GROUPS AND RINGS (MA22017)

SOLUTIONS TO PROBLEM SHEET 7

Section A

1.

- (a) Say what it means for a map $\alpha: G \times X \to X$ to be an *action* of a group G on a set X. [2]
- (b) Show that an action of G on X determines a homomorphism $G \rightarrow \text{Sym}(X)$, where Sym(X) is the group of permutations of X. [2]
- (c) Define what it means for an action to be *free*, to be *faithful*, and to be *transitive*.
- (d) For each of the conditions in (c), either give an example of an action satisfying the other two but not that one, or show that this is impossible. [3]

Solution:

- (a) $\alpha(g_1g_2, x) = \alpha(g_1, \alpha(g_2, x))$ for all $g_1, g_2 \in G$ and $x \in X$
- (b) The map $a: G \to \text{Sym}(X)$ is given by $a(g)(x) = \alpha(g, x)$. This is a homorphism because $a(g_1g_2)(x) = \alpha(g_1g_2, x) = \alpha(g_1, (\alpha(g_2, x))) = a(g_1)(a(g_2)(x))$.
- (c) The action is free if only the identity has fixed points, i.e. a(g)(x) = xfor some $x \in X$ implies $g = 1_G$. It is faithful if a is injective. It is transitive if for any $x, y \in X$ there exists $g \in G$ such that $\alpha(g, x) = y$.
- (d) Faithful and transitive but not free: S_3 acts on three points by permutation, because α = id and the action is transitive by definition, but (12) fixes 3. Transitive and free but not faithful: impossible because if $g \in \text{Ker } a$ then a(g) has fixed points because it is the identity. Free and faithful but not transitive: S_2 acts on $\{1, 2, 3, 4\}$ by (12)(34).
- **2** In this question, R is a commutative ring.
 - (a) Define what it means for an ideal I in R to be a *prime ideal*. [1]
 - (b) Define what it means for an ideal I in R to be a maximal ideal. [1]
 - (c) Prove that any maximal ideal is prime. [3]

- (d) Define what it means for an ideal to be *finitely generated*.
- (e) Suppose that R is Noetherian; that is, every ideal in R is finitely generated. Show that if I_j is an ideals in R, for every $j \in \mathbb{N}$, and $I_j \subseteq I_{j+1}$, then there exists $N \in \mathbb{N}$ such that $I_j = I_N$ for every $j \ge N$. [4]

[1]

Solution:

- (a) I is prime if $ab \in I$ implies $a \in I$ or $b \in I$.
- (b) I is maximal if whenever J is an ideal such that $I \subseteq J \subseteq R$ then J = I or J = R.
- (c) Suppose I is maximal and $ab \in I$. Suppose $a \notin I$: we aim to show that $b \in I$. We have $\langle a, I \rangle = R$ by maximality, so $1 \in \langle a, I \rangle$, say 1 = ra + c with $c \in I$. But then b = b(ra + c) = rab + bc which is in I because $ab \in I$ so $rab \in I$ and $c \in I$ so $bc \in I$.
- (d) Consider $I = \bigcup_{j=0}^{\infty}$, which is an ideal. Then $I = \langle a_1, \ldots, a_r \rangle$ for some $a_i \in I$ and $r \in \mathbb{N}$. Because $a_i \in I$ there exists j_i such that $a_i \in I_{j_i}$: take $N = \max j_1, \ldots, j_r$, Then for every i we have $a_i \in I_{j_i} \subseteq I_N$, so if $j \geq N$ then $I \subseteq I_N \subseteq I_j \subseteq I$, so $I_j = I_N = I$.
- **3** In this question R is a commutative ring.
 - (a) Define what it means for an R-module M to be *free*. [2]
 - (b) If M is an R-module and N is a submodule of M, define what it means for N to be *direct summand* of M. [2]
 - (c) Give, with justification, an example of a module M and a submodule N that is not a direct summand. [2]
 - (d) State and prove a sufficient condition for N to be a direct summand of a finitely generated R-module M. [2]
 - (e) Show by giving an example that the condition in (d) is not a necessary condition. [2]

Solution:

- (a) M is free if there is a set X and a map i: X → M such that if W is any module and f: X → W is a map then there exists a unique R-linear map φ: M → W such that φi = f.
- (b) N is a direct summand if there exists a submodule $Q \subset M$ such that $M = N \oplus Q$ (that is, M = N + Q and $N \cap Q = 0$).

- (c) 2ℤ is not a direct summand of ℤ because it is of index 2 so Q would have to be of order 2 but ℤ has no subgroup of order 2.
- (d) If M/N is free then N is a direct summand. Choose a basis $X = x_1 + N, \ldots, x_r + N$ for M/N, with $x_i \in M$, and define $f: X \to M$ by $f(x_i + N) = x_i$. By (a) this extends to a linear map $\varphi: M/N \to M$ with image Q. Then M = N + Q because any element of M is in $(\sum r_i x_i) + N$ for some $r_i \in R$, and $Q \cap N = Im\varphi \cap \text{Ker}(M \to M/N)$ but the composition of those two maps is the identity.
- (e) $\mathbb{Z}/6 = \mathbb{Z}/2 \oplus \mathbb{Z}/3$ but $\mathbb{Z}/3$ is not free.
- 4 Let G be a group, which may be infinite, and let H be a subgroup of G.
 - (a) Define what is meant by a *left coset* of H in G. [1]
 - (b) Show that if $g \in G$ then there is a unique left coset of H containing g. [2]
 - (c) Define what it means for H to be a *normal subgroup* of G. [1]
 - (d) Show that if |G:H| = 2 then H is a normal subgroup of G. Remember that G may be infinite. [2]
 - (e) By considering the group $G = D_8$ (the symmetries of a square), or otherwise, give an example of a group G with subgroups H_1 and H_2 such that $|G:H_1| = |G:H_2|$ but H_1 is a normal subgroup of G and H_2 is not. [4]

Solution:

- (a) The left cos t $gH = \{gh \mid h \in H\}.$
- (b) $g = g1_G \in gH$, so every g is in a left coset. If $g' \in gH$, say g' = gh', then $g'H = \{gh'h \mid h \in H\} = gH$ since $\{h'h \mid h \in H\} = H$.
- (c) H is normal if gH = Hg for any $g \in G$.
- (d) Show that if |G:H| = 2 then H is a normal subgroup of G. Remember that G may be infinite.
- (e) D_8 is generated by a = (1234) and b = (14)(23). Since $aba^{-1} = (1234)(14)(23)(4321) = (14)(23)$ the group $\langle b \rangle$ of order 2 is normal but ab = (13) is also of order 2 and $b(ab)b^{-1} = ba = (24) \neq ab$ so $\langle ab \rangle$ is not normal.

Section B

5 In this question R is an integral domain.

- (a) Define what it means for an element of R to be *prime*, and what it means for an element of R to be *irreducible*. [2]
- (b) Show that if $p \in R$ is prime then p is irreducible. [2]
- (c) Show that if R is a UFD and $p \in R$ is irreducible then p is prime. [3]
- (d) Suppose that R is a UFD, that $f \in R[t]$ is primitive, that $\deg f > 0$, and that $p \in R$ is prime. Put S = R/pR. Denote by red_p the quotient map $R[t] \to R[t]/\langle p \rangle = S[t]$. Suppose that $\deg \operatorname{red}_p(f) = \deg f$, and that $\operatorname{red}_p(f) \in S[t]$ is irreducible. Show that f is irreducible. [3]
- (e) Suppose that $f \in R[t]$, and that there exists $g \in R[t]$ with deg $g < \deg f$ such that $f+g^2 = h^2$ for some $h \in R[t]$. Show that f is reducible. [2]
- (f) Are the following polynomials in $\mathbb{Z}[t]$ irreducible or not? [8]
 - (i) $t^3 14t^2 + 21t + 24$ [Use (d)] (ii) $t^4 + 3t^2 + 10t - 21$ [Use (e) with g = t - 5] (iii) $t^4 + 3t^2 + 9t - 21$ (iv) $t^4 + 4t^3 + 11t^2 + 4t + 26$ [Put t = s - 1].

Solution:

- (a) $p \in R$ is prime if it is a nonzero nonunit and p|ab implies p|a or p|b, for $a, b \in R$. It is irreducible if p = rs implies r is a unit or s is a unit, for $r, s \in R$.
- (b) Suppose p is prime and p = rs. Then p|rs, so p|r or p|s: without loss of generality assume that p|r, so r = pr'. Then p = pr's so as R is a domain 1 = r's, so s is a unit.
- (c) Suppose that p|ab, say ab = pc and factorise: $a = up_1 \dots p_l$, and $b = vq_1 \dots q_m$, and $c = wr_1 \dots r_n$ with u, v, w units and p_i, q_j, r_k irreducible. Now we have

$$wpr_1 \dots r_n = uvp_1 \dots p_l q_1 \dots q_m$$

so by uniqueness $p \in \{p_1, \ldots, p_l, q_1, \ldots, q_m\}$ (up to a unit). So either $p = p_i$ (up to a unit), and then p|a, or $p = q_i$ and p|b.

(d) Note that red_p is a ring homomorphism. If f is reducible then f = ghfor some nonunits $g, h \in R[t]$; then $\operatorname{red}_p(f) = \operatorname{red}_p(g) \operatorname{red}_p(h)$, but $\operatorname{red}_p(f)$ is irreducible so one of the factors, wlog $\operatorname{red}_p(g)$, is a unit in S[t]. Therefore $\operatorname{red}_p(g) \in S^*$, because S is a domain and so the units of S[t] are the units of S. So $\operatorname{deg} \operatorname{red}_p(g) = 0$. But

 $\deg f = \deg g + \deg h \ge \deg \operatorname{red}_p g + \deg \operatorname{red}_p h = \deg \operatorname{red}_p f = \deg f$

so deg red_p g = deg g (and deg red_p h = deg h). But red_p $g \in S$ So deg red_p g = 0 so deg g = 0, i.e. $g = r \in R$. Then r divides the content of f so r is a unit so g is a unit, a contradiction.

- (e) We have $f = h^2 g^2$ so f = (h+g)(h-g) so if f is irreducible we must have $h \pm g$ a unit. Therefore deg $h = \deg g$, but then deg $f = \deg(h \mp g) \leq \max(\deg h, \deg g) = \deg g < \deg f$.
- (f) (i) If $f = t^3 14t^2 + 21t + 24$ then $\operatorname{red}_p f = t^3 + 3$ and $S = \mathbb{F}_7$. But $t^3 + 3 = t^3 4$ is irreducible mod 7, because otherwise it would have to have a linear factor, i.e. \mathbb{F}_7 would have to have a cube root of 4, and the cubes are $1^3 = 2^2 = 4^3 = 1$ and $3^3 = 5^3 = 6^3 = -1$ which do not include 4.
 - (ii) If $f = t^4 + 3t^2 + 10t 21$ and g = t 5 then $f + g^2 = t^4 + 3t^2 + 10t 21 + t^2 10t + 25 = t^4 + 4t^2 + 4 = (t^2 + 2)^2$ so this is reducible (equal to $(t^2 + 2 + t 5)(t^2 + 2 t + 5) = (t^2 + t 3)(t^2 t + 7)$).
 - (iii) $t^4 + 3t^2 + 9t 21$ is Eisenstein with p = 3, hence irreducible.
 - (iv) If $f(t) = t^4 + 4t^3 + 11t^2 + 4t + 26$ then

$$f(s-1) = (s-1)^4 + 4(s-1)^3 + 11(s-1)^2 + 4s - 4 + 26$$

which is

which simplifies to

$$s^{4} + (6 - 12 + 11)s^{2} + (-4 + 12 - 22 + 4)s + (1 - 4 + 11 + 22)$$

which is $s^4 + 5s^2 - 10s + 30$ which is Eisenstein with p = 5 so irreducible.

- **6** In this question R is a commutative ring and K is a field.
 - (a) Define what is meant by the dual M^{\vee} of M. [2]
 - (b) Show that if V is a finite-dimensional K-vector space then V^{\vee} is isomorphic to V. [3]
 - (c) Give, with justification, an example of a ring R and a finitely generated R-module M such that M^{\vee} is not isomorphic to M. [3]

- (d) Let M be any R-module. Exhibit, with justification, a linear map $M \to M^{\vee\vee}$ from M to its double dual, which is injective in the case where R = K and M is a finite-dimensional K-vector space. [3]
- (e) Give an example to show that the map in (d) need not be injective in general.
- (f) Let X be the \mathbb{Z} -module consisting of all finite sequences of integers: that is, $X = \{f : \mathbb{Z} \to \mathbb{Z} \mid f(n) = 0 \text{ for all but finitely many} n\}$.
 - (i) By considering the map $f \mapsto \sum_i f(i)$, show that the map ev: $\mathbb{Z} \to X^{\vee}$ given by ev(r)(f) = f(r) is not surjective. [4]
 - (ii) Show that if $a: \mathbb{Z} \to \mathbb{Z}$ is a map of sets, there is a map $\hat{a} \in X^{\vee}$ given by $\hat{a}(\delta_i) = a(i)$, where $\delta_i \in X$ is the sequence with $\delta_i(j) = \delta_{ij}$. Deduce that in fact X^{\vee} is uncountable, so cannot be isomorphic to X. [5]

Solution:

- (a) $M^{\vee} = \operatorname{Hom}(M, R)$, the module of *R*-linear maps $f: M \to R$.
- (b) Choose a basis e₁,..., e_n of V and consider the map d: V → V[∨] given by d(e_i)(e_j) = δ_{ij}. This is well-defined (we extend it to the whole of V by linearity) and injective since d(∑ a_ie_i)(e_j) = a_j so if d(∑ a_ie_i) = 0 then a_i = 0 for all i, so Ker d = 0. It is also surjective because if f ∈ V[∨] then f = d(∑ f(e_i)e_i). So it is a bijective linear map, hence an isomorphism.
- (c) Take $R = \mathbb{Z}$ and $M = \mathbb{Z}/2\mathbb{Z}$. A linear map $f: M \to \mathbb{Z}$ must have f(1) + f(1) = f(1+1) = f(0) = 0: therefore f(1) = 0 so f is the zero map. So $M^{\vee} = 0$ but $M \neq 0$.
- (d) We define ev: $M \to M^{\vee\vee}$ by $\operatorname{ev}(m) = \operatorname{ev}_m \colon M \to R$. That is $\operatorname{ev}(m)(f) = f(m)$ for any $f \in M^{\vee}$. This is linear because $\operatorname{ev}(\lambda m_1 + \mu m_2)(f) = f(\lambda m_1 + \mu m_2) = \lambda f(m_1) + \mu f(m_2) = \lambda \operatorname{ev}(m_1)(f) + \mu \operatorname{ev}(m_2)(f)$. In the vector space case, if $\operatorname{ev}(m) = 0$ then $f(m) = \operatorname{ev}(m)(f) = 0$ for all linear maps $f \colon V \to K$: in particular (using (b)) $d(e_i)(m) = 0$ so if $m = \sum a_i e_i$ then $a_i = 0$ for all i so m = 0.
- (e) The example in (c) has $M^{\vee} = 0$ so $M^{\vee\vee} = 0$ so in fact any map $M \to M^{\vee\vee}$ is zero and thus not injective.
- (f) (i) Note that $\sigma: f \mapsto \sum_i f(i)$ is linear: $\sigma(rf+sg) = \sum_i (rf+sg)(i) = r\sum_i f(i) + s\sum_i g(i) = r\sigma(f) + s\sigma(g)$. But if f is given by f(0) = f(1) = 1 and f(i) = 0 otherwise, then for any $r \in \mathbb{Z}$ we have $\operatorname{ev}(r)(f) = 0$ or 1, but $\sigma(f) = 2$

(ii) All we have to do is check that â is linear: in fact it is because â = ∑ a_i ev(i) so it is a linear combination of linear maps. Moreover, that also shows that a → â is injective because if â = 0 then all the a_i are zero. But there are uncountably many maps from Z to Z by Cantor's diagonal argument (or just look at the ones that give only 1s and 0s and interpret them as binary expansions).

7 In this question G is a group. Let G' be the group generated by the elements $[a, b] = aba^{-1}b^{-1}$ for $a, b \in G$.

- (a) Show that G' = 1 if and only if G is abelian. [3]
- (b) Show that G' is a normal subgroup of G. Deduce that if G is a nonabelian simple group then G' = G. [5]
- (c) A group is called *solvable* if the sequence

$$G^{(1)} = G', \ G^{(2)} = (G')' \dots$$

reaches $G^{(r)} = 1$ for some $r \in \mathbb{N}$. Show that the dihedral group D_{2n} is solvable. [6]

(d) Show that if n > 4 then the symmetric group S_n is not solvable. You may use the fact that A_n is simple for n > 4. [6]

Solution:

- (a) If G is abelian then $aba^{-1}b^{-1} = aa^{-1}bb^{-1} = 1$ so G' = 1. If G' = 1and $a, b \in G$ then $1 = aba^{-1}b^{-1} = (ab)(ba)^{-1}$ so ab = ba.
- (b) If $g \in G$ then $g(aba^{-1}b^{-1})g^{-1} \in G'$ because

$$[g, [a, b]] = g(aba^{-1}b^{-1})g^{-1}(aba^{-1}b^{-1})^{-1} = g(aba^{-1}b^{-1})g^{-1}[a, b]^{-1}$$

so $g(aba^{-1}b^{-1})g^{-1} = [g, [a, b]][a, b] \in G'$. If G is a non-abelian group then $G' \neq 1$ by (a) and so G' = G because the only normal subgroups of G are 1 and G.

- (c) D_{2n} contains a normal subgroup C_n of index 2: in fact, $D_{2n} = C_n \cup \tau C_n$ where $\tau \in D_{2n}$ is a reflection. So if $a, b \in D_{2n}$ then $a \in \tau^i C_n$ and $b \in \tau^j C_n$ (with *i* and *j* being 0 or 1) so $[a, b] \in \tau^{2i+2j} C_n = C_n$. So $D'_{2n} \subseteq C_n$, and C_n is abelian so D'_{2n} is abelian so $D''_{2n} = 1$, so D_{2n} is solvable.
- (d) Clearly [a, b] is an even permutation (if a is the product of i transpositions and b is the product of j transpositions then [a, b] is the product of 2i + 2j transpositions. So $S'_n < A_n$ but S_n is not abelian so $S'_n \neq 1$. Also $S'_n < S_n$ so $S'_n < A_n$ so $S'_n = A_n$. Now $S''_n = A'_n = A_n$ by (b), so $S_n(r) = A_n$ for all r so S_n is not solvable.

GKS, 3/4/25