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BRIEF EXAM SOLUTIONS

Problem 1

(a) The ideal of X is I(X) = {f ∈ k[x1, · · · , xn] | f(p) = 0 ∀ p ∈ X}. The coordinate

ring of X is k[X] = k[x1, · · · , xn]/I(X). We say X is irreducible if it cannot be written as

the union of two strictly smaller algebraic sets. If X is irreducible, then I(X) is a prime

ideal. [bookwork, 4]

(b) One direction: If X = V(I), then by Nullstellensatz we have I(X) = I(V(I)) =
√
I = I

since I is a radical ideal. The other direction: Assume I = I(X). WriteX = V(J) for some

ideal J ⊆ k[x1, · · · , xn]. By Nullstellensatz, V(I) = V(I(X)) = V(I(V(J))) = V(
√
J).

Since
√
J ⊇ J , we have V(I) = V(

√
J) ⊆ V(J) = X. For every point p ∈ X, since

I = I(X), we have f(p) = 0 for every f ∈ I. It follows that p ∈ V(I) hence X ⊆ V(I).

Then we conclude that X = V(I). [bookwork, 4]

(c) Consider the homomorphism ϕ : k[x1, · · · , xn] → k defined by ϕ(f) = f(a1, · · · , an).

Every a ∈ k is the image of the constant polynomial a, hence ϕ is surjective and imϕ = k.

Every polynomial f ∈ k[x1, · · · , xn] can be written in the form of f = (x1− a1)g1 + · · ·+
(xn − an)gn + r for some polynomials g1, · · · , gn and a constant r ∈ k. This can be seen

by replacing each xi by [(xi − ai) + ai] throughout, expanding the square brackets while

leaving the round brackets untouched, and gathering terms involving each round bracket

(xi − ai). Using this expression we have ϕ(f) = r. Therefore f ∈ kerϕ ⇐⇒ r = 0 ⇐⇒
f ∈ I. This shows that kerϕ = I. Using the fundamental isomorphism theorem, we have

k[x1, · · · , xn]/I ∼= k, which is a field. Therefore I is a maximal ideal. [exercise sheet, 4]

(d) Define polynomial maps ϕ : A1 → C;ϕ(t) = (t, t2, t3) and ψ : C → A1;ψ(x, y, z) = x.

Notice that (t, t2, t3) ∈ C since it satisfies the defining equations of C. For any t ∈ A1,

(ψ ◦ ϕ)(t) = ψ(t, t2, t3) = t. For any (x, y, z) ∈ C, (ϕ ◦ ψ)(x, y, z) = ϕ(x) = (x, x2, x3) =

(x, y, z). Therefore A1 and C are isomorphic. [exercise sheet, 4]

(e) We need to show y2 − f(x) is irreducible. Assume y2 − f(x) = p(x, y)q(x, y), then

the degrees of p and q with respect to y are 2 and 0, or 1 and 1. In the first case

y2− f(x) = (p2(x)y2 + p1(x)y+ p0(x)) · q0(x), which implies p2(x)q0(x) = 1, hence q = q0
is a constant. In the second case y2 − f(x) = (p1(x)y + p0(x)) · (q1(x)y + q0(x)), which

implies p1(x)q1(x) = 1. Without loss of generality we assume p1(x) = q1(x) = 1. Then

we have p0(x) + q0(x) = 0 and p0(x)q0(x) = −f(x). It follows that f(x) = p0(x)2, which

is impossible since deg f is odd. This proves y2 − f(x) is irreducible, hence the ideal

(y2 − f(x)) is a prime ideal, which implies V(y2 − f(x)) is an affine variety. [unseen, 4]
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Problem 2

(a) The projective space Pn is the set of 1-dimension vector subspaces in An+1. A stan-

dard affine chart Ui = {[a0 : · · · : an] ∈ Pn | ai 6= 0}. An ideal I ⊆ k[z0, · · · , zn]

is homogeneous if for every polynomial f ∈ I, all of its homogeneous components are

in I. If I is homogeneous, the projective algebraic set V(I) = {p ∈ Pn | f(p) =

0 for every homogeneous polynomial f ∈ I}. [bookwork, 4]

(b) I(X) = {f ∈ k[z0, · · · , zn] | f(p) = 0 for every choice of homogeneous coordinates of

every point p ∈ X}. To show it is homogeneous, let f ∈ I(X) and write f = f0+f1+ · · ·+
fm for the homogeneous decomposition of f . For each p = [a0 : · · · : an] ∈ X and λ 6= 0,

we have 0 = f(λa0, · · · , λan) =
∑m

i=0 fi(λa0, · · · , λan) =
∑m

i=0 λ
ifi(a0, · · · , an). Since

every λ 6= 0 is a root, it must be a zero polynomial. It follows that fi(a0, · · · , an) = 0 for

every 0 6 i 6 m, so fi ∈ I(X). [bookwork, 4]

(c) All components of ϕ are given by homogeneous polynomials of degree 2. ϕ is well-

defined at [x : y : z] if at least two coordinates are non-zero. ϕ([x : y : z]) is always a

point in P2 if it is defined. So ϕ is a rational map. We show that ϕ is dominant. Consider

the projective algebraic set Z = V(xyz) ( P2. For every point q = [a : b : c] ∈ P2\Z,

q = [1/bc : 1/ca : 1/ab] = ϕ([1/a : 1/b : 1/c]). So P2\Z is in the image of ϕ, which implies

that ϕ is dominant. [bookwork, 4]

(d) Define ϕ : P1 → C by ϕ([u : v]) = [u2 : uv : v2] and ψ : C → P1 by ψ([x : y :

z]) = [x : y] or [y : z]. We check ϕ is a morphism: all components of ϕ are homogeneous

of degree 2; it is well-defined at every point [u : v] ∈ P1 since either u2 or v2 is non-

zero; and the point [u2 : uv : v2] satisfies the defining equation of C. We check ψ is

a morphism: both expressions have homogeneous components of the same degree 1; for

every point in C, at least one coordinate is non-zero hence at least one expression of

ψ applies; when both expressions apply at [x : y : z], all coordinates x, y and z are

non-zero, hence [x : y] = [λx : λy] = [y : z] for λ = y/x = z/y. It remains to check

ϕ and ψ are mutually inverse to each other. For any [u : v] ∈ P1, depending on which

expression of ψ is used, (ψ ◦ ϕ)([u : v]) = ψ([u2 : uv : v2]) = [u2 : uv] = [u : v] or

(ψ ◦ ϕ)([u : v]) = ψ([u2 : uv : v2]) = [uv : v2] = [u : v]. So ψ ◦ ϕ = idP1 . For any

[x : y : z] ∈ C, (ϕ ◦ ψ)([x : y : z]) = ϕ([x : y]) = [x2 : xy : y2] = [x2 : xy : xz] = [x : y : z]

or (ϕ ◦ ψ)([x : y : z]) = ϕ([y : z]) = [y2 : yz : z2] = [xz : yz : z2] = [x : y : z]. So

ϕ ◦ ψ = idC . Therefore C is isomorphic to P1. [bookwork, 4]

(e) We claim (x+ y2, y2 + z3, z3 + x) = (x, y2, z3). It is clear that x+ y2, y2 + z3, z3 + x ∈
(x, y2, z3) hence “⊆” holds. We have x = 1

2
(x+y2)− 1

2
(y2 + z3) + 1

2
(z3 +x) ∈ (x+y2, y2 +

z3, z3 + x), similarly y2 = 1
2
(x + y2) + 1

2
(y2 + z3) − 1

2
(z3 + x) ∈ (x + y2, y2 + z3, z3 + x)

and z3 = −1
2
(x + y2) + 1

2
(y2 + z3) + 1

2
(z3 + x) ∈ (x + y2, y2 + z3, z3 + x). Therefore “⊇”

holds. It follows that I = (x, y2, z3) is generated by homogeneous polynomials, hence I is

homogeneous. V(I) = ∅ as x = y = z = 0 do not define a point in P2. [unseen, 4]
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Problem 3

(a) The function field k(X) = {f/g | f, g ∈ k[z0, · · · , zn] are homogeneous of the same de-

gree and g /∈ I(X)} / ∼, where ∼ is an equivalence relation defined by f1/g1 ∼ f2/g2 ⇐⇒
f1g2− f2g1 ∈ I(X). An element in k(X) is called a rational function on X. The pullback

of g along ϕ is g ◦ ϕ. [bookwork, 4]

(b) Let I be the ideal in k[z0, · · · , zn] generated by the set of homogeneous polynomials

{zdeg f0 f(1, z1
z0
, · · · , zn

z0
) | ∀ f ∈ I(X)}, then the projective closure of X is X = V(I) ⊆

Pn. Points in the set {[z0 : · · · : zn] ∈ X | z0 = 0} are the points at infinity for X.

Using z as the extra variable, the projective closure of the given affine hypersurface is

V((x2 + y2 + z2)3−x2y3z) ⊆ P2. Setting z = 0, we get (x2 + y2)3 = 0, hence y = ±
√
−1x.

Therefore the points at infinity are [x : y : z] = [1 : ±
√
−1 : 0]. [bookwork, 4]

(c) The set of singular points in X is given by Xsing = V(f, ∂f
∂x1
, · · · , ∂f

∂xn
) ⊆ X. Suppose

on the contrary that Xsing = X, then ∂f
∂xi
∈ I(X) for every i. Since f is an irreducible

polynomial, (f) is a prime ideal hence I(X) = (f). Therefore for every i, we have
∂f
∂xi

= f · gi for some gi ∈ k[x1, · · · , xn]. Assume f has degree di in xi. If di > 0, then ∂f
∂xi

has degree di − 1 in xi, while f · gi has degree at least di in xi. Contradiction. Therefore

di = 0. In other words, xi does not occur in f . Since this holds for every i, f must be a

constant polynomial. Contradiction. [bookwork, 4]

(d) The singular points are defined by f and the two partial derivatives. We have ∂f
∂x

=

6x(x2 + y2)2 − 8xy2 = 2x · (3(x2 + y2)2 − 4y2) and ∂f
∂y

= 6y(x2 + y2)2 · 2y − 8x2y =

2y · (3(x2 + y2)2 − 4x2). If x = 0 or y = 0, then f = 0 forces x = y = 0. The point

(0, 0) satisfies all equations hence is a singular point. If neither x nor y is 0, then we have

3(x2 + y2)2 = 4x2 = 4y2, hence 3(x2 + x2)2 = 4x2 which implies x2 = 1
3

= y2. But this

does not satisfy f = 0. Therefore the only singular point is (0, 0). [exercise sheet, 4]

(e) The projective closure of X is given by X = V(y2z− (x3 + axz2 + bz3)) ⊆ P2. Setting

z = 0, we find the point at infinity [0 : 1 : 0]. We claim it is always a non-singular

point. The standard affine piece {[x : y : z] ∈ X | y 6= 0} is given by V(g) ⊆ A2

for g = z − (x3 + axz2 + bz3). The partial derivative ∂g
∂z

= 1 − 2axz − 3bz2 6= 0 at

x = z = 0. It remains to consider the non-singularity of the original affine piece X. Let

f = y2 − (x3 + ax + b). We have ∂f
∂x

= −3x2 − a and ∂f
∂y

= 2y. When both partial

derivatives vanish, we have x2 = −1
3
a and y = 0. Then f = 0 implies 1

3
ax− ax− b = 0.

Case 1: a = 0. If b 6= 0, then there is no solution hence no singular point. If b = 0,

then x = y = 0 is the only point at which f and its two derivatives vanish. Case 2: If

a 6= 0, then x = −3b/2a. Hence x2 = 9b2/4a2 = −1
3
a, which is possible if and only if

4a3 + 27b2 = 0. When this condition is met, (x, y) = (−3b/2a, 0) is a singular point on

X. Combining the two cases, X is non-singular, or equivalently X is non-singular if and

only if 4a3 + 27b2 6= 0. [unseen, 4]
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Problem 4

(a) Given two points A,B ∈ C, if the line AB meets the cubic C at a third point R, and

the line OR meets the cubic C at a third point R, then the sum A + B = R. If A = B,

then we use the tangent line TAC for AB; if O = R, then we use the tangent line TOC

for OR. [bookwork, 4]

(b) In the affine curve C0 = V(y2−x3 + 4x− 1), the non-homogeneous coordinates of the

two points are A = (2, 1) and B = (−2,−1). The line AB is given by x = 2y. To find its

third intersection points with C0, we solve y2− 8y3 + 8y− 1 = 0 to get y = ±1 and y = 1
8
.

Therefore the third intersection point is (1
4
, 1
8
), whose reflection across the x-axis is the

sum of A and B; that is A + B = (1
4
,−1

8
), or [1

4
: −1

8
: 1] in homogeneous coordinates.

The inverse −B is the reflection of B across the x-axis, so −B = (−2, 1), or [−2 : 1 : 1]

in homogeneous coordinates. [exercise sheet, 4]

(c) Define rational maps ϕ : P1 99K C by ϕ([u : v]) = [uv2 : v3 : u3] and ψ : C 99K P1

by ψ([x : y : z]) = [x : y]. To show ϕ is a rational map, we observe: all components are

homogeneous of degree 3; ϕ is defined at every point [u : v] ∈ P1 since either u3 or v3 is

non-zero; the image [uv2 : v3 : u3] is a point in C since it satisfies the defining equation of

C. To show ψ is a rational map, we observe: all components are homogeneous of degree

1; ψ is well-defined at every point on C except [0 : 0 : 1]; image of ψ is clearly in P1. It

remains to show ϕ and ψ are mutually inverse to each other. For every [u : v] ∈ P1 where

ψ ◦ ϕ is defined, we have (ψ ◦ ϕ)([u : v]) = ψ([uv2 : v3 : u3]) = [uv2 : v3] = [u : v]. For

every [x : y : z] ∈ C where ϕ ◦ ψ is defined, we have (ϕ ◦ ψ)([x : y : z]) = ϕ([x : y]) =

[xy2 : y3 : x3] = [xy2 : y3 : y2z] = [x : y : z]. Therefore C is birational to P1, hence is

rational. [exercise sheet, 4]

(d) Assume L = V(ax+ by + cz) where a, b and c are not simultaneously zero. Without

loss of generality, we can assume c 6= 0. Then a point p ∈ L can be written as p = [x :

y : −a
c
x− b

c
y]. Assume D = V(f) where f(x, y, z) is a non-zero homogeneous polynomial

of degree d. Then p ∈ D if and only if f
(
x, y,−a

c
x− b

c
y
)

= 0. The left-hand side is a

homogeneous polynomial of degree d in x and y, which can be factored into a product of

d homogeneous factors of degree 1 as f
(
x, y,−a

c
x− b

c
y
)

= (r1x+ s1y) · · · (rdx+ sdy) = 0.

Each factor rix+siy determines a solution [x : y] = [−si : ri] which gives point pi = [−si :

ri : a
c
si − b

c
ri] ∈ L ∩ D. Some of these points may be the same, so L and D meet in at

most d points. When counting with the number of times each point occurs as a solution,

we have precisely d points. [bookwork, 4]

(e) For any point P ∈ C, let Q be the third intersection point of TPC with C, and Q the

third intersection point of OQ with C, then Q = P + P . Since O is an inflection point,

let P be the third intersection point of OP with C, then P = −P . For one direction, if P

is an inflection point, then Q = P . It follows Q = P , which implies P + P = −P . Hence

P is 3-torsion. For the other direction, if P is 3-torsion, then P + P = −P which implies

Q = P . It follows Q = P , hence P is an inflection point. [unseen, 4]
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