GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 3

1 W Consider the map $\varphi \colon \mathbb{R} \to \mathbb{C}^*$ given by $\varphi(x) = e^{2\pi i x}$. (Remember what the group operations on \mathbb{R} and \mathbb{C}^* are.) Verify that φ is a group homomorphism. What is its kernel? Describe the three maps π , $\bar{\varphi}$ and ι from the factorisation in Corollary II.26.

Solution: $\varphi(x + y) = e^{2\pi i (x+y)} = e^{2\pi i x} e^{2\pi i y}$ so φ is a homomorphism. The kernel is \mathbb{Z} so π sends x to $x + \mathbb{Z}$, which is effectively its fractional part, $\overline{\varphi}$ sends $t \in [0, 1)$ to $e^{2\pi i t}$ or just sends x to $e^{2\pi i x}$, and ι sends $z \in S^1 = \{z \mid |z| = 1\}$ to $z \in \mathbb{C}^*$.

2 H,E In each of the following cases say what the kernel and image of the group homomorphism φ are and describe π , $\bar{\varphi}$ and ι briefly.

- (a) $\mathbf{H} \varphi \colon S_n \to \mathbb{Z}/2$ where $\varphi(\sigma)$ is the signature of σ .
- (b) E Suppose p is a prime number, and remember the notation F_p, which is Z/p but as a filed, i.e. with multiplication mod p as well as addition mod p. Take φ: SL(2, Z) → SL(2, Z/p) to be the reduction mod p map: that is, φ(M) is M mod p. [The hard part is to determine the image of φ: you may want to use the Chinese Remainder Theorem.]

Solution:

- (a) The kernel is A_n and the image is $\mathbb{Z}/2$ since both odd and even permutations exist. In this case the factorisation is almost trivial: π sends σ to σA_n , then $\bar{\varphi}$ writes down the signature of σ and ι either does nothing (if your possible signatures are 0 and 1) or sends -1 to 1 and 1 to 0, depending on whether you prefer to write signatures additively or multiplicatively.
- (b) This is harder than it looks. The kernel is what is called $\Gamma(p)$ ("the principal congruence subgroup of level p"), given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(p)$ if and only if p divides all of a 1, d 1, b and c. The hard part is that the image is $\operatorname{SL}(2, \mathbb{F}_p)$: in other words, if $N = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \operatorname{SL}(2, \mathbb{F}_p)$ then there exists $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z})$ such that $\varphi(M) = N$. It is not enough to take a, b, c, d to be arbitrary integers that are $\alpha, \beta, \gamma, \delta \mod p$ because all we then know is that $ad bc \equiv 1 \mod p$: we want it to be actually 1. Suppose that ad bc = kp + 1. Then $(a+\lambda p)d-(b-\mu p)c = (k+(\lambda d+\mu c))p+1$, and $M' = \begin{pmatrix} a+\lambda p & b-\mu p \\ c & d \end{pmatrix}$

also satisfies $\varphi(M') = N$, for any $\lambda, \mu \in \mathbb{Z}$. So if we can choose λ and μ so that $\lambda c + \mu d = -k$, we are done. We can do that if hcf(c, d) = 1, but that is not necessarily the case. However, we still have the freedom to add multiples of p to c and d. Moreover, c and d are not both divisible by p (because otherwise det N = 0). Suppose that c is not divisible by p. Then the Chinese Remainder Theorem allows us to solve $\nu p + c \equiv 1$ mod d (we are finding amn integer that is $c \mod p$ and $1 \mod d$), and then hcf $(\nu p + c, d) = 1$. So we replace c with $\nu p + c$, which does not change N, and then replace a and b with $a + \lambda p$ and $b - \mu p$. If p|c then we just interchange the roles of c and d.

After that, π is reduction modulo $\Gamma(p)$, $\bar{\varphi}$ takes $M\Gamma(p)$ to N, and ι is the identity.

3 W In I.40 we mentioned "the smallest subgroup that contains S" (a subset of G) as another way to describing $\langle S \rangle$. Let G be a group, suppose $S \subset G$ and let H be the intersection of all (not necessarily proper) subgroups of G that contain S. Show that H is a subgroup, and that any subgroup that contains S also contains H. Deduce that $H = \langle S \rangle$.

Solution: In general, intersections of subgroups are subgroups, because if $H = \bigcap_{\alpha \in A} H_{\alpha}$ and $h_1, h_2 \in H$ then $h_i \in H_{\alpha}$ for all α , so $h_1 h_2^{-1} \in H_{\alpha}$ for all α , so $h_1 h_2^{-1} \in H$. Since clearly $1 \in H$ we also have $H \neq \emptyset$, so H is a subgroup.

According to I.41, $\langle S \rangle = \{s_1 \dots s_k \mid s_i \text{ or } s_i^{-1} \in S \text{ for all } i\}$. It is a subgroup (again see I.41) and it contains S, so $\langle S \rangle \supseteq H$. On the other hand, any subgroup containing S has to contain $s_1 \dots s_k$, so $\langle S \rangle$ is contained in any subgroup containing S, in particular $\langle S \rangle \subseteq H$.

4 W,E

- (a) W Let G be a group and suppose $S \subseteq G$ is a subset. Is there a smallest normal subgroup of G that contains S? If so, can you describe what the elements look like?
- (b) **E** If H < G, define the normaliser $N_G(H)$ to be the largest subgroup of G such that H is normal in $N_G(H)$. Make this definition precise, and show that $N_G(H)$ is a subgroup of G. Is $N_G(H)$ a normal subgroup of G?

Solution:

(a) Yes, this exists: we can construct it as we constructed H in Q3, replacing "subgroup" by "normal subgroup". The elements are all conjugates of elements of S or their inverses, and products of those: that is, things of the form $s_1 \ldots s_k$ where for each s_i there is a $g_i \in G$ such that $g_i s_i g_i^{-1} \in S$ or else $g_i s_i^{-1} g_i^{-1} \in S$.

(b) This also exists: it is the group generated by the union of all subgroups G' of G such that $H \triangleleft G$. This is a non-empty union because H is such a subgroup. It is a group by definition: in this case, in fact, the union is already a group, because one of the groups G' is in fact $N_G(H)$. But it is not normal itself in general: if we take H to be the subgroup of S_3 generated by (12), which is not normal, then the only subgroup that strictly contains H is the group $G = S_3$. So the only subgroup G' in which H is normal is H itself, so $N_G(H) = H$ which is not a normal subgroup.

5 E Prove the assertions in III.17(v) in the notes: that in the action of $SL(2,\mathbb{Z})$ on the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$, the stabiliser of most $z \in \mathbb{H}$ is $\pm I$, but the stabiliser of $i \in \mathbb{H}$ is a group of order 4 generated by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and the stabiliser of $\omega = e^{2\pi i/3}$ is of order 6, generated by $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$.

Solution: It is important to show both inclusions. Clearly $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $(i) = \frac{1}{-i} = i$ and since $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ we have $1 + \omega = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{\pi i/3}$. Thus $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ $(\omega) = \frac{-1}{1+\omega} = -e^{-\pi i/3} = e^{\pi i - \pi i/3} = e^{2\pi i/3} = \omega$. But we also need to show that there is nothing else.

to show that there is nothing else. If $\frac{ai+b}{ci+d} = i$ then ai + b = -c + di so d = a and b = -c so the only elements that stabilise i are $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ with $a^2 + b^2 = 1$, and the only way to satisfy $a^2 + b^2 = 1$ in integers is a = 0 and $b = \pm 1$ or b = 0 and $a = \pm 1$, as required. Similarly, if $\frac{a\omega+b}{c\omega+d} = \omega$ then $a\omega + b = c\omega^2 + d\omega$. They will now probably use $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ again, which is fine, but I prefer $\omega^2 = -1 - \omega$ so $a\omega + b = -c - c\omega + d\omega$ which (since 1 and ω are linearly independent over \mathbb{Q}) gives b = -c and a + c = d. The determinant is 1 so $ad + c^2 = 1$ so $a^2 + ac + c^2 = 1$. Let's try to find solutions, treating it as a quadratic in a. There are real solutions only if the discriminant $c^2 - 4(c^2 - 1)$ is non-negative, so we must have $4 \ge 3c^2$ so $c = \pm 1$ or c = 0, and similarly for a. Of these, only $(a, c) = (\pm 1, 0), (a, c) = (0, \pm 1)$ and $(a, c) = (\pm 1, \mp 1)$ actually give solutions, and those give the six matrices required.

6 H Prove the assertion in the proof of Proposition III.18, that left multiplication by G on $X = \{gH \mid g \in G\}$ defines a group action and that the stabiliser of 1_GH is H.

Solution: We need to check that if $g_1, g_2 \in G$ and $gH \in X$ then $g_1(g_2gH) = (g_1g_2)gH$, and that 1(gH) = gH, according to Definition III.2. But the first two are both equal to g_1g_2gH and the second is trivial. For the stabiliser,

this is the statement that gH = H if and only if $g \in H$, which is a case of Corollary II.6.

GKS, 19/2/25