GROUPS AND RINGS (MA22017)

MOCK EXAM 2025

This is a mock exam for MA22017, because there aren't any real ones. The format is right, but this is probably a bit longer and harder than a real exam. A copy of this mock exam is on Moodle and at

http://people.bath.ac.uk/masgks/MA22017/mockexam.pdf

Section A

1.

- (a) Say what it means for a map $\alpha: G \times X \to X$ to be an *action* of a group G on a set X. [2]
- (b) Show that an action of G on X determines a homomorphism $G \rightarrow \text{Sym}(X)$, where Sym(X) is the group of permutations of X. [2]
- (c) Define what it means for an action to be *free*, to be *faithful*, and to be *transitive*. [3]
- (d) For each of the conditions in (c), either give an example of an action satisfying the other two but not that one, or show that this is impossible.
- **2** In this question, R is a commutative ring.
 - (a) Define what it means for an ideal I in R to be a *prime ideal*. [1]
 - (b) Define what it means for an ideal I in R to be a maximal ideal. [1]
 - (c) Prove that any maximal ideal is prime. [3]
 - (d) Define what it means for an ideal to be *finitely generated*. [1]
 - (e) Suppose that R is Noetherian; that is, every ideal in R is finitely generated. Show that if I_j is an ideals in R, for every $j \in \mathbb{N}$, and $I_j \subseteq I_{j+1}$, then there exists $N \in \mathbb{N}$ such that $I_j = I_N$ for every $j \ge N$. [4]
- **3** In this question R is a commutative ring.
 - (a) Define what it means for an R-module M to be *free*. [2]
 - (b) If M is an R-module and N is a submodule of M, define what it means for N to be *direct summand* of M. [2]

- (c) Give, with justification, an example of a module M and a submodule N that is not a direct summand. [2]
- (d) State and prove a sufficient condition for N to be a direct summand of a finitely generated R-module M. [2]
- (e) Show by giving an example that the condition in (d) is not a necessary condition. [2]
- 4 Let G be a group, which may be infinite, and let H be a subgroup of G.
 - (a) Define what is meant by a *left coset* of H in G. [1]
 - (b) Show that if $g \in G$ then there is a unique left coset of H containing g. [2]
 - (c) Define what it means for H to be a *normal subgroup* of G. [1]
 - (d) Show that if |G:H| = 2 then H is a normal subgroup of G. Remember that G may be infinite. [2]
 - (e) By considering the group $G = D_8$ (the symmetries of a square), or otherwise, give an example of a group G with subgroups H_1 and H_2 such that $|G: H_1| = |G: H_2|$ but H_1 is a normal subgroup of G and H_2 is not. [4]

Section B

5 In this question R is an integral domain.

- (a) Define what it means for an element of R to be *prime*, and what it means for an element of R to be *irreducible*. [2]
- (b) Show that if $p \in R$ is prime then p is irreducible. [2]
- (c) Show that if R is a UFD and $p \in R$ is irreducible then p is prime. [3]
- (d) Suppose that R is a UFD, that $f \in R[t]$ is primitive, that $\deg f > 0$, and that $p \in R$ is prime. Put S = R/pR. Denote by red_p the quotient map $R[t] \to R[t]/\langle p \rangle = S[t]$. Suppose that $\deg \operatorname{red}_p(f) = \deg f$, and that $\operatorname{red}_p(f) \in S[t]$ is irreducible. Show that f is irreducible. [3]
- (e) Suppose that $f \in R[t]$, and that there exists $g \in R[t]$ with deg $g < \deg f$ such that $f+g^2 = h^2$ for some $h \in R[t]$. Show that f is reducible. [2]
- (f) Are the following polynomials in $\mathbb{Z}[t]$ irreducible or not? [8]

- (i) $t^3 14t^2 + 21t + 24$ [Use (d)] (ii) $t^4 + 3t^2 + 10t - 21$ [Use (e) with g = t - 5] (iii) $t^4 + 3t^2 + 9t - 21$ (iv) $t^4 + 4t^3 + 11t^2 + 4t + 26$ [Put t = s - 1].
- **6** In this question R is a commutative ring and K is a field.
 - (a) Define what is meant by the dual M^{\vee} of M. [2]
 - (b) Show that if V is a finite-dimensional K-vector space then V^{\vee} is isomorphic to V. [3]
 - (c) Give, with justification, an example of a ring R and a finitely generated R-module M such that M^{\vee} is not isomorphic to M. [3]
 - (d) Let M be any R-module. Exhibit, with justification, a linear map $M \to M^{\vee \vee}$ from M to its double dual, which is injective in the case where R = K and M is a finite-dimensional K-vector space. [3]
 - (e) Give an example to show that the map in (d) need not be injective in general. [3]
 - (f) Let X be the \mathbb{Z} -module consisting of all finite sequences of integers: that is, $X = \{f : \mathbb{Z} \to \mathbb{Z} \mid f(n) = 0 \text{ for all but finitely many} n\}$.
 - (i) By considering the map $f \mapsto \sum_i f(i)$, show that the map ev: $\mathbb{Z} \to X^{\vee}$ given by ev(r)(f) = f(r) is not surjective. [4]
 - (ii) Show that if $a: \mathbb{Z} \to \mathbb{Z}$ is a map of sets, there is a map $\hat{a} \in X^{\vee}$ given by $\hat{a}(\delta_i) = a(i)$, where $\delta_i \in X$ is the sequence with $\delta_i(j) = \delta_{ij}$. Deduce that in fact X^{\vee} is uncountable, so cannot be isomorphic to X. [5]

7 In this question G is a group. Let G' be the group generated by the elements $[a, b] = aba^{-1}b^{-1}$ for $a, b \in G$.

- (a) Show that G' = 1 if and only if G is abelian. [3]
- (b) Show that G' is a normal subgroup of G. Deduce that if G is a non-abelian simple group then G' = G. [5]
- (c) A group is called *solvable* if the sequence

$$G^{(1)} = G', \ G^{(2)} = (G')' \dots$$

reaches $G^{(r)} = 1$ for some $r \in \mathbb{N}$. Show that the dihedral group D_{2n} is solvable. [6]

(d) Show that if n > 4 then the symmetric group S_n is not solvable. You may use the fact that A_n is simple for n > 4. [6]

GKS, 3/4/25