GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 4

1 H For each of the following commutative rings, say whether it is an integral domain, a field, or neither. Give brief reasons. What are the units in each case?

- (a) The set of Gaussian integers $\mathbb{Z}[i] = \{a + ib \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$, (where $i = \sqrt{-1}$) with the usual operations of complex numbers.
- (b) $\mathbb{Z}/9$, with the usual operations.
- (c) $\mathbb{C}[t]$.
- (d) $\mathbb{Q}[i] = \{a + ib \in \mathbb{C} \mid a, b \in \mathbb{Q}\}$, with the usual operations of complex numbers.

Solution:

- (a) This is contained in \mathbb{C} and contains 1 so it is at least an integral domain, but it is not a field because $2 \in \mathbb{Z}[i]$ but $\frac{1}{2} \notin \mathbb{Z}[i]$. The units are the elements a + ib such that $\frac{1}{a+ib} \in \mathbb{Z}[i]$. Since the inverse of a + ib in \mathbb{C} is $\frac{a-ib}{a^2+b^2}$, that happens if and only if $\frac{a}{a^2+b^2} \in \mathbb{Z}$ and $\frac{b}{a^2+b^2} \in \mathbb{Z}$. If |a| > 1 (or |b| > 1) that is not possible because $\left|\frac{a}{a^2+b^2}\right| < 1$, and the same happens if |a| = |b| = 1. We are left with $a = \pm 1$, b = 0 and $b = \pm 1$, a = 0: that is, the units are ± 1 and $\pm i$.
- (b) This is not an integral domain because $3 \neq 0$ but $3^2 = 0$. The units are the numbers coprime to 3, that is ± 1 , ± 2 and ± 4 , whose inverses are ± 1 , $\pm 5 = \mp 4$, and $\pm 7 = \mp 2$.
- (c) This is an integral domain: for instance because deg fg = deg f + deg g > 0 so $fg \neq 0$, unless f and g are both constants when it follows from \mathbb{C} being a domain. Note that it contains 1. It is not a field because t is not invertible: if $f(t) \in \mathbb{C}[t]$ has degree $d \geq 0$ then tf(t) has degree d + 1 > 0 so cannot be equal to 1, which has degree 0. The same argument applies to any polynomial g(t) of positive degree d' > 0: then deg(g(t)f(t)) = d + d' > 0 so $g(t)f(t) \neq 1$. So the only possible units are of degree 0, i.e., the nonzero constants: and they are indeed units, because \mathbb{C} is a field. So the units here are \mathbb{C}^* .
- (d) This is a field. It is an integral domain because it contains 1 and is contained in \mathbb{C} , and if $0 \neq a + ib \in \mathbb{Q}[i]$ then $\frac{1}{a+ib} = \frac{a}{a^2+b^2} + i\frac{-b}{a^2+b^2} \in \mathbb{Q}[i]$.

2 E Is it true that if a finite G acts on a set X and the orbits $\operatorname{orb}_G(x)$ and $\operatorname{orb}_G(y)$ are the same size, then $\operatorname{Stab}_G(x) \cong \operatorname{Stab}_G(y)$? Give a proof or a counterexample.

Solution: False in general. You need two different subgroups of the same order, so let's take $H_1 = \mathbb{Z}/2 \times \mathbb{Z}/2$ and $H_2 = \mathbb{Z}/4$ (but any other pair, such as $\mathbb{Z}/6$ and S_3 , would do just as well). Let $G = H_1 \times H_2$ and let G act on $X = H_1 \sqcup H_2$ (recall that \sqcup means disjoint union) by $(h_1, h_2)(x) = h_1 x$ if $x \in H_1$ and $(h_1, h_2)(x) = h_2 x$ if $x \in H_2$. It is immediate that this is an action. Now $\operatorname{Stab}_G(1_{H_1}) = \{(1_{H_1}, h_2) \mid h_2 \in H_2\} \cong H_2$ and $\operatorname{Stab}_G(1_{H_2}) = \{(h_1, 1_{H_2}) \mid h_1 \in H_1\} \cong H_1$: these two have the same order, so the orbits are the same size, but they are not isomorphic by the choice we made.

3 W Decide whether each of the following is a subring, an ideal, or neither; prove your assertions.

- (a) $S_1 = \{-1, 0, 1\} \subset \mathbb{Z};$
- (b) $S_2 = \{a_0 + a_2t^2 + a_4t^4 + \dots \mid a_i \in \mathbb{Q}\} \subset \mathbb{Q}[t];$
- (c) $S_3 = \{a_2t^2 + a_3t^3 + a_4t^4 + \dots \mid a_i \in \mathbb{Q}\} \subset \mathbb{Q}[t];$
- (d) $S_4 = \{\text{polynomials of degree } \leq 2\} \subseteq \mathbb{Q}[t];$

(e)
$$S_5 = \{ p \in \mathbb{Q}[t] \mid p(1) = 0 \} \subset \mathbb{Q}[t].$$

Solution:

- (a) S_1 is not a subring and therefore not an ideal, because $1 + 1 \notin \{-1, 0, 1\}$.
- (b) S_2 is not an ideal, because it is not closed under multiplication by $t \in \mathbb{Q}[t]$. However, it is a subring: it is non-empty because it contains 0; and given any two elements $f = \sum_i a_{2i}t^{2i} \in S_2$ and $g = \sum_i b_{2i}t^{2i} \in S_2$, we have

$$f - g = \sum_{i} (a_{2i} - b_{2i})t^{2i} \in S_2$$

and

$$f \cdot g = \sum_{i} \left(\sum_{2j+2k=i} a_{2j} b_{2k} \right) t^{i} \in S_{2},$$

in both cases because the indices that occur on the right are even.

- (c) S_3 is an ideal in $\mathbb{Q}[t]$. It is the ideal in $\mathbb{Q}[t]$ generated by t^2 , i.e. the subset of all elements in $\mathbb{Q}[t]$ of the form $f \cdot t^2$ for some $f \in \mathbb{Q}[t]$.
- (d) S_4 is not a subring, because $t^2 \cdot t^2$ does not have degree at most 2.
- (e) S_5 is the ideal generated by $(t-1) \in \mathbb{Q}[t]$. Indeed, the division algorithm tells us that 1 is a root of a polynomial if and only if (t-1) is a factor.

4 H Show that if R is an integral domain, $a, b, c \in R$, and ab = ac, and $a \neq 0$, then b = c: that is, one may cancel. Is this the same as the statement "multiplication by a is injective"?

Solution: Very simply, we have a(b-c) = ab - ac = 0 and since $a \neq 0$ and R is an integral domain we must have b - c = 0, i.e. b = c. Yes, this absolutely does mean that multiplication by a, thought of as a map $R \rightarrow R$, is injective. These are both very useful ways of thinking about what an integral domain is.

GKS, 28/2/25