GROUPS AND RINGS (MA22017)

SEMESTER 2 MATHEMATICS: PROBLEM SHEET 8

Homework questions, marked \mathbf{H} , should be handed in according to the directions given by your tutor. Other questions are marked \mathbf{W} for warmup or work or \mathbf{E} for extra or enthusiast. A copy of this sheet is on Moodle and at

http://people.bath.ac.uk/masgks/MA22017/sheet8.pdf

1 W Suppose that R is a nontrivial ring (i.e. $0_R \neq 1_R$). Prove the assertion made in lectures that the map $i: X \to F_X$ in the definition of a free module is automatically injective.

- (a) Suppose that *i* is not injective, so that there exist $x, x' \in X$ with $x \neq x'$ but $i(x_0) = i(x_1)$. Construct an *R*-module *M* (you could take M = R) and a map of sets $f: X \to M$ such that $f(x) \neq f(x')$.
- (b) Show that no linear map $\varphi \colon F_X \to M$, as required by the definition of free module, can exist.

2 H Choose an integral domain R (your choice) and give an example of a free R-module, an example of a torsion R-module and an example of an R-module that is neither free nor torsion.

3 H Explain why $2\mathbb{Z}$ cannot be a direct summand of \mathbb{Z} as a \mathbb{Z} -module.

4 E Show that if X and Y have the same cardinality then any free module on X is isomorphic to any free module on Y, as follows.

Let $a: X \to Y$ be a bijection and let $b: Y \to X$ be its inverse. Suppose that F_X is free on X with respect to the map $i: X \to F_X$ and F_Y is free on Y with respect to the map $j: Y \to F_Y$.

- (a) In the diagram that arises from the fact that F_X is free, put $M = F_Y$ and hence construct a linear map $\alpha \colon F_X \to F_Y$.
- (b) Similarly construct a linear map $\beta \colon F_Y \to F_X$.
- (c) In the diagram that arises from the fact that F_X is free, put $M = F_X$ and hence deduce that there is a *unique* linear map $\varphi \colon F_X \to F_X$ with a certain property. Show that both id_{F_X} and $\beta \alpha$ have this property.
- (d) Do the same thing with F_Y , and deduce that α and β are mutually inverse maps and hence (by definition of isomorphism) they are isomorphisms.

GKS, 28/3/25