
GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 5

1 H Let R be a commutative ring, and let a ∈ R. Show that if R is an
integral domain then the equation x2 = a has at most two solutions in R.
Find a commutative ring R and an element a ∈ R such that x2 = a has
more than two solutions.

Solution: If x2 = a has no solution there is nothing to prove. Otherwise,
suppose that b ∈ R provides one solution, i.e. that b2 = a. If c ∈ R is any
solution we have

(c− b) · (c+ b) = c2 − b2 = a− a = 0.

Since R is an integral domain, this implies either c = b or c = −b, so there
can be at most two solutions, namely ±b.
In Z/8, we have 12 = 32 = 52 = 72 = 1, so we can do it, even with
a ̸= 0. Another way to do it is to take any commutative ring R and consider
R[s, t]/⟨s2, t2⟩, where ⟨s2, t2⟩ = s2R + t2R = {λs2 + µt2 | λ, µ ∈ R} is the
ideal generated by s2 and t2: then 02 = s2 = t2 = 0.

2 W Consider the evaluation homomorphism φ : R[t] → C defined by setting
ϕ(f) = f(i). Identify Ker(ϕ): using the division algorithm, prove carefully
that your answer is correct.
What does the First Isomorphism Theorem tell us in this case?

Solution: We claim that Ker(φ) = (t2+1)R[t] is the ideal generated by the
element t2 + 1 ∈ R[t]. To prove this we establish that the right hand side is
contained in the left hand side and vice versa.
First, if f = g(t2 + 1) ∈ (t2 + 1)R[t], then φ(f) = g(i) · (i2 + 1) = 0, so
f ∈ Ker(φ).
Conversely, if f ∈ Ker(φ), then applying division by t2 + 1 yields quotient
q ∈ R[t] and remainder r = bt + a ∈ R[t] such that f = (t2 + 1)q + bt + a.
Our assumption gives

0 = f(i) = 0 · q(i) + bi+ a

so a+ bi = 0 ∈ C, i.e. a = b = 0. Therefore f = (t2 + 1)q ∈ (t2 + 1)R[t], as
required.
The map φ is surjective, because for a+ bi ∈ C, we have φ(a+ bt) = a+ bi.
The first isomorphism theorem tells us that the induced map

φ : R[t]/(t2 + 1)R[t] −→ C

is an isomorphism.
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3 W Prove that if I and J are ideals in a ring R, then I + J , IJ and I ∩ J
are ideals in R and IJ ⊆ I ∩ J ⊆ I + J .

Solution: I + J = {a + b | a ∈ I, b ∈ J} is closed under addition because
(a+b)+(a′+b′) = (a+a′)+(b+b′) ∈ I+J . It is closed under multiplication
by r ∈ R because r(a+ b) = ra+ rb ∈ I + J
IJ = {

∑k
i=1 aibi | k ∈ N, ai ∈ I, bi ∈ J} is closed under addition by

definition. It is closed under multiplication by r ∈ R because

r ·

(
k∑

i=1

aibi

)
=

k∑
i=1

raibi

and rai ∈ I because ai ∈ I, and bj ∈ J so the right-hand side is in IJ .
I ∩ J is closed under addition and multiplication by r ∈ R because I and J
are both closed under addition and multiplication by r ∈ R.
If c =

∑k
i=1 aibi ∈ IJ then aibi ∈ I and aibi ∈ J so ca ∈ I ∩J so IJ ⊆ I ∩J .

If c ∈ I ∩ J then c = c+ 0 ∈ I + J , so I ∩ J ⊆ I + J .

4 H Let R be a finite ring, i.e. the number |R| of elements of R is finite.
Show that |R| is divisible by charR. Deduce that if |R| = p is prime, then
R ∼= Z/pZ.
By considering the map ma : R → R given by ma(b) = ab, or otherwise,
show that a finite integral domain is a field.

Solution: The additive subgroup P of R generated by 1R is of order charR
so charR divides |R| by Lagrange’s theorem. If |R| = p is prime then |R| > 1
so 0R ̸= 1R: hence |P | ≥ 2 and so, since |P | divides |R| which is prime, we
have P = R. But P ∼= Z/pZ by the map 1P 7→ 1.
Let R be a finite integral domain. Let 0 ̸= a ∈ R and consider the map
ma : R → R sending b 7→ ab. This map is injective: for if b, c ∈ R satisfy
ab = ac then b = c because R is anm integral domain. But then, since R is
finite, it follows that ma is bijective, so in particular there exists d ∈ R such
that ad = 1, so d is then a multiplicative inverse of a. We have thus shown
that every nonzero a ∈ R has a multiplicative inverse: that is, that R is a
field.

GKS, 7/3/25
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