GROUPS AND RINGS (MA22017)

SEMESTER 2 MATHEMATICS: PROBLEM SHEET 5

Homework questions, marked \mathbf{H} , should be handed in according to the directions given by your tutor. Other questions are marked \mathbf{W} for warmup or work or \mathbf{E} for extra or enthusiast. A copy of this sheet is on Moodle and at

http://people.bath.ac.uk/masgks/MA22017/sheet5.pdf

1 H Let R be a commutative ring, and let $a \in R$. Show that if R is an integral domain then the equation $x^2 = a$ has at most two solutions in R. Find a commutative ring R and an element $a \in R$ such that $x^2 = a$ has more than two solutions.

2 W Consider the evaluation homomorphism $\varphi \colon \mathbb{R}[t] \to \mathbb{C}$ defined by setting $\phi(f) = f(i)$. Identify Ker (ϕ) : using the division algorithm, prove carefully that your answer is correct.

What does the First Isomorphism Theorem tell us in this case?

3 W Prove that if I and J are ideals in a ring R, then I + J, IJ and $I \cap J$ are ideals in R and $IJ \subseteq I \cap J \subseteq I + J$.

4 H Let *R* be a finite ring, i.e. the number |R| of elements of *R* is finite. Show that |R| is divisible by char *R*. Deduce that if |R| = p is prime, then $R \cong \mathbb{Z}/p\mathbb{Z}$.

By considering the map $m_a: R \to R$ given by $m_a(b) = ab$, or otherwise, show that a finite integral domain is a field.

GKS, 7/3/25