GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 8

- **1** W Suppose that R is a nontrivial ring (i.e. $0_R \neq 1_R$). Prove the assertion made in lectures that the map $i: X \to F_X$ in the definition of a free module is automatically injective.
 - (a) Suppose that i is not injective, so that there exist $x, x' \in X$ with $x \neq x'$ but $i(x_0) = i(x_1)$. Construct an R-module M (you could take M = R) and a map of sets $f: X \to M$ such that $f(x) \neq f(x')$.
 - (b) Show that no linear map $\varphi \colon F_X \to M$, as required by the definition of free module, can exist.

Solution:

- (a) Take M = R and define $f(x) = 1_R$ and $f(y) = 0_R$ if $y \in X$ and $y \neq X$.
- (b) If φ exists then by the universal property $f = \varphi \circ i$ so $1_R = f(x) = \varphi(i(x)) = \varphi(i(x')) = f(x') = 0_R$, a contradiction.
- **2 H** Choose an integral domain R (your choice) and give an example of a free R-module, an example of a torsion R-module and an example of an R-module that is neither free nor torsion.

Solution: Just take $R = \mathbb{Z}$ and look at, respectively, \mathbb{Z} , $\mathbb{Z}/2$ and $\mathbb{Z} \oplus \mathbb{Z}/2$. Note that neither of the last two is free because free modules are isomorphic to R^n and therefore a free module over an integral domain cannot have any torsion elements because R^n hasn't any.

- **3 H** Explain why $2\mathbb{Z}$ cannot be a direct summand of \mathbb{Z} as a \mathbb{Z} -module.
- **Solution:** There are several ways to say this. One answer is that $2\mathbb{Z}$ is of finite index (namely 2) in \mathbb{Z} , considered as an abelian group (which is all that a \mathbb{Z} -module is anyway), so if $\mathbb{Z} = 2\mathbb{Z} \oplus Q$ then Q must be finite, but \mathbb{Z} has no nontrivial finite abelian subgroups.
- **4** E Show that if X and Y have the same cardinality then any free module on X is isomorphic to any free module on Y, as follows.
- Let $a: X \to Y$ be a bijection and let $b: Y \to X$ be its inverse. Suppose that F_X is free on X with respect to the map $i: X \to F_X$ and F_Y is free on Y with respect to the map $j: Y \to F_Y$.
 - (a) In the diagram that arises from the fact that F_X is free, put $M = F_Y$ and hence construct a linear map $\alpha \colon F_X \to F_Y$.
 - (b) Similarly construct a linear map $\beta \colon F_Y \to F_X$.
 - (c) In the diagram that arises from the fact that F_X is free, put $M = F_X$ and hence deduce that there is a *unique* linear map $\varphi \colon F_X \to F_X$ with a certain property. Show that both id_{F_X} and $\beta\alpha$ have this property.

(d) Do the same thing with F_Y , and deduce that α and β are mutually inverse maps and hence (by definition of isomorphism) they are isomorphisms.

Solution: It is best to draw the diagrams.

- (a) α exists by the definition of free module, and it has the property that $j = \alpha \circ i$.
- (b) Putting $M = F_X$ we get $\beta \colon F_Y \to F_X$ with $i = \beta \circ j$
- (c) The definition asserts the existence of a unique linear map $\varphi \colon F_X \to F_X$ such that $i = \varphi \circ i$. Clearly one may take $\varphi = \mathrm{id}_{F_X}$. However, we may also take $\varphi = \beta \alpha$, because $\beta(\alpha(i(x))) = \beta(j(x)) = i(x)$, where the first equality is by (a) and the second by (b). But φ is unique, hence $\beta \alpha = \mathrm{id}_{F_X}$.
- (d) Simple swapping X and Y, i and j, and α and β shows that $\alpha\beta = \mathrm{id}_{F_Y}$. This, with (c), is exactly the definition of isomorphism.

GKS, 28/3/25