GROUPS AND RINGS (MA22017)

SEMESTER 2 MATHEMATICS: PROBLEM SHEET 6

Homework questions, marked \mathbf{H} , should be handed in according to the directions given by your tutor. Other questions are marked \mathbf{W} for warmup or work or \mathbf{E} for extra or enthusiast. A copy of this sheet is on Moodle and at

http://people.bath.ac.uk/masgks/MA22017/sheet6.pdf

1 H. In this question R is a commutative ring and I and J are ideals in R. Say whether each of the following statements is true or not: give a proof or a counterexample.

- (a) If I and J are both prime ideals then $I \cap J$ is a prime ideal.
- (b) If I and J are both prime ideals then IJ is a prime ideal.
- (c) If I and J are both prime ideals then I + J is a prime ideal.
- (d) If I and J are both maximal ideals then $I \cap J$ is a maximal ideal.
- (e) If I and J are both maximal ideals then IJ is a maximal ideal.
- (f) If I and J are both maximal ideals then I + J is a maximal ideal.

2 W Recall that $\xi \in \mathbb{C}$ is said to be algebraic if the ideal K_{ξ} , which is defined to be the kernel of $\operatorname{ev}_{\xi} : \mathbb{Q}[t] \to \mathbb{C}$, is not zero. Show that the image $\mathbb{Q}[\xi]$ of ev_{ξ} is a field if and only if ξ is algebraic. (Hint: Notice that $\mathbb{Q}[\xi]$ is the image of ev_{ξ} : use the first isomorphism theorem and Theorem VI.24.)

3 W Justify the assertion made in lectures that 2, $31 \pm \sqrt{-5}$ are all irreducible in $\mathbb{Z}[\sqrt{-5}]$. Put $N(x) = x\bar{x}$ for any $x \in \mathbb{Z}[\sqrt{-5}]$, where \bar{x} denotes the complex conjugate.

- (a) Show that N(xy) = N(x)N(y).
- (b) Show that N(x) for $x \neq 0$ is a positive integer of the form $a^2 + 5b^2$.
- (c) Show that if N(x) = 1 then $x \in \mathbb{Z}[\sqrt{-5}]$ is a unit.
- (d) Show that if x is reducible then N(x) is the product of two integers greater than 1 and of the form $a^2 + 5b^2$.
- (e) Compute N(x) for each of the four elements above.
- (f) Hence deduce that these elements are irreducible.

4 H Suppose that R is a principal ideal domain. For each of the following rings, say whether it is necessarily a PID too: give a proof, or a counterexample.

- (a) A nontrivial subring S of R that contains 1_R .
- (b) A quotient ring A = R/I where I is a prime ideal (so A is an integral domain).
- (c) The ring R[t].
- (d) A quotient R[t]/J where J is a prime ideal.

GKS, 14/3/25