GROUPS AND RINGS (MA22017)

SEMESTER 2 MATHEMATICS: PROBLEM SHEET 0

These questions are not for handing in. A copy of this sheet is at

http://people.bath.ac.uk/masgks/MA22017/sheet0.pdf

The notation \mathbb{Z} means the group of integers where the operation is addition. (Why not multiplication?) \mathbb{Z}/r means the integers mod r: you may have called this \mathbb{Z}_r or $\mathbb{Z}/r\mathbb{Z}$ or C_r , which are common alternatives.

0. Find your notes from the algebra course you did in Semester 1 of your *first* year (this may be the hard part) and read them again, paying special attention to Subsections 1.3 (Prime factorisation), 1.4 (Modular arithmetic) and 2.6 (Permutations), and to Section 3 (Polynomials and unique factorisation).

1. Compute, by hand (or even in your head):

- (a) The product of permutations (125)(26)(4563)(23)
- (b) The highest common factor d of the integers 1547 and 7531.
- (c) Integers λ and μ such that $1547\lambda + 7531\mu = d$
- (d) Polynomials q(t) and r(t), with rational coefficients, such that

 $39t^{4} - 21t^{3} + 6t^{2} + t - 11 = q(t)(3t^{3} + t^{2} + 2t - 8) + r(t)$

and $\deg r < 3$.

2. Which of the following are groups and which are not? If not, what is wrong?

- (a) \mathbb{N} with addition.
- (b) \mathbb{N} with multiplication.
- (c) \mathbb{R}^3 with vector cross product.
- (d) \mathbb{R}^3 with vector dot product.
- (e) For a fixed non-empty set S, the set of functions $f: S \to \mathbb{Z}/2$, with addition: that is, we define $(f_1 + f_2)(x) := f_1(x) + f_2(x)$, where the + on the right-hand side is addition in $\mathbb{Z}/2$.
- (f) $H \subset S_5$, where $\sigma \in H$ if $\sigma = \rho$ or $\sigma = (45)\rho$ for some $\rho \in S_3$.

(g) For a fixed non-empty set S, the power set of S (the set of all subsets of S) with the operation of symmetric difference: $A \cdot B = (A \cup B) \setminus (A \cap B)$.

3. Here is a list of maps between groups. Say which ones are group homomorphisms. Don't guess: try to find a proof.

- (a) $\phi \colon \mathbb{Z} \to \mathbb{Z}$ given by $\phi(x) = 0$.
- (b) $\phi \colon \mathbb{Z} \to \mathbb{Z}$ given by $\phi(x) = 1$.
- (c) $\phi \colon \mathbb{Z} \to \mathbb{Z}$ given by $\phi(x) = -x$.
- (d) $\phi: \mathbb{Z} \to \mathbb{Z}$ given by $\phi(x) = x^2$.
- (e) $\varepsilon: S_n \to \mathbb{Z}/2$, where ε is the sign of σ , i.e. 0 if σ is an even permutation and 1 if it is odd.
- (f) $\eta: S_n \to \mathbb{Z}/2$ where $\eta(\sigma) = 0$ if σ is the product of an even number of disjoint cycles (possibly of length 1, i.e. fixed points) and 1 if that number is odd.

GKS, 4/2/25