GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 5

1 H Let R be a commutative ring, and let $a \in R$. Show that if R is an integral domain then the equation $x^2 = a$ has at most two solutions in R. Find a commutative ring R and an element $a \in R$ such that $x^2 = a$ has more than two solutions.

Solution: If $x^2 = a$ has no solution there is nothing to prove. Otherwise, suppose that $b \in R$ provides one solution, i.e. that $b^2 = a$. If $c \in R$ is any solution we have

$$(c-b) \cdot (c+b) = c^2 - b^2 = a - a = 0.$$

Since R is an integral domain, this implies either c = b or c = -b, so there can be at most two solutions, namely $\pm b$.

In $\mathbb{Z}/8$, we have $1^2 = 3^2 = 5^2 = 7^2 = 1$, so we can do it, even with $a \neq 0$. Another way to do it is to take any commutative ring R and consider $R[s,t]/\langle s^2,t^2\rangle$, where $\langle s^2,t^2\rangle = s^2R + t^2R = \{\lambda s^2 + \mu t^2 \mid \lambda, \mu \in R\}$ is the ideal generated by s^2 and t^2 : then $0^2 = s^2 = t^2 = 0$.

2 W Consider the evaluation homomorphism $\varphi \colon \mathbb{R}[t] \to \mathbb{C}$ defined by setting $\phi(f) = f(i)$. Identify Ker (ϕ) : using the division algorithm, prove carefully that your answer is correct.

What does the First Isomorphism Theorem tell us in this case?

Solution: We claim that $\operatorname{Ker}(\varphi) = (t^2 + 1)\mathbb{R}[t]$ is the ideal generated by the element $t^2 + 1 \in \mathbb{R}[t]$. To prove this we establish that the right hand side is contained in the left hand side and vice versa.

First, if $f = g(t^2 + 1) \in (t^2 + 1)\mathbb{R}[t]$, then $\varphi(f) = g(i) \cdot (i^2 + 1) = 0$, so $f \in \text{Ker}(\varphi)$.

Conversely, if $f \in \text{Ker}(\varphi)$, then applying division by $t^2 + 1$ yields quotient $q \in \mathbb{R}[t]$ and remainder $r = bt + a \in \mathbb{R}[t]$ such that $f = (t^2 + 1)q + bt + a$. Our assumption gives

$$0 = f(i) = 0 \cdot q(i) + bi + a$$

so $a + bi = 0 \in \mathbb{C}$, i.e. a = b = 0. Therefore $f = (t^2 + 1)q \in (t^2 + 1)\mathbb{R}[t]$, as required.

The map φ is surjective, because for $a + bi \in \mathbb{C}$, we have $\varphi(a + bt) = a + bi$. The first isomorphism theorem tells us that the induced map

$$\overline{\varphi} \colon \mathbb{R}[t]/(t^2+1)\mathbb{R}[t] \longrightarrow \mathbb{C}$$

is an isomorphism.

3 W Prove that if I and J are ideals in a ring R, then I + J, IJ and $I \cap J$ are ideals in R and $IJ \subseteq I \cap J \subseteq I + J$.

Solution: $I + J = \{a + b \mid a \in I, b \in J\}$ is closed under addition because $(a+b)+(a'+b') = (a+a')+(b+b') \in I+J$. It is closed under multiplication by $r \in R$ because $r(a+b) = ra + rb \in I + J$

 $IJ = \{\sum_{i=1}^{k} a_i b_i \mid k \in \mathbb{N}, a_i \in I, b_i \in J\}$ is closed under addition by definition. It is closed under multiplication by $r \in R$ because

$$r \cdot \left(\sum_{i=1}^{k} a_i b_i\right) = \sum_{i=1}^{k} r a_i b_i$$

and $ra_i \in I$ because $a_i \in I$, and $b_j \in J$ so the right-hand side is in IJ. $I \cap J$ is closed under addition and multiplication by $r \in R$ because I and Jare both closed under addition and multiplication by $r \in R$. If $c = \sum_{i=1}^{k} a_i b_i \in IJ$ then $a_i b_i \in I$ and $a_i b_i \in J$ so $ca \in I \cap J$ so $IJ \subseteq I \cap J$. If $c \in I \cap J$ then $c = c + 0 \in I + J$, so $I \cap J \subseteq I + J$.

4 H Let *R* be a finite ring, i.e. the number |R| of elements of *R* is finite. Show that |R| is divisible by char *R*. Deduce that if |R| = p is prime, then $R \cong \mathbb{Z}/p\mathbb{Z}$.

By considering the map $m_a: R \to R$ given by $m_a(b) = ab$, or otherwise, show that a finite integral domain is a field.

Solution: The additive subgroup P of R generated by 1_R is of order char R so char R divides |R| by Lagrange's theorem. If |R| = p is prime then |R| > 1 so $0_R \neq 1_R$: hence $|P| \geq 2$ and so, since |P| divides |R| which is prime, we have P = R. But $P \cong \mathbb{Z}/p\mathbb{Z}$ by the map $1_P \mapsto 1$.

Let R be a finite integral domain. Let $0 \neq a \in R$ and consider the map $m_a \colon R \to R$ sending $b \mapsto ab$. This map is injective: for if $b, c \in R$ satisfy ab = ac then b = c because R is anm integral domain. But then, since R is finite, it follows that m_a is bijective, so in particular there exists $d \in R$ such that ad = 1, so d is then a multiplicative inverse of a. We have thus shown that every nonzero $a \in R$ has a multiplicative inverse: that is, that R is a field.

GKS, 7/3/25