
GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 7

Section A

1.

(a) Say what it means for a map α : G × X → X to be an action of a
group G on a set X. [2]

(b) Show that an action of G on X determines a homomorphism G →
Sym(X), where Sym(X) is the group of permutations of X. [2]

(c) Define what it means for an action to be free, to be faithful, and to be
transitive. [3]

(d) For each of the conditions in (c), either give an example of an ac-
tion satisfying the other two but not that one, or show that this is
impossible. [3]

Solution:

(a) α(g1g2, x) = α(g1, α(g2, x)) for all g1, g2 ∈ G and x ∈ X

(b) The map a : G → Sym(X) is given by a(g)(x) = α(g, x). This is
a homorphism because a(g1g2)(x) = α(g1g2, x) = α(g1, (α(g2, x)) =
a(g1)(a(g2)(x)).

(c) The action is free if only the identity has fixed points, i.e. a(g)(x) = x
for some x ∈ X implies g = 1G. It is faithful if a is injective. It is
transitive if for any x, y ∈ X there exists g ∈ G such that α(g, x) = y.

(d) Faithful and transitive but not free: S3 acts on three points by permu-
tation, because α = id and the action is transitive by definition, but
(12) fixes 3. Transitive and free but not faithful: impossible because
if g ∈ Ker a then a(g) has fixed points because it is the identity. Free
and faithful but not transitive: S2 acts on {1, 2, 3, 4} by (12)(34).

2 In this question, R is a commutative ring.

(a) Define what it means for an ideal I in R to be a prime ideal. [1]

(b) Define what it means for an ideal I in R to be a maximal ideal. [1]

(c) Prove that any maximal ideal is prime. [3]

1



(d) Define what it means for an ideal to be finitely generated. [1]

(e) Suppose that R is Noetherian; that is, every ideal in R is finitely
generated. Show that if Ij is an ideals in R, for every j ∈ N, and
Ij ⊆ Ij+1, then there exists N ∈ N such that Ij = IN for every j ≥ N .

[4]

Solution:

(a) I is prime if ab ∈ I implies a ∈ I or b ∈ I.

(b) I is maximal if whenever J is an ideal such that I ⊆ J ⊆ R then J = I
or J = R.

(c) Suppose I is maximal and ab ∈ I. Suppose a ̸∈ I: we aim to show that
b ∈ I. We have ⟨a, I⟩ = R by maximality, so 1 ∈ ⟨a, I⟩, say 1 = ra+ c
with c ∈ I. But then b = b(ra + c) = rab + bc which is in I because
ab ∈ I so rab ∈ I and c ∈ I so bc ∈ I.

(d) Consider I =
⋃∞

j=0, which is an ideal. Then I = ⟨a1, . . . , ar⟩ for some
ai ∈ I and r ∈ N. Because ai ∈ I there exists ji such that ai ∈ Iji :
take N = max j1, . . . , jr, Then for every i we have ai ∈ Iji ⊆ IN , so if
j ≥ N then I ⊆ IN ⊆ Ij ⊆ I, so Ij = IN = I.

3 In this question R is a commutative ring.

(a) Define what it means for an R-module M to be free. [2]

(b) If M is an R-module and N is a submodule of M , define what it means
for N to be direct summand of M . [2]

(c) Give, with justification, an example of a module M and a submodule
N that is not a direct summand. [2]

(d) State and prove a sufficient condition for N to be a direct summand
of a finitely generated R-module M . [2]

(e) Show by giving an example that the condition in (d) is not a necessary
condition. [2]

Solution:

(a) M is free if there is a set X and a map i : X → M such that if W
is any module and f : X → W is a map then there exists a unique
R-linear map φ : M → W such that φi = f .

(b) N is a direct summand if there exists a submodule Q ⊂ M such that
M = N ⊕Q (that is, M = N +Q and N ∩Q = 0).
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(c) 2Z is not a direct summand of Z because it is of index 2 so Q would
have to be of order 2 but Z has no subgroup of order 2.

(d) If M/N is free then N is a direct summand. Choose a basis X =
x1 +N, . . . , xr +N for M/N , with xi ∈ M , and define f : X → M by
f(xi + N) = xi. By (a) this extends to a linear map φ : M/N → M
with image Q. Then M = N + Q because any element of M is in
(
∑

rixi) +N for some ri ∈ R, and Q ∩N = Imφ ∩Ker(M → M/N)
but the composition of those two maps is the identity.

(e) Z/6 = Z/2⊕ Z/3 but Z/3 is not free.

4 Let G be a group, which may be infinite, and let H be a subgroup of G.

(a) Define what is meant by a left coset of H in G. [1]

(b) Show that if g ∈ G then there is a unique left coset of H containing g.
[2]

(c) Define what it means for H to be a normal subgroup of G. [1]

(d) Show that if |G : H| = 2 thenH is a normal subgroup of G. Remember
that G may be infinite. [2]

(e) By considering the group G = D8 (the symmetries of a square), or
otherwise, give an example of a group G with subgroups H1 and H2

such that |G : H1| = |G : H2| but H1 is a normal subgroup of G and
H2 is not. [4]

Solution:

(a) The left coset gH = {gh | h ∈ H}.

(b) g = g1G ∈ gH, so every g is in a left coset. If g′ ∈ gH, say g′ = gh′,
then g′H = {gh′h | h ∈ H} = gH since {h′h | h ∈ H} = H.

(c) H is normal if gH = Hg for any g ∈ G.

(d) Show that if |G : H| = 2 thenH is a normal subgroup of G. Remember
that G may be infinite.

(e) D8 is generated by a = (1234) and b = (14)(23). Since aba−1 =
(1234)(14)(23)(4321) = (14)(23) the group ⟨b⟩ of order 2 is normal
but ab = (13) is also of order 2 and b(ab)b−1 = ba = (24) ̸= ab so ⟨ab⟩
is not normal.

Section B
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5 In this question R is an integral domain.

(a) Define what it means for an element of R to be prime, and what it
means for an element of R to be irreducible. [2]

(b) Show that if p ∈ R is prime then p is irreducible. [2]

(c) Show that if R is a UFD and p ∈ R is irreducible then p is prime. [3]

(d) Suppose that R is a UFD, that f ∈ R[t] is primitive, that deg f > 0,
and that p ∈ R is prime. Put S = R/pR. Denote by redp the quotient
map R[t] → R[t]/⟨p⟩ = S[t]. Suppose that deg redp(f) = deg f , and
that redp(f) ∈ S[t] is irreducible. Show that f is irreducible. [3]

(e) Suppose that f ∈ R[t], and that there exists g ∈ R[t] with deg g <
deg f such that f+g2 = h2 for some h ∈ R[t]. Show that f is reducible.

[2]

(f) Are the following polynomials in Z[t] irreducible or not? [8]

(i) t3 − 14t2 + 21t+ 24 [Use (d)]

(ii) t4 + 3t2 + 10t− 21 [Use (e) with g = t− 5]

(iii) t4 + 3t2 + 9t− 21

(iv) t4 + 4t3 + 11t2 + 4t+ 26 [Put t = s− 1].

Solution:

(a) p ∈ R is prime if it is a nonzero nonunit and p|ab implies p|a or p|b,
for a, b ∈ R. It is irreducible if p = rs implies r is a unit or s is a unit,
for r, s ∈ R.

(b) Suppose p is prime and p = rs. Then p|rs, so p|r or p|s: without loss
of generality assume that p|r, so r = pr′. Then p = pr′s so as R is a
domain 1 = r′s, so s is a unit.

(c) Suppose that p|ab, say ab = pc and factorise: a = up1 . . . pl, and
b = vq1 . . . qm, and c = wr1 . . . rn with u, v, w units and pi, qj , rk
irreducible. Now we have

wpr1 . . . rn = uvp1 . . . plq1 . . . qm

so by uniqueness p ∈ {p1, . . . , pl, q1, . . . , qm} (up to a unit). So either
p = pi (up to a unit), and then p|a, or p = qj and p|b.

(d) Note that redp is a ring homomorphism. If f is reducible then f = gh
for some nonunits g, h ∈ R[t]; then redp(f) = redp(g) redp(h), but
redp(f) is irreducible so one of the factors, wlog redp(g), is a unit in
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S[t]. Therefore redp(g) ∈ S∗, because S is a domain and so the units
of S[t] are the units of S. So deg redp(g) = 0. But

deg f = deg g + deg h ≥ deg redp g + deg redp h = deg redp f = deg f

so deg redp g = deg g (and deg redp h = deg h). But redp g ∈ S So
deg redp g = 0 so deg g = 0, i.e. g = r ∈ R. Then r divides the content
of f so r is a unit so g is a unit, a contradiction.

(e) We have f = h2 − g2 so f = (h + g)(h − g) so if f is irreducible we
must have h ± g a unit. Therefore deg h = deg g, but then deg f =
deg(h∓ g) ≤ max(deg h,deg g) = deg g < deg f .

(f) (i) If f = t3 − 14t2 + 21t+ 24 then redp f = t3 + 3 and S = F7. But
t3 + 3 = t3 − 4 is irreducible mod 7, because otherwise it would
have to have a linear factor, i.e. F7 would have to have a cube root
of 4, and the cubes are 13 = 22 = 43 = 1 and 33 = 53 = 63 = −1
which do not include 4.

(ii) If f = t4 + 3t2 + 10t− 21 and g = t− 5 then f + g2 = t4 + 3t2 +
10t−21+t2−10t+25 = t4+4t2+4 = (t2+2)2 so this is reducible
(equal to (t2 +2+ t− 5)(t2 +2− t+5) = (t2 + t− 3)(t2 − t+7)).

(iii) t4 + 3t2 + 9t− 21 is Eisenstein with p = 3, hence irreducible.

(iv) If f(t) = t4 + 4t3 + 11t2 + 4t+ 26 then

f(s− 1) = (s− 1)4 + 4(s− 1)3 + 11(s− 1)2 + 4s− 4 + 26

which is

s4−4s3+6s2−4s+1+4(s3−3s2+3s−1)+11(s2−2s+1)+4s+22

which simplifies to

s4 + (6− 12 + 11)s2 + (−4 + 12− 22 + 4)s+ (1− 4 + 11 + 22)

which is s4 + 5s2 − 10s + 30 which is Eisenstein with p = 5 so
irreducible.

6 In this question R is a commutative ring and K is a field.

(a) Define what is meant by the dual M∨ of M . [2]

(b) Show that if V is a finite-dimensional K-vector space then V ∨ is iso-
morphic to V . [3]

(c) Give, with justification, an example of a ring R and a finitely generated
R-module M such that M∨ is not isomorphic to M . [3]
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(d) Let M be any R-module. Exhibit, with justification, a linear map
M → M∨∨ from M to its double dual, which is injective in the case
where R = K and M is a finite-dimensional K-vector space. [3]

(e) Give an example to show that the map in (d) need not be injective in
general. [3]

(f) Let X be the Z-module consisting of all finite sequences of integers:
that is, X = {f : Z → Z | f(n) = 0for all but finitely manyn}.

(i) By considering the map f 7→
∑

i f(i), show that the map ev : Z →
X∨ given by ev(r)(f) = f(r) is not surjective. [4]

(ii) Show that if a : Z → Z is a map of sets, there is a map â ∈
X∨ given by â(δi) = a(i), where δi ∈ X is the sequence with
δi(j) = δij . Deduce that in fact X∨ is uncountable, so cannot be
isomorphic to X. [5]

Solution:

(a) M∨ = Hom(M,R), the module of R-linear maps f : M → R.

(b) Choose a basis e1, . . . , en of V and consider the map d : V → V ∨ given
by d(ei)(ej) = δij . This is well-defined (we extend it to the whole of V
by linearity) and injective since d(

∑
aiei)(ej) = aj so if d(

∑
aiei) = 0

then ai = 0 for all i, so Ker d = 0. It is also surjective because if
f ∈ V ∨ then f = d(

∑
f(ei)ei). So it is a bijective linear map, hence

an isomorphism.

(c) Take R = Z and M = Z/2Z. A linear map f : M → Z must have
f(1) + f(1) = f(1 + 1) = f(0) = 0: therefore f(1) = 0 so f is the zero
map. So M∨ = 0 but M ̸= 0.

(d) We define ev : M → M∨∨ by ev(m) = evm : M → R. That is
ev(m)(f) = f(m) for any f ∈ M∨. This is linear because ev(λm1 +
µm2)(f) = f(λm1 + µm2) = λf(m1) + µf(m2) = λ ev(m1)(f) +
µ ev(m2)(f). In the vector space case, if ev(m) = 0 then f(m) =
ev(m)(f) = 0 for all linear maps f : V → K: in particular (using (b))
d(ei)(m) = 0 so if m =

∑
aiei then ai = 0 for all i so m = 0.

(e) The example in (c) has M∨ = 0 so M∨∨ = 0 so in fact any map
M → M∨∨ is zero and thus not injective.

(f) (i) Note that σ : f 7→
∑

i f(i) is linear: σ(rf+sg) =
∑

i(rf+sg)(i) =
r
∑

i f(i)+s
∑

i g(i) = rσ(f)+sσ(g). But if f is given by f(0) =
f(1) = 1 and f(i) = 0 otherwise, then for any r ∈ Z we have
ev(r)(f) = 0 or 1, but σ(f) = 2
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(ii) All we have to do is check that â is linear: in fact it is because â =∑
ai ev(i) so it is a linear combination of linear maps. Moreover,

that also shows that a 7→ â is injective because if â = 0 then all
the ai are zero. But there are uncountably many maps from Z to
Z by Cantor’s diagonal argument (or just look at the ones that
give only 1s and 0s and interpret them as binary expansions).

7 In this question G is a group. Let G′ be the group generated by the
elements [a, b] = aba−1b−1 for a, b ∈ G.

(a) Show that G′ = 1 if and only if G is abelian. [3]

(b) Show that G′ is a normal subgroup of G. Deduce that if G is a non-
abelian simple group then G′ = G. [5]

(c) A group is called solvable if the sequence

G(1) = G′, G(2) = (G′)′ . . .

reaches G(r) = 1 for some r ∈ N. Show that the dihedral group D2n is
solvable. [6]

(d) Show that if n > 4 then the symmetric group Sn is not solvable. You
may use the fact that An is simple for n > 4. [6]

Solution:

(a) If G is abelian then aba−1b−1 = aa−1bb−1 = 1 so G′ = 1. If G′ = 1
and a, b ∈ G then 1 = aba−1b−1 = (ab)(ba)−1 so ab = ba.

(b) If g ∈ G then g(aba−1b−1)g−1 ∈ G′ because

[g, [a, b]] = g(aba−1b−1)g−1(aba−1b−1)−1 = g(aba−1b−1)g−1[a, b]−1

so g(aba−1b−1)g−1 = [g, [a, b]][a, b] ∈ G′. If G is a non-abelian group
then G′ ̸= 1 by (a) and so G′ = G because the only normal subgroups
of G are 1 and G.

(c) D2n contains a normal subgroup Cn of index 2: in fact, D2n = Cn∪τCn

where τ ∈ D2n is a reflection. So if a, b ∈ D2n then a ∈ τ iCn and
b ∈ τ jCn (with i and j being 0 or 1) so [a, b] ∈ τ2i+2jCn = Cn. So
D′

2n ⊆ Cn, and Cn is abelian so D′
2n is abelian so D′′

2n = 1, so D2n is
solvable.

(d) Clearly [a, b] is an even permutation (if a is the product of i transposi-
tions and b is the product of j transpositions then [a, b] is the product
of 2i+2j transpositions. So S′

n < An but Sn is not abelian so S′
n ̸= 1.

Also S′
n ◁ Sn so S′

n ◁ An so S′
n = An. Now S′′

n = A′
n = An by (b), so

Sn(r) = An for all r so Sn is not solvable.

GKS, 3/4/25
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