GROUPS AND RINGS (MA22017)

SOLUTIONS TO SHEET 10

1 Recall (Example III.7(viii)) that any group G acts on itself by conjugation: $a(g,h) = ghg^{-1}$. The orbits are called *conjugacy classes*.

- (a) Show that for this action, the map $a_g \colon G \to G$ is in fact a group homomorphism.
- (b) Show that any normal subgroup of G is a union of conjugacy classes.
- (c) Let \mathcal{W} denote the set of all subgroups of G. Show that G acts on \mathcal{W} by conjugation.
- (d) Suppose $H \leq G$, so $H \in \mathcal{W}$. Show that $H \triangleleft G$ if and only if $\operatorname{Stab}_G(H) = G$ (under the conjugation action of G on W), and more generally that $H \triangleleft \operatorname{Stab}_G(H)$.
- (e) Deduce that $\operatorname{Stab}_G(H) = N_G(H)$, the normaliser of H in G, which is by definition the largest subgroup N < G such that $H \lhd N$.

Solution:

- (a) $a_g(h_1h_2) = gh_1h_2g^{-1} = (gh_1g^{-1})(gh_2g^{-1}) = a_g(h_1h_2).$
- (b) If $h \in H$ and $h' \in [h]$, the conjugacy class of h, then $h' = ghg^{-1} \in gHg^{-1} = H$ so $[h] \subset H$. So $H = \bigcup_{h \in H} [h]$.
- (c) We need to show that $gHg^{-1} < G$ if H < G. But $gHg^{-1} \neq \emptyset$ because it contains $1 = g1g^{-1}$, and if $a = ghg^{-1}$, $b = gh'g^{-1} \in gHg^{-1}$, then $ab^{-1} = (ghg^{-1})(gh'g^{-1})^{-1} = (ghg^{-1})(gh'^{-1}g^{-1}) = ghh'^{-1}g^{-1} \in gHg^{-1}$. And we also need to show that that this is a group action, i.e. that $a(g_1g_2, H) = a(g_1, a(g_2, H))$, but $a(g_1, a(g_2, H)) = g_1(g_2Hg_2^{-1})g_1^{-1} = (g_1g_2)H(g_1g_2)^{-1} = a(g_1g_2, H)$.
- (d) If $H \triangleleft G$ then for any $g \in G$ we have gH = Hg so $gHg^{-1} = H$; that is, g stabilises $H \in \mathcal{W}$ under conjugation. So $\operatorname{Stab}_G(H) = G$. Conversely, if $\operatorname{Stab}_G(H) = G$ then $gHg^{-1} = H$ for all g so gH = Hgfor all g. More generally, even if $\operatorname{Stab}_G(H) \neq G$, if $g \in \operatorname{Stab}_G(H)$ then $gHg^{-1} = H$ so gH = Hg, so $H \triangleleft \operatorname{Stab}_G(H)$.
- (e) We need to show that if K < G and $H \triangleleft K$ then $K \subseteq \operatorname{Stab}_G(H)$, as then any subgroup of G in which H is normal is contained in $\operatorname{Stab}_G(H)$, which is what it means for that to be the biggest such subgroup. But if not, then there exists $k \in K$ such that $kH \neq Hk$; say $kh \notin Hk$ (or $hk \notin kH$, which is similar). But then $khk^{-1} \notin H$ so $kHk^{-1} \neq H$ so H is not a normal subgroup of K.

- **2** Compute the following products of permutations:
 - (a) (134)(125)(453)
 - (b) (12)(13)(12)
 - (c) $(134)^{-1}(12)(34)(134)$
 - (d) $(134)^{-1}(12)(24)(134)$

Solution:

- (a) (12543)
- (b) (23)
- (c) (13)(42)
- (d) (42)(23), or (234) which is the same thing.

3 Show that the dihedral group D_{2n} (the symmetries of an *n*-gon) is generated by two elements of order 2 by showing the following things:

- (a) If n = 2m 1 is odd, then D_{2n} is generated by the rotation a = (123...n) and the reflection b = (2n)(3n-1)...(mm+1); if n = 2m is even then instead b = (1n)(2n-1)...(mm+1).
- (b) a has order n and b has order 2.
- (c) bab^{-1} also has order n.
- (d) c = ba has order 2. Thus D_{2n} is generated by b and c, with relation $b^2 = c^2 = (bc)^n = 1.$

Solution:

- (a) a is the rotation by $2\pi/n$ and b is the reflection in the vertical axis, if we put vertex 1 at the bottom (odd case) or bottom right (even case) and number the vertices anticlockwise.
- (b) Obvious from the description above or from the permutations.
- (c) In fact $o(ghg^{-1}) = o(h)$ in all cases, because $(ghg^{-1})^r = gh^r g^{-1}$ which is 1 if and only if $h^r = 1$.
- (d) $bab = bab^{-1}$ is the opposite rotation: the multiplication gives $bab = (1 \ n \ n 1 \ \dots \ 2)$ (odd case) or $bab = (n \ n 1 \ \dots \ 1)$ (even case) which is a^{-1} in both cases, so $c^2 = baba = (bab)a = a^{-1}a = 1$. These two generate D_{2n} because bc = bba = a so we recover a and b, and $(bc)^n = a^n = 1$.

4 For each of the following polynomials in $\mathbb{Q}[t]$, say whether it is irreducible or not.

- (a) $t^5 + 132t^4 99t^3 143t^2 + 121t + 11$. [Eisenstein.]
- (b) $t^5 + 132t^4 99t^3 143t^2 + 121t + 34$. [Look for a linear factor.]
- (c) $t^4 + 4t^3 3t^2 14t + 8$. [Subtract $(t^2 + 2t 3)^2$.]

Solution:

- (a) $t^5 + 132t^4 99t^3 143t^2 + 121t + 11$ is Eisenstein with p = 11, hence irreducible.
- (b) $t^5 + 132t^4 99t^3 143t^2 + 121t + 34$ has a factor of t + 1 since putting t = -1 gives $-1 + 132 + 99 143 121 + 34 = -1 + 11 \times (12 + 9 13 11 + 3) + 1 = 0$.
- (c) $t^4 + 4t^3 3t^2 14t + 8 (t^2 + 2t 3)^2 = -(t+1)^2$ so $t^4 + 4t^3 3t^2 14t + 8 = (t^2 + 2t 3)^2 (t+1)^2$ which factorises because it is the difference of two squares, $t^4 + 4t^3 3t^2 14t + 8 = ((t^2 + 2t 3) + (t+1))((t^2 + 2t 3) (t+1))$, so it is reducible.
- 5 What is the characteristic of each of these rings?
 - (a) \mathbb{F}_{25}
 - (b) $\mathbb{F}_{25}[t]$
 - (c) $\mathbb{F}_{25}[t]/\langle t^2 \rangle$
 - (d) $\mathbb{Z}/25\mathbb{Z}$
 - (e) R/3R, where $R = \mathbb{Z}/15\mathbb{Z}$
 - (f) $\mathbb{Z}[t]/\langle t^5 \rangle$
 - (g) Hom(R, S), the set of ring homomorphisms $\varphi \colon R \to S$ where R and S are rings, with addition and multiplication defined by $(\varphi + \psi)(r) = \varphi(r) + \psi(r)$ and $(\varphi \psi)(r) = \varphi(r)\psi(r)$.

Solution: 5, 5, 5, 25, 3, 0, the characteristic of S. GKS, 27/4/25