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That’s a quick way of saying p has no factors except itself and 1
and, oh yes, 1 isn’t a prime. . . because we say it isn’t. Why not?
Well, wait and see.
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Are you sure?

All right: here’s the real mathematician’s definition of a prime:

We say that p is a prime number if it is bigger than 1, and
whenever p divides mn, automatically p divides m or n (or both).
By “p divides n” I mean that n

p is a whole number.
Hey, that’s not what you said before! It’s not what my teacher
said, either? What’s going on?
It’s all right. If p = mn then p can’t be prime, because p divides
mn but m

p and n
p are less than 1, so they can’t be whole numbers.

It’s also true that if p 6= mn then p is prime, but that’s slightly
harder: let’s not bother about it.
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Why isn’t 1 a prime?

Well, because we say so. But why do we say so?

One answer is: in
actual practice we find that we would keep having to say “suppose
p is a prime different from 1”, so we avoid that by saying it just
once. But there is a better reason.
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Unique factorisation

If I have a whole number n then I can find a lot of prime numbers
and multiply them all together so as to get n.

I don’t have any choice about which prime numbers I use (only
what order I write them in). They are called the prime factors of n.
If I allowed 1 as a prime, that wouldn’t be true, because
6 = 2× 3 = 1× 2× 3. So we’ll agree that 6 = 2× 3, and instead of
arguing about how many 1s to write, we’ll decide not to write any.



Unique factorisation

If I have a whole number n then I can find a lot of prime numbers
and multiply them all together so as to get n.
I don’t have any choice about which prime numbers I use (only
what order I write them in).

They are called the prime factors of n.
If I allowed 1 as a prime, that wouldn’t be true, because
6 = 2× 3 = 1× 2× 3. So we’ll agree that 6 = 2× 3, and instead of
arguing about how many 1s to write, we’ll decide not to write any.



Unique factorisation

If I have a whole number n then I can find a lot of prime numbers
and multiply them all together so as to get n.
I don’t have any choice about which prime numbers I use (only
what order I write them in). They are called the prime factors of n.

If I allowed 1 as a prime, that wouldn’t be true, because
6 = 2× 3 = 1× 2× 3. So we’ll agree that 6 = 2× 3, and instead of
arguing about how many 1s to write, we’ll decide not to write any.



Unique factorisation

If I have a whole number n then I can find a lot of prime numbers
and multiply them all together so as to get n.
I don’t have any choice about which prime numbers I use (only
what order I write them in). They are called the prime factors of n.
If I allowed 1 as a prime, that wouldn’t be true, because
6 = 2× 3 = 1× 2× 3.

So we’ll agree that 6 = 2× 3, and instead of
arguing about how many 1s to write, we’ll decide not to write any.



Unique factorisation

If I have a whole number n then I can find a lot of prime numbers
and multiply them all together so as to get n.
I don’t have any choice about which prime numbers I use (only
what order I write them in). They are called the prime factors of n.
If I allowed 1 as a prime, that wouldn’t be true, because
6 = 2× 3 = 1× 2× 3. So we’ll agree that 6 = 2× 3, and instead of
arguing about how many 1s to write, we’ll decide not to write any.



The sieve of Eratosthenes

How do you find out which numbers are prime?

Let’s make a list of all the numbers up to as far as we want to go,
starting from 2.
Cross out all the even numbers except 2; then cross out all the
multiples of 3 (except 3); then all the multiples of 5 (except 5);
and so on.
The primes are what’s left over. I didn’t need to bother about
multiples of 4: they had already gone, because they are even.
You need chocolate. . .
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How many primes are there?

The primes between 100 and 200 are

101, 103, 107, 109, 113, 127,
131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,
197 and 199. That’s twenty-one primes.
But with big numbers there aren’t so many. Between 1, 000, 000
and 1, 000, 100 there are only seven primes: 1, 000, 003,
1, 000, 033, 1, 000, 037, 1, 000, 039, 1, 000, 081 and 1, 000, 099.
Primes get rarer and rarer as the numbers get bigger.
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How many primes are there?

But there are infinitely many primes!

How do we know? How could you know a thing like that? You are
only ever going to see a few primes: how do you know that there
are more?
Suppose that the only primes are p1 = 2, p2 = 3 and so on up to
p7794929. Let’s multiply all those numbers together. This gives a
huge number which I’ll call K . Then I add 1. Is K + 1 prime? It
doesn’t have to be, but it does have prime factors. And those
aren’t on our list p1, p2, . . . , p7794929, because those all divide K ,
so they can’t divide K + 1 as well. So there must after all be some
more primes we didn’t know about.
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How common are primes?

Think of a number, N: without working it out, roughly how many
prime numbers less than N are there?

It turns out that there are about

N

number of digits of N

primes less than N. There is a formula which tells you, more
accurately than that but not perfectly, how many there should be.
It predicts that the nth prime should be about
n(log n + log log n − 1). That’s pretty good. I chose a random
number between a million and ten million, 7794929, and found
that the predicted value of the 7794929th prime is about
137450715 and the actual 7794929th prime is 137800093.
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Is the formula right?

If you calculate it you always find that there are slightly fewer
primes less than N than the formula says.

But that is because N is
less than Skewes’ number. If N were bigger than Skewes’ number
there might be slightly more primes than the formula says.
But Skewes’ number is absolutely enormous. (About 10316

nowadays.)
So you can’t always tell what is happening by looking at a few
cases, or even a few million cases.
There is a famous guess, called the Riemann hypothesis, which is
too complicated to explain now but would mean that prime
numbers occur fairly regularly. We know it is true for small
numbers because we can ask a computer, but whether it is always
true is one of the great unsolved problems of mathematics.
You need another break. . .
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Patterns in the primes

Let’s have a look at those problems.

A. Yes, you can do that with 23 and 41; but not with 39 = 3× 13.
13 times something can never be one more than a multiple of 39,
because that would mean two multiples of 13 in succession like
having consecutive Mondays. It’s another thing that makes primes
different from other numbers.
B. Yes, about half the primes are Left and half are Right. This
(and more) was proved by Dirichlet in 1837. Weirdly, slightly more
are Left (Chebyshev bias, 1853) but there are plenty of both.
C. Yes, you can always do this. But although we’ve suspected that
for centuries it was only proved by Harald Helfgott in 2013.
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What else?

5 is prime;

so is 5 + 6 = 11 and 5 + 6 + 6 = 17 and
5 + 6 + 6 + 6 = 23 and 5 + 6 + 6 + 6 + 6 = 29, but then it stops
because 5 + 6 + 6 + 6 + 6 + 6 = 35 = 5× 7. But maybe we could
go on for longer if we started somewhere else instead of 5, and
went in bigger steps instead of sixes.
Actually you can: you can go on as long as you like if you make
the right choices. And we’ve known that since 2004, when it was
proved by Ben Green and Terry Tao.
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go on for longer if we started somewhere else instead of 5, and
went in bigger steps instead of sixes.
Actually you can: you can go on as long as you like if you make
the right choices. And we’ve known that since
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What we don’t know

We don’t know whether there are infinitely many pairs like 17 and
19, where p and p + 2 are both prime.

But we do know that we can get p and p + k both prime infinitely
often for some k no bigger than seventy million (April 2013) no,
4680 (May 2013) no, 600 (November 2013) no, 236 (now) or
perhaps 12 (soon) or even 6 but not 2 yet.
We don’t know whether there are infinitely many pairs like 11 and
23, where p is prime (it’s called a Sophie Germain prime after the
mathematician who thought of this one) and 2p + 1 is also prime.
And we don’t know lots of other things. . .
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