

GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 0

1. In each of the following cases, either convince yourself that G is a group or give ONE reason why it isn't. (Note: “under $*$ ” means “taking $*$ as the group operation”.)

- (a) $G = \mathbb{N}$ under addition.
- (b) $G = \mathbb{C}$ under multiplication.
- (c) $G = 2\mathbb{Z}$, the set of even integers, under addition.
- (d) G is the set of odd integers under addition.
- (e) G is the set of odd integers under multiplication.
- (f) G is the set of permutations of $\{1, \dots, 6\}$ that leave 3 fixed.
- (g) G is the set of permutations of $\{1, \dots, 6\}$ that move 3 to 4.
- (h) $G = M_{2 \times 2}(\mathbb{R})$ under matrix multiplication.
- (i) $G = M_{2 \times 2}(\mathbb{R})$ under matrix addition.
- (j) \mathbb{R}^3 under vector cross product.
- (k) $G = \mathbb{Z} \setminus \{1, -1\}$ under addition.

Solution:

- (a) No inverses.
- (b) 0 has no inverse.
- (c) Group.
- (d) No identity.
- (e) No inverse, e.g. 3 has no inverse.
- (f) Group.
- (g) No identity.
- (h) No inverses, e.g. the zero matrix has no inverse.
- (i) Group.
- (j) No identity.

(k) Not closed.

2. Read the section on permutations from Algebra 1A again. Compute each of the following products in S_n (for n large enough – say the largest number mentioned), writing the answer as a product of disjoint cycles. Say whether the product is an even permutation or an odd permutation.

- (a) $(123)(234)$
- (b) $(13)(12)(24)(23)$
- (c) $(12345)(54321)$
- (d) $(1234)(25)(532)$
- (e) $(12)(1234)(12)$

Solution:

- (a) $(12)(34)$, even.
- (b) $(12)(34)$, even – notice that $(13)(12) = (123)$ so this is simply (a) again.
- (c) Identity, even.
- (d) (12354) , even.
- (e) (2134) , odd – you can multiply it out, or notice that your orders are to swap 1 and 2, do something and swap them back, and that's the same as doing the something with 1 and 2 swapped.

3. Persuade yourself that S_3 and D_6 are the same group (D_{2n} is the symmetries of an n -gon). How big is this group? Is it the same as $\mathbb{Z}/6$, and why or why not? Is D_8 the same as S_4 ?

Solution: Consider the effect on vertices! It has order 6 but it's not abelian so it can't be $\mathbb{Z}/6$. And D_8 has order 8 but S_4 has order 24, so they aren't the same either.

GKS, 1/2/26