GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 3

1 W Consider the map ¢: R — C* given by p(r) = *™®. (Remember
what the group operations on R and C* are.) Verify that ¢ is a group
homomorphism. What is its kernel? Describe the three maps m, ¢ and ¢
from the factorisation in Corollary II1.26.

Solution: ¢(x +y) = 2™(@HY) = 2m@ 2T 56 o js a homomorphism. The
kernel is 7, so 7 sends x to x + Z, which is effectively its fractional part, @
sends t € [0,1) to €™ or just sends = to e*™* and ¢ sends z € S' = {z |
|z| =1} to z € C*.

2 H,E In each of the following cases say what the kernel and image of the
group homomorphism ¢ are and describe 7, ¢ and ¢ briefly.

(a) H ¢: S,, = Z/2 where (o) is the signature of o.

(b) E Suppose p is a prime number, and remember the notation F,, which
is Z/p but as a filed, i.e. with multiplication mod p as well as addition
mod p. Take ¢: SL(2,Z) — SL(2,Z/p) to be the reduction mod p
map: that is, ¢(M) is M mod p. [The hard part is to determine the
image of v: you may want to use the Chinese Remainder Theorem.]

Solution:

(a) The kernel is A,, and the image is Z/2 since both odd and even permu-
tations exist. In this case the factorisation is almost trivial: © sends
o to oAy, then ¢ writes down the signature of ¢ and ¢ either does
nothing (if your possible signatures are 0 and 1) or sends —1 to 1 and
1 to 0, depending on whether you prefer to write signatures additively
or multiplicatively.

(b) This is harder than it looks. The kernel is what is called T'(p) (“the

.. . b .
principal congruence subgroup of level p”), given by ) e I'(p) if

d
and only if p divides all of a — 1, d — 1, b and c. The hard part is that
the image is SL(2,FF,): in other words, if N = (: ?) € SL(2,F,)
then there exists M = (Z Z) € SL(2,Z) such that p(M) = N.
It is not enough to take a, b, ¢, d to be arbitrary integers that are
a, B, v, 6 mod p because all we then know is that ad — bc = 1 mod p:
we want it to be actually 1. Suppose that ad — bc = kp + 1. Then

(a+Ap)d—(b—pp)e = (k-+(Ad-+uc))p+1, and M’ = <“ A —dﬂp>
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also satisfies o(M') = N, for any A\, pu € Z. So if we can choose X and p
so that Ac+pud = —k, we are done. We can do that ifhef(c,d) = 1, but
that is not necessarily the case. However, we still have the freedom to
add multiples of p to ¢ and d. Moreover, ¢ and d are not both divisible
by p (because otherwise det N = 0). Suppose that c is not divisible by
p. Then the Chinese Remainder Theorem allows us to solve vp+c¢ =1
mod d (we are finding amn integer that is ¢ mod p and 1 mod d), and
then hef(vp + ¢,d) = 1. So we replace ¢ with vp + ¢, which does not
change N, and then replace a and b with a+ Ap and b— up. If p|c then
we just interchange the roles of ¢ and d.

After that, 7 is reduction modulo T'(p), ¢ takes MT'(p) to N, and ¢ is
the identity:.

3 W In 1.40 we mentioned “the smallest subgroup that contains S” (a subset
of ) as another way to describing (S). Let G be a group, suppose S C G
and let H be the intersection of all (not necessarily proper) subgroups of G
that contain S. Show that H is a subgroup, and that any subgroup that
contains S also contains H. Deduce that H = ().

Solution: In general, intersections of subgroups are subgroups, because if
H = (N,ea Ha and hy, hy € H then h; € H, for all o, so h1h2_1 € H, for
all o, so hlhgl € H. Since clearly 1 € H we also have H # &, so H is a
subgroup.

According to 141, (S) = {s1...s; | s; or s; ' € S for all i}. It is a subgroup
(again see 1.41) and it contains S, so (S) 2 H. On the other hand, any
subgroup containing S has to contain si ...sy, so (S) is contained in any
subgroup containing S, in particular (S) C H.

4 W,E

(a) W Let G be a group and suppose S C G is a subset. Is there a smallest
normal subgroup of G that contains S? If so, can you describe what
the elements look like?

(b) EIf H < G, define the normaliser N (H) to be the largest subgroup of
G such that H is normal in Ng(H ). Make this definition precise, and

show that Ng(H) is a subgroup of G. Is Ng(H) a normal subgroup
of G?

Solution:

(a) Yes, this exists: we can construct it as we constructed H in Q3, re-
placing “subgroup” by “normal subgroup”. The elements are all con-
jugates of elements of S or their inverses, and products of those: that
is, things of the form sy ...sy where for each s; there is a g; € G such
that gisigjl € S or else gisflgfl es.



(b) This also exists: it is the group generated by the union of all subgroups
G’ of G such that H <« G. This is a non-empty union because H is
such a subgroup. It is a group by definition: in this case, in fact,
the union is already a group, because one of the groups G’ is in fact
N¢(H). But it is not normal itself in general: if we take H to be the
subgroup of Ss generated by (12), which is not normal, then the only
subgroup that strictly contains H is the group G = S3. So the only
subgroup G’ in which H is normal is H itself, so No(H) = H which
is not a normal subgroup.

5 E Prove the assertions in III.17(v) in the notes: that in the action of
SL(2,Z) on the upper half-plane H = {z € C | Imz > 0}, the stabiliser of
most z € H is +1, but the stabiliser of ¢ € H is a group of order 4 generated

by (_01 (1)> and the stabiliser of w = €*™/3 is of order 6, generated by

0 7)

Solution: It is important to show both inclusions. Clearly ( 0 1> (1) =

-1 0
_%. = ¢ and since w = —% —1—1'@ we have 1 +w = %%—z@ = ¢™/3, Thus
((1] _11 (w) = 1;—1} = —e T3 = mi=mi/3 — 2mi/3 — ; But we also need

to show that there is nothing else.

If ﬁf—jg =14 then ai + b= —c+ di so d = a and b = —c so the only elements

that stabilise i are <_ab

a’+4b? =1 in integersisa = 0 and b= +1 or b = 0 and a = +1, as required.
awtb — ) then aw + b = cw? + dw. They will now probably

b
a,) with a® + b = 1, and the only way to satisfy

Similarly, if

cw+d T
use w = —% + zg again, which is fine, but I prefer w? = —1 — w so aw +
b = —¢ — cw + dw which (since 1 and w are linearly independent over Q)
gives b = —c and a + ¢ = d. The determinant is 1 so ad + ¢> = 1 so

a’? 4 ac+ ¢ = 1. Let’s try to find solutions, treating it as a quadratic in a.
There are real solutions only if the discriminant ¢?—4(c?—1) is non-negative,
so we must have 4 > 3c¢? so ¢ = +1 or ¢ = 0, and similarly for a. Of these,
only (a,c) = (£1,0), (a,¢) = (0,+£1) and (a,c) = (£1,F1) actually give
solutions, and those give the six matrices required.

6 H Prove the assertion in the proof of Proposition III.18, that left multi-
plication by G on X = {gH | g € G} defines a group action and that the
stabiliser of 1o H is H.

Solution: We need to check that if g1, go € G and gH € X then ¢g1(g29H) =
(g192)9H, and that 1(gH) = gH, according to Definition II1.2. But the first
two are both equal to g1gogH and the second is trivial. For the stabiliser,



this is the statement that gH = H if and only if g € H, which is a case of
Corollary I1.6.
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