedge d\tau_3)^{\otimes k}$ extends over the component D_F if and only if $\theta_{w, k}^t = 0$ for all $w < k$; see [1, Chapter IV, Theorem 1]. Hence the obstruction Ω_F coming from the boundary component D_F is
$$\Omega_F = \sum_{w=0}^{k-1} \dim J_{3k, w}(\Gamma'(t, r)) \tag{6}$$
where $\Gamma'(t, r) = \Gamma(t, r)$ if D_F is nonstandard.

By Corollary IV.2 the total obstruction from the boundary is
$$\Omega_\infty = \sum_{r \mid t} \#\Phi(h) \#\Phi(r) \sum_{w=0}^{k-1} \dim J_{3k, w}(\Gamma'(t, r)),$$
and we may assume that k is even.

Corollary V.7 The obstruction coming from the boundary is
$$\Omega_\infty \leq \left(\sum_{r \mid t} \delta rtv \#\Phi(h) \#\Phi(r) \right) \frac{11k^3}{30} + O(k^2).$$

Proof. Summing the expression in Lemma V.6 for $0 \leq w < k$, as required by equation (6) gives the coefficient of $\frac{11k^3}{30}$ and the rest comes directly from Lemma V.6 and Corollary IV.2. \qed
VI Intersection numbers

We need to know the degrees of the normal bundles of the curves that generate $\text{Pic} \ H_1$ and $\text{Pic} \ H_2$. For this we first need to describe the surfaces H_1 and H_2. The statements and the proofs are very similar to the corresponding results for the case of $\mathcal{A}_p^{\text{lev}}$, given in [11] and [12]. Therefore we simply refer to those sources for proofs, pointing out such differences as there are.

Proposition VI.1 H_1 is isomorphic to $X(t) \times X(t)$.

Proof. Identical to [11, I.5.53].

Proposition VI.2 H_2 is the minimal resolution of a surface \tilde{H}_2 which is given by two $\text{SL}(2,\mathbb{Z}_2)$-covering maps

$$X(2t) \times X(2t) \twoheadrightarrow \tilde{H}_2 \twoheadrightarrow X(t) \times X(t).$$

The singularities that are resolved are v^2 ordinary double points, one over each point $(\alpha, \beta) \in X(t) \times X(t)$ for which α and β are cusps.

Proof. Similar to [11, Proposition I.5.55] and the discussion before [12, Proposition 4.21]. $X(2)$ and $X(2p)$ are both replaced by $X(2t)$ and $X(1)$ and $X(p)$ by $X(t)$. Since $t > 3$ there are no elliptic fixed points and hence no other singularities in this case.

Proposition VI.3 H_1° and H_2° meet the standard boundary components D_v transversally in irreducible curves $C_v \cong X^\circ(t)$ and $C'_v \cong X^\circ(2t)$ respectively. D_v is isomorphic to the (open) Kummer modular surface $K^\circ(t)$, C_v is the zero section and C'_v is the 3-section given by the 2-torsion points of the universal elliptic curve over $X(t)$.

Proof. This is essentially the same as [11, Proposition I.5.49], slightly simpler in fact. We may work with $v = (0,0,1,0)$ and copy the proof for the central boundary component in $\mathcal{A}_p^{\text{lev}}$, replacing p by t (again the fact that p is prime is not used).

We do not claim that the closure of D_v is the Kummer modular surface $K(t)$. They are, however, isomorphic near H_1 and H_2. We remark that H_1 and H_2 do not meet the nonstandard boundary divisors, because of Lemma V.2.

Proposition VI.4 $\mathcal{A}_t^{\text{gal}}$ is smooth near H_1 and H_2.

Proof. Certainly $\mathcal{A}_t^{\text{gal}}$ is smooth since the only torsion in Γ_t^{gal} is 2-torsion fixing a divisor in \mathcal{H}_2. There can in principle be singularities at infinity, but such singularities must lie on corank 2 boundary components not meeting H_1 nor H_2 (again this follows from Lemma V.2).
Corollary VI.5 H_1 does not meet H_2.

Proof. Since A^{bl}_t and the divisors H_1 and H_2 are smooth at the relevant points, the intersection must either be empty or contain a curve. However, the intersection also lies in the corank 2 boundary components. These components consist entirely of rational curves, and if $t > 5$ then $H_1 \cong X(t) \times X(t)$ contains no rational curves. Hence $H_1 \cap H_2 = \emptyset$.

With a little more work one can check that this is still true for $t \leq 5$, but we are in any case not concerned with that. □

Proposition VI.6 The Picard group $\text{Pic} H_1$ is generated by the classes of $\Sigma_1 = \mathcal{C}_{0010}$ and $\Psi_1 = \mathcal{C}_{0001}$. The intersection numbers are $\Sigma_1^2 = \Psi_1^2 = 0$, $\Sigma_1 . \Psi_1 = 1$ and $\Sigma_1 . H_1 = \Psi_1 . H_1 = -\mu / 6$.

Proof. As in [12, Proposition 4.18] (but one has to use the alternative indicated in the remark that follows). □

Proposition VI.7 The Picard group $\text{Pic} H_2$ is generated by the classes of Σ_2 and Ψ_2, which are the inverse images of general fibres of the two projections in $X(t) \times X(t)$, and of the exceptional curves $R_{\alpha \beta}$ of the resolution $H_2 \rightarrow \hat{H}_2$. The intersection numbers in H_2 are $\Sigma_2^2 = \Psi_2^2 = \Sigma_2 . R_{\alpha \beta} = \Psi_2 . R_{\alpha \beta} = 0$, $R_{\alpha \beta} . R_{\alpha' \beta'} = -2 \delta_{\alpha \alpha'} \delta_{\beta \beta'}$ and $\Sigma_2 . \Psi_2 = 6$. In A^{bl}_t we have $\Sigma_2 . H_2 = \Psi_2 . H_2 = -\mu$ and $R_{\alpha \beta} . H_2 = -4$.

Proof. The same as the proofs of [12, Proposition 4.21] and [12, Lemma 4.24]. The curves $R'_{(a, b)}$ from [12] arise from elliptic fixed points so they are absent here. □

Notice that Σ_2 and Ψ_2 are also images of the general fibres in $X(2t) \times X(2t)$ and are themselves isomorphic to $X(2t)$.

VII Branch locus

The closure of the branch locus of the map $\mathbb{H}_2 \rightarrow A^{\text{bl}}_t$ is $H_1 \cup H_2$ and modular forms of weight $3k$ (for k even) give rise to k-fold differential forms with poles of order $k/2$ along H_1 and H_2. We have to calculate the number of conditions imposed by these poles.

Proposition VII.1 The obstruction from H_1 to extending modular forms of weight $3k$ to k-fold holomorphic differential forms is

$$\Omega_1 \leq \nu^2 \left(\frac{1}{2} - \frac{2t}{21} + \ell^2 \left(\frac{1}{21} + \frac{1}{80t} \right) \right) k^3 + O(k^2).$$
Proof. If F is a modular form of weight $3k$ for k even, vanishing to sufficiently high order at infinity, and $\omega = d\tau_1 \wedge d\tau_2 \wedge d\tau_3$, then $F \omega^k$ determines a section of $kK + \frac{b}{2}H_1 + \frac{b}{2}H_2$, where K denotes the canonical sheaf of \mathcal{A}_{12}^k. From

$$0 \rightarrow \mathcal{O}(-H_1) \rightarrow \mathcal{O} \rightarrow \mathcal{O}_{H_1} \rightarrow 0$$

we get, for $0 \leq j < k/2$

$$0 \rightarrow H^0(kK + (\frac{b}{2} - j - 1)H_1 + \frac{b}{2}H_2) \rightarrow H^0(kK + (\frac{b}{2} - j)H_1 + \frac{b}{2}H_2)$$

$$\rightarrow H^0((kK + (\frac{b}{2} - j)H_1 + \frac{b}{2}H_2)|_{H_1})$$

so

$$h^0(kK + (\frac{b}{2} - j)H_1 + \frac{b}{2}H_2) \leq h^0(kK + (\frac{b}{2} - j - 1)H_1 + \frac{b}{2}H_2)$$

$$+ h^0((kK + (\frac{b}{2} - j)H_1 + \frac{b}{2}H_2)|_{H_1}).$$

Note that, by Lemma VI.5, $H_2|_{H_1} = 0$. Therefore

$$h^0(kK + \frac{b}{2}H_2) \geq h^0(kK + \frac{b}{2}H_1 + \frac{b}{2}H_2) + \sum_{j=0}^{k/2-1} h^0((kK + (\frac{b}{2} - j)H_1)|_{H_1}),$$

so

$$\Omega_1 \leq \sum_{j=0}^{k/2-1} h^0((kK + (\frac{b}{2} - j)H_1)|_{H_1}) = \sum_{j=0}^{k/2-1} h^0(kK_{H_1} - (\frac{b}{2} + j)H_1|_{H_1}). \quad (7)$$

By Lemma VI.6, K_{H_1} and $H_1|_{H_1}$ are both multiples of $\Sigma_1 + \Phi_1$, and any positive multiple of $\Sigma_1 + \Psi_1$ is ample. Suppose $H_1|_{H_1} = a_1(\Sigma_1 + \Psi_1)$ and $K_{H_1} = b_1(\Sigma_1 + \Psi_1)$. Then

$$-\frac{\mu}{6} = \Sigma_1.H_1 = a\Sigma_1.(\Sigma_1 + \Psi_1) = a_1$$

and

$$\frac{\mu}{6} - \nu = 2g(\Sigma_1) - 2 = (K_{H_1} + \Sigma_1).\Sigma_1 = K_{H_1}.\Sigma_1 = b_1$$

Hence, using equation (7)

$$\Omega_1 \leq \sum_{j=0}^{k/2-1} h^0((\frac{b\nu}{6} - k\nu + \frac{b\mu}{6} + \frac{b\mu}{6})(\Sigma_1 + \Psi_1))$$

$$= \sum_{j=0}^{k/2-1} h^0((\frac{b\nu}{6} - k\nu + \frac{\mu\nu}{6})(\Sigma_1 + \Psi_1)).$$
Since $t \geq 7$ (we know from [14] that A_{i}^{13} is rational for $t \leq 5$), we have $\frac{3}{4}k\nu - k\nu + \frac{i}{6}\nu - \frac{\nu}{6} + \nu > 0$ for all j and hence $(\frac{3}{4}k\nu - k\nu + \frac{i}{6}\nu)(\Sigma + \Psi) - K_{H_{1}}$ is ample. So by vanishing we have

$$\Omega_{1} \leq \sum_{j=0}^{k/2-1} \left(\frac{k}{4} - k\nu + \frac{i}{6}\nu \right)^{2} (\Sigma + \Psi)^{2} + O(k^{2})$$

$$= \sum_{j=0}^{k/2-1} \left(\frac{k}{4} - k\nu + \frac{i}{6}\nu \right)^{2} + O(k^{2})$$

$$= \nu^{2} \left(\frac{1}{2} - \frac{7}{3}t + \frac{1}{2} \right) k^{3} + O(k^{2}).$$

\[\square\]

Next we carry out the same calculation for H_{2}.

Proposition VII.2 The obstruction from H_{2} is

$$\Omega_{2} \leq \nu^{2} \left(\frac{1}{2} + \frac{1}{6} \right) t^{2} - \left(\frac{1}{4} + \frac{1}{3} \right) t - \frac{7}{8} + \frac{1}{3} t^{3} + O(k^{2}).$$

Proof. By the same argument as above (equation (7)) the obstruction is

$$\Omega_{2} \leq \sum_{j=0}^{k/2-1} k^{0} (kK_{H_{2}} - \frac{k}{4} + j) \Omega_{2}|_{H_{2}}.$$

In this case $H_{2}|_{H_{2}} = a_{2}(\Sigma + \Psi) + c_{2}R$, where $R = \sum_{\alpha,\beta} R_{\alpha,\beta}$ is the sum of all the exceptional curves of $H_{2} \to \tilde{H}_{2}$, and $K_{H_{2}} = b_{2}(\Sigma + \Psi) + d_{2}R$. Since $\Sigma \cong X(2t)$ we have by [18, 1.6.4]

$$2g(\Sigma) - 2 = \frac{1}{3}(t - 3)\nu(2t) = \mu - \frac{\nu}{7}.$$

Hence

$$-\mu = \Sigma_{2}.H_{2} = a_{2}\Sigma_{2} + a_{2}\Sigma_{2}.\Psi_{2} + c_{2}\Sigma_{2}.R = 6a_{2}$$

so $a_{2} = -\mu/6$, and

$$-4\nu^{2} = R.H_{2} = a_{2}\Sigma_{2}.R + a_{2}\Psi_{2}.R + c_{2}R^{2} = -2\nu^{2}c_{2}$$

so $c_{2} = 2$. Therefore

$$H_{2}|_{H_{2}} = -\frac{\nu}{6}(\Sigma + \Psi) + 2R.$$

Similarly

$$\mu - \frac{\nu}{7} = (K_{H_{2}} + \Sigma_{2}) = 6b_{2}$$

so $b_{2} = \mu/6 - \nu/12$, and $0 = R.K_{H_{2}} = d_{2}R^{2}$ so $d_{2} = 0$. Hence

$$K_{H_{2}} = \frac{1}{6}(\mu - \frac{\nu}{7})(\Sigma + \Psi).$$

17
Moreover \(L_j = (k - 1)K_{H_2} - (\frac{k}{2} + j)H_2 \mid_{H_2} \) is ample, as is easily checked using the Nakai criterion and the fact that the cone of effective curves on \(H_2 \) is spanned by \(R_{\alpha\beta} \) and by the non-exceptional components of the fibres of the two maps \(H_2 \to X(t) \). These components are \(\Sigma_{\alpha} \equiv \Sigma_{2} - \sum_{\beta} R_{\alpha\beta} \) and \(\Psi_{\beta} \equiv \Psi_{2} - \sum_{\alpha} R_{\alpha\beta} \), and it is simple to check that \(L_j^2, L_j, \Sigma_{\alpha} = L_j, \Psi_{\beta} \) and \(L_j R_{\alpha\beta} \) are all positive for the relevant values of \(j, k \) and \(t \). Therefore

\[
\Omega_2 \leq \sum_{j=0}^{k/2-1} \frac{1}{2} (kK_{H_2} - \frac{k}{2} + j)H_2 \mid_{H_2}^2
\]

\[
= \sum_{j=0}^{k/2-1} \frac{1}{2} \left(\nu \left(\frac{k}{2} - \frac{k}{2} + j \right) \left(\Sigma_{2} + \Psi_{2} \right) + (k + 2j)R \right)^2
\]

\[
= \nu^2 k^2 \left(\frac{2}{3} + \frac{1}{3} + \frac{1}{3} - t \left(\frac{1}{3} + \frac{1}{3} + \frac{1}{3} - 2 - \frac{1}{3} \right) + O(k^2) \right)
\]

since \(\left(\Sigma_{2} + \Psi_{2} \right)^2 = 12 \). \(\square \)

VIII Final calculation

In this section we assemble the results of the previous sections into a proof of the main theorem.

Theorem VIII.1 \(\mathcal{A}_t^{lab} \) is of general type for \(t \) odd and \(t \geq 17 \).

Proof. We put \(n = 3k \) in Theorem II.6, and use \(\phi_2(t) = 2\nu \) and the fact that

\[
\phi_4(t) = \prod_{p \mid t} (1 - p^{-1}) = t^2 \phi_2(t) \prod_{p \mid t} (1 + p^{-2}).
\]

This gives the expression

\[
\dim \mathcal{G}_n^s(\Gamma_t^{lab}) = \frac{k^3 \nu^2}{320} t^4 \prod_{p \mid t} (1 + p^{-2}) + O(k^2).
\]

From Proposition VII.1 and Proposition VII.2 we have

\[
\Omega_1 = k^3 \nu^2 \left(\frac{37}{360} t^2 - \frac{7}{24} t + \frac{1}{2} \right) + O(k^2),
\]

\[
\Omega_2 = k^3 \nu^2 \left(\frac{37}{360} t^2 - \frac{7}{24} t - \frac{5}{24} \right) + O(k^2)
\]

and from Corollary V.7 and Corollary IV.2

\[
\Omega_\infty = k^3 \nu^2 \sum_{p \mid t} \frac{11}{360} t^2 \prod_{p \mid r \mid h} (1 - p^{-2}) + O(k^2),
\]

since \(\phi_2(r) \phi_2(h) = t^2 \prod_{p \mid r \mid h} (1 - p^{-2}) \).
It follows that \(\mathcal{A}_t^{\text{bl}} \) is of general type, for odd \(t \), provided

\[
\frac{1}{320} \prod_{p|t} (1 + p^{-2}) t^4 - \frac{481}{864} t^2 + \frac{7}{12} t + \frac{43}{24} - \sum_{r|t} \frac{11}{36r^2} \prod_{p|(r,h)} (1 - p^{-2}) > 0. \tag{8}
\]

This is simple to check: since either \(r = 1 \) or \(r \geq 3 \), and since the sum of the divisors of \(t \) is less than \(t/2 \), the last term can be replaced by \(-\frac{11}{36} t^2 - \frac{11}{108} t^3\) and the \(t \) and constant terms, and the the \(p^{-2} t^4 \) term, can be discarded as they are positive. The resulting expression is a quadratic in \(t \) whose larger root is less than 40, so we need only consider odd \(t \leq 39 \). We deal with primes, products of two primes and prime powers separately. In the case of primes, the expression on the left-hand side of the inequality (8) becomes \(\frac{1}{320} t^4 - \frac{7433}{8640} t^2 + \frac{5}{18} t + \frac{43}{24} \), which is positive for \(t \geq 17 \). The expression in the case of \(t = pq \) is positive if \(t \geq 21 \). For \(t = p^2 \) we get an expression which is negative for \(t = 9 \) but positive for \(t = 25 \), and for \(t = p^3 \) the expression is positive.

One can say something even for \(t \) even, though not if \(t \) is a power of 2.

Corollary VIII.2 \(\mathcal{A}_t^{\text{bl}} \) is of general type unless \(t = 2^a b \) with \(b \) odd and \(b < 17 \).

Proof. \(\mathcal{A}_n^{\text{bl}} \) covers \(\mathcal{A}_t^{\text{bl}} \) for any \(n \), and therefore \(\mathcal{A}_n^{\text{bl}} \) is of general type if \(\mathcal{A}_t^{\text{bl}} \) is of general type. \(\square \)

References

G.K. Sankaran
Department of Mathematical Sciences
University of Bath
Bath BA2 7AY
England

gks@maths.bath.ac.uk