

GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 1

1 W. In each of the following cases say whether H is a subgroup of G . If it is, say whether it is a normal subgroup.

- (a) $G = \mathbb{Z}$ and $H = \{2^k \mid k \in \mathbb{N}\}$
- (b) $G = \mathbb{Q}^*$ (with multiplication) and $H = \{2^k \mid k \in \mathbb{Z}\}$.
- (c) $G = \mathrm{SL}(2, \mathbb{R})$ and $H = \mathrm{SL}(2, \mathbb{Z})$.

Solution:

- (a) *This is not a subgroup: for example, 2 has no inverse. This is because $-2 \notin H$, not because $\frac{1}{2} \notin H$: the alleged group operation is addition, the same as in \mathbb{Z} , not multiplication.*
- (b) *This is a subgroup because $H \neq \emptyset$ and $2^k(2^l)^{-1} = 2^{k-l} \in H$, which verifies the condition for H to be a subgroup in Lemma I.14. Notice that here the group operation is multiplication: that's what it has to be to make \mathbb{Q}^* into a group, so we don't have to specify it explicitly. H is a normal subgroup, because G is abelian.*
- (c) *This is a subgroup, because the condition of being in SL is that the determinant is 1 so the inverse of an integral matrix is again integral, and of course the product of integral matrices is integral. But it is not normal: e.g.*

$$\begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{5}{4} \\ 1 & -\frac{1}{2} \end{pmatrix}$$

so we have found an element $g \in \mathrm{SL}(2, \mathbb{R})$ and an element $h \in \mathrm{SL}(2, \mathbb{Z})$ such that $g^{-1}hg \notin \mathrm{SL}(2, \mathbb{Z})$.

2 H Prove or disprove the following statements.

- (a) If G is a group and H and K are subgroups of G , then $H \cap K$ is always a subgroup of G .
- (b) If G is a group and H and K are subgroups of G , then $H \cup K$ is always a subgroup of G .
- (c) If G is a group and H and K are subgroups of G , and $K \triangleleft G$, then $H \cap K \triangleleft G$.

(d) If G is a group and H and K are subgroups of G , and $K \triangleleft G$, then $H \cap K \triangleleft H$.

Solution:

- (a) Yes. It is enough to check that $g_1g_2^{-1} \in H \cap K$ if $g_1, g_2 \in H \cap K$; but in that case, $g_1g_2^{-1} \in H$ because $g_1, g_2 \in H$ and similarly for K .
- (b) No. For example, take $G = \mathbb{Z}$, and $H = 2\mathbb{Z}$ and $K = 3\mathbb{Z}$. Then $H \cup K \not\ni 5 = 2 + 3$ so $H \cup K$ is not closed under the group operation (which is $+$ here). Or you could look at the example from vector spaces: the $x - y$ plane and the z -axis are both subgroups of \mathbb{R}^3 (with addition, of course) but their union is not.
- (c) No. But it is not enough to say “it is not necessarily the case that $ghg^{-1} \in H \cap K$ ”: you must give a counterexample, not just a failed attempt at a proof. For example, we know that $A_n \triangleleft S_n$ (check it!), so let us take $G = S_4$ and $K = A_4$. Then we could take H to be the cyclic subgroup of order 3 generated by (123): that is contained in A_3 so $K \cap H = H$, but $(14)(123)(14) = (423) \notin H$ so H is not a normal subgroup of $G = S_4$.
- (d) Yes. If $h \in H$ and $k \in H \cap K$ then $h^{-1}kh \in K$ because $K \triangleleft G$ and $h \in G$, and $h^{-1}kh \in H$ because $h, k \in H$. With (iii), this gives an example of a subgroup that is normal in H but not in $G > H$; a simpler example is to take any non-normal subgroup of H and observe that $H \triangleleft H$.

3 W Discuss the question in 1.17: is $\mathbb{Z}/2$ a subgroup of $\mathbb{Z}/6$? Is $\mathbb{Z}/3$ a subgroup of $\mathbb{Z}/6$? Also: is $\mathbb{Z}/2$ a subgroup of $\mathbb{Z}/2 \times \mathbb{Z}/2$?

Solution: The first at least of these is genuinely debatable. At one level, no: residue classes mod 2 are not residue classes mod 6. On the other hand, there is a unique subgroup of $\mathbb{Z}/6$, uniquely isomorphic to $\mathbb{Z}/2$, generated by 3. What about $\mathbb{Z}/3$? Again there is a unique subgroup isomorphic to $\mathbb{Z}/3$ but is there really a preferred isomorphism? Do you care if there isn't? The third is slightly different again: this time there is a subgroup isomorphic to $\mathbb{Z}/2$, but it isn't unique.

4 W/H Prove:

- (a) (**W**) Lemma 1.27 (the image of a group homomorphism is a group);
- (b) (**H**) Lemma 1.29 (a group homomorphism is injective if and only if its kernel is trivial);
- (c) (**W**) 1.34 (isomorphism is an equivalence relation on groups: first formulate a precise statement of this).

Solution:

(a) If $\varphi: G \rightarrow H$ is a group homomorphism and $h_1, h_2 \in H_0 := \text{Im } \varphi$ then $h_1 = \varphi(g_1)$ and $h_2 = \varphi(g_2)$ for some $g_1, g_2 \in G$ then

$$h_1 h_2^{-1} = \varphi(g_1) \varphi(g_2)^{-1} = \varphi(g_1) \varphi(g_2^{-1}) \in \text{Im } \varphi = H_0$$

So H_0 is a subgroup as long as it is not empty: but $H_0 \ni \varphi(1_G) = 1_H$.

(b) If $\text{Ker } \varphi$ (notation as above) is not trivial then it contains at least two elements (1_G and something else) both of which are mapped to 1_H by φ , so φ is not injective. Conversely, suppose that $\text{Ker } \varphi = \{1_G\}$ and suppose that $\varphi(g_1) = \varphi(g_2)$, for $g_1, g_2 \in G$. Then $1_H = \varphi(g_1) \varphi(g_2)^{-1} = \varphi(g_1 g_2^{-1})$, so $g_1 g_2^{-1} \in \text{Ker } \varphi$ so $g_1 g_2^{-1} = 1_H$. Therefore $g_1 = g_2$, i.e. φ is injective.

(c) The precise statement is this: suppose G, H , and K are groups. Then $G \cong G$; if $G \cong H$ then $H \cong G$; and if $G \cong H$ and $H \cong K$ then $G \cong K$. You have to say it this way: you can't talk about "the set of all groups".

For the first, observe that $\text{id}: G \rightarrow G$ is an isomorphism, with inverse again id .

For the second, suppose that $\varphi: G \rightarrow H$ is an isomorphism, with inverse $\psi: H \rightarrow G$. Then ψ is an isomorphism, with inverse φ : there is nothing to check.

For the third, suppose that $\varphi: G \rightarrow H$ is an isomorphism with inverse ψ and $\varphi': H \rightarrow K$ is an isomorphism with inverse ψ' . Then clearly $\varphi' \varphi$ is an isomorphism with inverse $\psi \psi'$, provided those maps are homomorphisms. But the composite of two homomorphisms is a homomorphism. This has been implicit but not stated directly so we should check it: if $\theta: G \rightarrow H$ and $\theta': H \rightarrow K$ are group homomorphisms and $a, b \in G$ then

$$\begin{aligned} (\theta' \theta)(ab) &= \theta'(\theta(ab)) = \theta'(\theta(a)\theta(b)) \\ &= \theta'(\theta(a))\theta'(\theta(b)) = (\theta' \theta(a))((\theta' \theta)(b)) \end{aligned}$$

so $\theta' \theta$ is indeed always a homomorphism.