GROUPS AND RINGS (MA22017)

SEMESTER 2 MATHEMATICS: PROBLEM SHEET 10

This is a revision sheet on the Sections 1-6. A copy of this sheet is on Moodle and at

http://people.bath.ac.uk/masgks/MA22017/sheet10.pdf

1 Recall (Example III.7(viii)) that any group G acts on itself by conjugation: $a(g,h) = ghg^{-1}$. The orbits are called *conjugacy classes*.

- (a) Show that for this action, the map $a_g \colon G \to G$ is in fact a group homomorphism.
- (b) Show that any normal subgroup of G is a union of conjugacy classes.
- (c) Let \mathcal{W} denote the set of all subgroups of G. Show that G acts on \mathcal{W} by conjugation.
- (d) Suppose $H \leq G$, so $H \in \mathcal{W}$. Show that $H \triangleleft G$ if and only if $\operatorname{Stab}_G(H) = G$ (under the conjugation action of G on W), and more generally that $H \triangleleft \operatorname{Stab}_G(H)$.
- (e) Deduce that $\operatorname{Stab}_G(H) = N_G(H)$, the normaliser of H in G, which is by definition the largest subgroup N < G such that $H \triangleleft N$.

2 Compute the following products of permutations:

- (a) (134)(125)(453)
- (b) (12)(13)(12)
- (c) $(134)^{-1}(12)(34)(134)$
- (d) $(134)^{-1}(12)(24)(134)$

3 Show that the dihedral group D_{2n} (the symmetries of an *n*-gon) is generated by two elements of order 2 by showing the following things:

- (a) If n = 2m 1 is odd, then D_{2n} is generated by the rotation a = (123...n) and the reflection b = (2n)(3n-1)...(mm+1); if n = 2m is even then instead b = (1n)(2n-1)...(mm+1).
- (b) a has order n and b has order 2.
- (c) bab^{-1} also has order n.

(d) c = ba has order 2. Thus D_{2n} is generated by b and c, with relation $b^2 = c^2 = (bc)^n = 1.$

4 For each of the following polynomials in $\mathbb{Q}[t]$, say whether it is irreducible or not.

- (a) $t^5 + 132t^4 99t^3 143t^2 + 121t + 11$. [Eisenstein.]
- (b) $t^5 + 132t^4 99t^3 143t^2 + 121t + 34$. [Look for a linear factor.]
- (c) $t^4 + 4t^3 3t^2 14t + 8$. [Subtract $(t^2 + 2t 3)^2$.]

5 What is the characteristic of each of these rings?

- (a) \mathbb{F}_{25}
- (b) $\mathbb{F}_{25}[t]$
- (c) $\mathbb{F}_{25}[t]/\langle t^2 \rangle$
- (d) $\mathbb{Z}/25\mathbb{Z}$
- (e) R/3R, where $R = \mathbb{Z}/15\mathbb{Z}$
- (f) $\mathbb{Z}[t]/\langle t^5 \rangle$
- (g) Hom(R, S), the set of ring homomorphisms $\varphi \colon R \to S$ where R and S are rings, with addition and multiplication defined by $(\varphi + \psi)(r) = \varphi(r) + \psi(r)$ and $(\varphi \psi)(r) = \varphi(r)\psi(r)$.

GKS, 27/4/25