GROUPS AND RINGS (MA22017)

SEMESTER 2 MATHEMATICS: PROBLEM SHEET 4

Homework questions, marked \mathbf{H} , should be handed in according to the directions given by your tutor. Other questions are marked \mathbf{W} for warmup or work or \mathbf{E} for extra or enthusiast. A copy of this sheet is on Moodle and at

http://people.bath.ac.uk/masgks/MA22017/sheet4.pdf

1 H For each of the following commutative rings, say whether it is an integral domain, a field, or neither. Give brief reasons. What are the units in each case?

- (a) The set of Gaussian integers $\mathbb{Z}[i] = \{a + ib \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$, (where $i = \sqrt{-1}$) with the usual operations of complex numbers.
- (b) $\mathbb{Z}/9$, with the usual operations.
- (c) $\mathbb{C}[t]$.
- (d) $\mathbb{Q}[i] = \{a + ib \in \mathbb{C} \mid a, b \in \mathbb{Q}\}$, with the usual operations of complex numbers.

2 E Is it true that if a finite G acts on a set X and the orbits $\operatorname{orb}_G(x)$ and $\operatorname{orb}_G(y)$ are the same size, then $\operatorname{Stab}_G(x) \cong \operatorname{Stab}_G(y)$? Give a proof or a counterexample.

3 W Decide whether each of the following is a subring, an ideal, or neither; prove your assertions.

- (a) $S_1 = \{-1, 0, 1\} \subset \mathbb{Z};$
- (b) $S_2 = \{a_0 + a_2t^2 + a_4t^4 + \dots \mid a_i \in \mathbb{Q}\} \subset \mathbb{Q}[t];$
- (c) $S_3 = \{a_2t^2 + a_3t^3 + a_4t^4 + \dots \mid a_i \in \mathbb{Q}\} \subset \mathbb{Q}[t];$
- (d) $S_4 = \{\text{polynomials of degree } \leq 2\} \subseteq \mathbb{Q}[t];$
- (e) $S_5 = \{ p \in \mathbb{Q}[t] \mid p(1) = 0 \} \subset \mathbb{Q}[t].$

4 H Show that if R is an integral domain, $a, b, c \in R$, and ab = ac, and $a \neq 0$, then b = c: that is, one may cancel. Is this the same as the statement "multiplication by a is injective"?

GKS, 28/2/25