GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 9

1 W Write each of the following Z-modules in the form $\prod_j \mathbb{Z}/p_j^{k_j}\mathbb{Z}$ with p_j primes.

- (a) $\mathbb{Z}/12\mathbb{Z}$
- (b) $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
- (c) $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$

Solution:

- (a) This is $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ by CRT.
- (b) This is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, again by CRT.
- (c) This is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Note that the version in the question is not in either of the standard forms.

2 W Write each of the following \mathbb{Z} -modules in the form $\prod_i \mathbb{Z}/a_i \mathbb{Z}$ with $a_i | a_{i+1}$.

- (a) $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$
- (b) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$
- (c) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z}$

Solution:

- (a) $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$
- (b) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/24\mathbb{Z}$
- (c) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z} = \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/36\mathbb{Z}$

3 H Find all Z-modules of order $520 = 8 \times 5 \times 13$, expressed as $\prod_i \mathbb{Z}/a_i\mathbb{Z}$ with $a_i|a_{i+1}$. Rewrite each of them in the form $\prod_j \mathbb{Z}/p_j^{k_j}\mathbb{Z}$ with p_j primes. **Solution:** One factor: $\mathbb{Z}/520\mathbb{Z}$, which is $\mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/13\mathbb{Z}$ by CRT. Two factors: the first factor can only be $\mathbb{Z}/2\mathbb{Z}$, because if it is $\mathbb{Z}/a\mathbb{Z}$ then

ar|520 and that is only true for a = 2. So the only possibility is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/260\mathbb{Z}$ which is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/13\mathbb{Z}$.

Three factors: again the first factor must be $\mathbb{Z}/2\mathbb{Z}$, and then we have the same problem for 260 with two factors. The first of those two factors must be $\mathbb{Z}/2\mathbb{Z}$, again because 4 is the only square that divides 260, so we are left with $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/130\mathbb{Z}$ which is $(\mathbb{Z}/2\mathbb{Z})^3 \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/13\mathbb{Z}$.

Four or more factors is impossible because no fourth power divides 520. **4** H Find all abelian groups of order 360.

Solution: $360 = 8 \times 9 \times 5$. The highest power of a prime that divides 360 is a cube so we may have up to three factors.

One factor: $\mathbb{Z}/360\mathbb{Z}$.

Two factors: the first factor could in principle be 2 or 3 or 6, as the squares of those numbers (and no others) divide 360. So the possibilities are $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/180\mathbb{Z}$ or $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/120\mathbb{Z}$ or $\mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/60\mathbb{Z}$.

Three factors: 2 is the only possibility as 8 is the only cube dividing 360, and then we are left with finding two-factor groups of order 180. The next number must be even and its square must divide 180, so it is 2 or 6, so the possibilities are $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/90\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$.

GKS, 15/4/25