- 1. (a) Define what is meant by a *noetherian* ring.
 - (b) Show that if R is a noetherian ring then the polynomial ring R[t] in one variable over R is also noetherian. You need not carry out the verification that any ideals you define are indeed ideals: it is enough to say that they are.
 - (c) Suppose that K is an algebraically closed field and that $V \subset \mathbb{A}_K^n$ is an irreducible affine variety not contained in any bigger irreducible subvariety of \mathbb{A}^n . In other words, suppose that V is irreducible and that if W is an irreducible variety with $V \subseteq W \subseteq \mathbb{A}^n$, then W = V or $W = \mathbb{A}^n$. Show that I(V) is a principal ideal of $K[t_1, \ldots, t_n]$ (recall that an ideal is principal if it is generated by a single element). [Hilbert's Nullstellensatz may be assumed.]
- 2. (a) If $X \subseteq \mathbb{P}^n$ and $Y \subseteq \mathbb{P}^m$ are irreducible projective varieties, define what is meant by a *rational map* $\phi: X \dashrightarrow Y$ and what is meant by a *morphism* $f: X \to Y$.
 - (b) What does it mean to say that X and Y are *birationally equivalent*? What does it mean to say that X and Y are *isomorphic*?
 - (c) The Segre embedding

$$\sigma\colon \mathbb{P}^1\times \mathbb{P}^1\to \mathbb{P}^3$$

is given by

$$\sigma((x_0:x_1),(y_0:y_1)) = (x_0y_0:x_0y_1:x_1y_0:x_1y_1).$$

Show that σ is a morphism and that it is injective.

(d) By considering the rational map

$$\phi \colon \mathbb{P}^1 \times \mathbb{P}^1 \dashrightarrow \mathbb{P}^2$$

given by

$$\phi((x_0:x_1),(y_0:y_1)) = (x_0y_1:x_1y_0:x_1y_1)$$

show that $\mathbb{P}^1 \times \mathbb{P}^1$ is birationally equivalent to \mathbb{P}^2 . Find the domain and the image of ϕ .

(e) Is $\mathbb{P}^1 \times \mathbb{P}^1$ isomorphic to \mathbb{P}^2 ? Justify your answer briefly.

- 3. (a) Suppose that $P_1, \ldots, P_8 \in \mathbb{P}^2$ are eight points, no three of which lie on a line and no six of which lie on a conic. Show that at most two independent cubics pass through P_1, \ldots, P_8 .
 - (b) Suppose that $E \subset \mathbb{P}^2$ is a smooth plane cubic curve over a field K. Explain, either in words or by drawing a diagram, how to define a group law on the set of points of E whose coordinates lie in K, assuming that this set is non-empty.
 - (c) Take $K = \mathbb{F}_{31}$ and let E be given by the affine equation

$$y^2 = x^3 + 11x + 3.$$

If P = (2, -8) and Q = (16, 11), calculate (P + P) + Q and P + (P + Q) and show that they are equal.

[You may find it useful to know that $14 \times 20 \equiv 1 \mod 31$ and that $13 \times 12 \equiv 1 \mod 31$. You should find that P + P = (4,7) and that P + Q = (15,-3).]

- 4. (a) Define the tangent space $T_P V$ to a hypersurface $V \subset \mathbb{A}^n$ in affine space at a point $P \in V$. What does it mean to say that P is a singular point of V?
 - (b) Show that if the ground field K is algebraically closed and of characteristic zero, then the set of non-singular points of V is non-empty. *[Hilbert's Nullstellensatz may be assumed.]*
 - (c) Find the singular points of the Cayley sextic, which is the curve in \mathbb{P}^2 over $K = \mathbb{C}$ given by

 $4(x^2 + y^2 - xz)^3 = 27(x^2 + y^2)^2 z^2.$