MA40188 ALGEBRAIC CURVES 2015/16 SEMESTER 1
BRIEF EXAM SOLUTIONS

Problem 1

(a) The ideal of X is I(X) = {f € k[z1,--- ,z,] | f(p) =0V p € X}. The coordinate
ring of X is k[X] = k[zy,- -, x,]/I(X). We say X is irreducible if it cannot be written as
the union of two strictly smaller algebraic sets. If X is irreducible, then I(X) is a prime
ideal. [bookwork, 4]

(b) One direction: If X = V(I), then by Nullstellensatz we have I(X) = I(V(I)) = VI =1
since [ is a radical ideal. The other direction: Assume I = [(X). Write X = V(J) for some
ideal J C k[z1,--- ,z,]. By Nullstellensatz, V(I) = V(I(X)) = V(I(V(J))) = V(/J).
Since v/J D J, we have V(I) = V(v/J) C V(J) = X. For every point p € X, since
I =1(X), we have f(p) = 0 for every f € I. It follows that p € V(I) hence X C V(I).
Then we conclude that X = V(). [bookwork, 4]

(c) Consider the homomorphism ¢ : k[zy, -+ ,x,] — k defined by ¢(f) = f(ai, - ,a,).
Every a € k is the image of the constant polynomial a, hence ¢ is surjective and im ¢ = k.
Every polynomial f € k[xq,--- ,x,] can be written in the form of f = (x1 —ay)g1 + -+ +
(2, — an)gn + 7 for some polynomials gy, -+, g, and a constant r € k. This can be seen
by replacing each x; by [(z; — a;) + a;] throughout, expanding the square brackets while
leaving the round brackets untouched, and gathering terms involving each round bracket
(x; — a;). Using this expression we have ¢(f) = r. Therefore f € kerp <= r = 0 <=
f € I. This shows that ker ¢ = I. Using the fundamental isomorphism theorem, we have
kl[zy,--- ,x,]/] =k, which is a field. Therefore I is a maximal ideal. [exercise sheet, 4]

(d) Define polynomial maps ¢ : A — C;o(t) = (¢,t%,43) and ¥ : C — Al 9(x,y, 2) = .
Notice that (¢,¢%,¢3) € C since it satisfies the defining equations of C. For any ¢t € Al,
(60 @)(t) = (t, 2,8%) = t. For any (2,9, 2) € C, (g 0 )9, ) = ple) = (42 a%) =
(z,9y,2). Therefore A' and C' are isomorphic. [exercise sheet, 4]

(e) We need to show y* — f(x) is irreducible. Assume y?> — f(z) = p(z,y)q(x,y), then
the degrees of p and ¢ with respect to y are 2 and 0, or 1 and 1. In the first case
v — f(z) = (p2(2)y* + p1(x)y + po(x)) - qo(z), which implies py(z)qo(z) = 1, hence q¢ = g
is a constant. In the second case y* — f(z) = (p1(2)y + po(x)) - (¢1(2)y + qo(z)), which
implies p;(z)q:(z) = 1. Without loss of generality we assume p;(z) = ¢1(x) = 1. Then
we have py(z) + qo(x) = 0 and po(z)qo(z) = — f(z). It follows that f(z) = po(z)?, which
is impossible since deg f is odd. This proves y*> — f(x) is irreducible, hence the ideal
(y* — f(x)) is a prime ideal, which implies V(y* — f(x)) is an affine variety. [unseen, 4]



Problem 2

(a) The projective space P" is the set of 1-dimension vector subspaces in A"™!. A stan-
dard affine chart U; = {[ag : -+ : a,] € P" | a; # 0}. An ideal I C klzp, -, 2y
is homogeneous if for every polynomial f € I, all of its homogeneous components are

in I. If I is homogeneous, the projective algebraic set V(I) = {p € P" | f(p)
0 for every homogeneous polynomial f € I}. [bookwork, 4]

(b) I(X) = {f € klz0, - , 2] | f(p) =0 for every choice of homogeneous coordinates of
every point p € X }. To show it is homogeneous, let f € I(X) and write f = fo+ fi+-- -+

fm for the homogeneous decomposition of f. For each p = [ag:---:a,] € X and X # 0,
we have 0 = f(Xag, -+, Aa,) = >y filAag, -+, Aan) = >y Nfi(ao, -+ ,ay,). Since
every A # 0 is a root, it must be a zero polynomial. It follows that f;(ag,- - ,a,) = 0 for
every 0 < i < m, so f; € [(X). [bookwork, 4]

(c) All components of ¢ are given by homogeneous polynomials of degree 2. ¢ is well-
defined at [z : y : z] if at least two coordinates are non-zero. ¢([z : y : z]) is always a
point in P2 if it is defined. So ¢ is a rational map. We show that ¢ is dominant. Consider
the projective algebraic set Z = V(zyz) C P2. For every point ¢ = [a : b : ] € P*\Z,
q=[1/bc:1/ca:1/ab] = p([1/a:1/b:1/c]). So P*\Z is in the image of o, which implies
that ¢ is dominant. [bookwork, 4]

(d) Define ¢ : P! — C by o([u : v]) = [u? : wv : v?] and ¥ : C — P! by ([

z]) =[x :y] or [y : z]. We check ¢ is a morphism: all components of ¢ are homogeneous
of degree 2; it is well-defined at every point [u : v] € P! since either u? or v? is non-
zero; and the point [u? : wv : v?] satisfies the defining equation of C'. We check 1 is
a morphism: both expressions have homogeneous components of the same degree 1; for
every point in C, at least one coordinate is non-zero hence at least one expression of

Y applies; when both expressions apply at [z : y : z], all coordinates z, y and z are

non-zero, hence [z : y] = [Ax : \y] = [y : z] for A = y/xz = z/y. It remains to check
¢ and v are mutually inverse to each other. For any [u : v] € P!, depending on which
expression of 1 is used, (w o gp)([ v]) = Y([u? uw :v?]) = [w? i w] = [u: o] or
(oo o]) = (£ 12]) = fuv : 07| = [u: 1], So o  idp. For any
[z:y:2]€C, (po)(z:y: Z])Z o[z : ]) (2% cay ) =2ty raz] = (v iy 2]
tot)(w iy ) =y ) =[P i yz 2 = [oziyzi 2 = ooy 2] So
o1 =1ide. Therefore C' is 1som0rphlc to ]P’l. [bookwork, 4]

(e) We claim (z + %, y? + 23,23 +x) = (x,9%, 2%). Tt is clear that x +y? y? + 23,23 +z €
(z,y% 2°) hence “C” holds. We have x = 1(z+y?) —2(12 +2°) +1(2*+2) € (v + 92 2 +
23,28 4+ 1), similarly y? = Lz +y?) + $(12 + 2%) — (¥ + 2) € (z +y* v + 25, 28 + 1)
and 2% = Lz +?) + 312 + %) + 1 (2 + 2) € (z + 2, y* + 2%, 2% + ). Therefore “2”
holds. It follows that I = (x,y?, z3) is generated by homogeneous polynomials, hence I is
homogeneous. V(I) = & as z = y = z = 0 do not define a point in P2 [unseen, 4]



Problem 3

(a) The function field k(X) = {f/g | f,g € k|20, - - , 2,] are homogeneous of the same de-
gree and g ¢ I(X)} / ~, where ~ is an equivalence relation defined by f1/g1 ~ fo/g2 <=
fi1g2 — fagr € I(X). An element in k(X)) is called a rational function on X. The pullback
of g along ¢ is g o . [bookwork, 4]

(b) Let I be the ideal in k[zg, - - - , z,] generated by the set of homogeneous polynomials
{zeal 1,2 ... ,2) | Vf € I(X)}, then the projective closure of X is X =V({) C

P". Points Oin the set {[z0 : --+ : z,] € X | 20 = 0} are the points at infinity for X.
Using z as the extra variable, the projective closure of the given affine hypersurface is
V(2% +y%+22)3 — 2%%2) C P2 Setting z = 0, we get (22 +52)% = 0, hence y = +v/—1x.
Therefore the points at infinity are [z :y: 2] = [1 : £v/=1:0]. [bookwork, 4]

(c) The set of singular points in X is given by Xgn, = V(f, g—gl, e ,%) C X. Suppose
of

on the contrary that Xy, = X, then - € [(X) for every i. Since f is an irreducible

polynomial, (f) is a prime ideal hence I(X) = (f). Therefore for every i, we have
of _ 3
has degree d; — 1 in x;, while f - g; has degree at least d; in x;. Contradiction. Therefore

f - gi for some g; € k[zy,--- ,x,]. Assume f has degree d; in z;. If d; > 0, then

d; = 0. In other words, x; does not occur in f. Since this holds for every ¢, f must be a
constant polynomial. Contradiction. [bookwork, 4]

. . . . . af
(d) The singular points are defined by f and the two partial derivatives. We have 3= =

6z(2? + y?)? — 8zy? = 2z - (3(2? + y?)? — 4y?) and % = 6y(z? + y?)? - 2y — 8z%y =
2y - (3(x2 + y*)? —42?). If x = 0 or y = 0, then f = 0 forces z = y = 0. The point
(0, 0) satisfies all equations hence is a singular point. If neither z nor y is 0, then we have
3(2® + y?)? = 42® = 4y?, hence 3(2? + 2?)? = 42? which implies 22 = § = y?. But this
does not satisfy f = 0. Therefore the only singular point is (0, 0). [exercise sheet, 4]

(e) The projective closure of X is given by X = V(y%z — (2 4 azz? + b23)) C P?. Setting
z = 0, we find the point at infinity [0 : 1 : 0]. We claim it is always a non-singular
point. The standard affine piece {[z : y : 2] € X | y # 0} is given by V(g) C A?

for g = 2z — (2° 4+ azz? + b2®). The partial derivative 2 = 1 — 2azz — 3bz% # 0 at

x = z = 0. It remains to consider the non-singularity of the original affine piece X. Let
f=vy*— (2 + ar +0b). We have % = —32? — a and g—i = 2y. When both partial
derivatives vanish, we have 22 = —%a and y = 0. Then f = 0 implies %aa: —ar—b=0.

Case 1: @ = 0. If b # 0, then there is no solution hence no singular point. If b = 0,
then z = y = 0 is the only point at which f and its two derivatives vanish. Case 2: If
a # 0, then x = —3b/2a. Hence z* = 90?/4a® = —%a, which is possible if and only if
4a® + 270> = 0. When this condition is met, (z,y) = (—3b/2a,0) is a singular point on
X. Combining the two cases, X is non-singular, or equivalently X is non-singular if and
only if 4a® + 27b% # 0. [unseen, 4]



Problem 4

(a) Given two points A, B € C, if the line AB meets the cubic C' at a third point R, and
the line OR meets the cubic C at a third point R, then the sum A+ B = R. If A = B,
then we use the tangent line T,C for AB; if O = R, then we use the tangent line ToC'
for OR. [bookwork, 4]

(b) In the affine curve Cy = V(y? — 23 + 4z — 1), the non-homogeneous coordinates of the
two points are A = (2,1) and B = (=2, —1). The line AB is given by = = 2y. To find its

third intersection points with Cy, we solve y> —8y*+8y —1=0to get y = +1 and y = %.
11
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sum of A and B; that is A+ B = (3,—%), or [§ : —3 : 1] in homogeneous coordinates.

The inverse —B is the reflection of B across the z-axis, so —B = (—2,1), or [-2: 1 : 1]

Therefore the third intersection point is (7, <), whose reflection across the z-axis is the

in homogeneous coordinates. [exercise sheet, 4]

(c) Define rational maps ¢ : P* --» C' by o([u : v]) = [uv? : v : w?] and ¢ : C --» P!
by ¥([xz :y: z]) = [z : y]. To show ¢ is a rational map, we observe: all components are
3

homogeneous of degree 3; ¢ is defined at every point [u : v] € P! since either u® or v? is

non-zero; the image [uv? : v* : ¢?] is a point in C since it satisfies the defining equation of
C. To show 1 is a rational map, we observe: all components are homogeneous of degree
1; ¢ is well-defined at every point on C' except [0 : 0 : 1]; image of ¢ is clearly in P. Tt
remains to show ¢ and v are mutually inverse to each other. For every [u : v] € P! where
Y o ¢ is defined, we have (v o ¢)([u : v]) = Y([uv? : v3 : u3]) = [wv? : v3] = [u : v]. For
every [x :y : z] € C where o1 is defined, we have (po¢)([z : vy : z]) = p([x : y]) =

[wy? = y3 2 23] = [xy? - y® - y?2] = [ : y : z]. Therefore C is birational to P!, hence is
rational. [exercise sheet, 4]

(d) Assume L = V(ax + by + cz) where a, b and ¢ are not simultaneously zero. Without
loss of generality, we can assume ¢ # 0. Then a point p € L can be written as p = [z :
y: —%x — byl Assume D = V(f) where f(z,y, 2) is a non-zero homogeneous polynomial
of degree d. Then p € D if and only if f (x, Y, —or — %y) = 0. The left-hand side is a
homogeneous polynomial of degree d in x and y, which can be factored into a product of
d homogeneous factors of degree 1 as f (z,y, =%z — 2y) = (@ +s1y) - - - (raz + sqy) = 0.
Each factor r;x + s;y determines a solution [z : y| = [—s; : ;] which gives point p; = [—s; :
Tin %8 — gri] € LN D. Some of these points may be the same, so L and D meet in at
most d points. When counting with the number of times each point occurs as a solution,
we have precisely d points. [bookwork, 4]

(e) For any point P € C, let @ be the third intersection point of TpC with C, and Q the
third intersection point of OQ with C, then Q@ = P 4+ P. Since O is an inflection point,
let P be the third intersection point of OP with C, then P = —P. For one direction, if P
is an inflection point, then Q = P. It follows ) = P, which implies P + P = —P. Hence
P is 3-torsion. For the other direction, if P is 3-torsion, then P + P = — P which implies
Q = P. It follows Q = P, hence P is an inflection point. [unseen, 4]
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