ALGEBRA 2B (MA20217)

PROBLEM SHEET 5 WITH SOLUTIONS

$1 \mathbf{H}$. For each of the following commutative rings, say whether it is an integral domain, a field, or neither. Give brief reasons. What are the units in each case?
(a) The set of Gaussian integers $\mathbb{Z}[i]=\{a+i b \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$, (where $i=\sqrt{-1}$) with the usual operations of complex numbers.
(b) $\mathbb{Z} / 9$, with the usual operations.
(c) $\mathbb{C}[t]$.
(d) $\mathbb{Q}[i]=\{a+i b \in \mathbb{C} \mid a, b \in \mathbb{Q}\}$, with the usual operations of complex numbers.

Solution:

(a) This is contained in \mathbb{C} and contains 1 so it is at least an integral domain, but it is not a field because $2 \in \mathbb{Z}[i]$ but $\frac{1}{2} \notin \mathbb{Z}[i]$. The units are the elements $a+i b$ such that $\frac{1}{a+i b} \in \mathbb{Z}[i]$. Since the inverse of $a+i b$ in \mathbb{C} is $\frac{a-i b}{a^{2}+b^{2}}$, that happens if and only if $\frac{a}{a^{2}+b^{2}} \in \mathbb{Z}$ and $\frac{b}{a^{2}+b^{2}} \in \mathbb{Z}$. If $|a|>1($ or $|b|>1)$ that is not possible because $\left|\frac{a}{a^{2}+b^{2}}\right|<1$, and the same happens if $|a|=|b|=1$. We are left with $a= \pm 1, b=0$ and $b= \pm 1, a=0$: that is, the units are ± 1 and $\pm i$.
(b) This is not an integral domain because $3 \neq 0$ but $3^{2}=0$. The units are the numbers coprime to 3 , that is $\pm 1, \pm 2$ and ± 4, whose inverses are $\pm 1, \pm 5=\mp 4$, and $\pm 7=\mp 2$.
(c) This is an integral domain: for instance because $\operatorname{deg} f g=\operatorname{deg} f+$ $\operatorname{deg} g>0$ so $f g \neq 0$, unless f and g are both constants when it follows from \mathbb{C} being a domain. Note that it contains 1. It is not a field because t is not invertible: if $f(t) \in \mathbb{C}[t]$ has degree $d \geq 0$ then $t f(t)$ has degree $d+1>0$ so cannot be equal to 1 , which has degree 0 . The same argument applies to any polynomial $g(t)$ of positive degree $d^{\prime}>0$: then $\operatorname{deg}(g(t) f(t))=d+d^{\prime}>0$ so $g(t) f(t) \neq 1$. So the only possible units are of degree 0, i.e., the nonzero constants: and they are indeed units, because \mathbb{C} is a field. So the units here are \mathbb{C}^{*}.
(d) This is a field. It is an integral domain because it contains 1 and is contained in \mathbb{C}, and if $0 \neq a+i b \in \mathbb{Q}[i]$ then $\frac{1}{a+i b}=\frac{a}{a^{2}+b^{2}}+i \frac{-b}{a^{2}+b^{2}} \in$ $\mathbb{Q}[i]$.
$\mathbf{2} \mathbf{W}$ Decide whether each of the following is a subring, an ideal, or neither; prove your assertions.
(a) $S_{1}=\{-1,0,1\} \subset \mathbb{Z}$;
(b) $S_{2}=\left\{a_{0}+a_{2} t^{2}+a_{4} t^{4}+\cdots . \mid a_{i} \in \mathbb{Q}\right\} \subset \mathbb{Q}[t]$;
(c) $S_{3}=\left\{a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+\cdots . \mid a_{i} \in \mathbb{Q}\right\} \subset \mathbb{Q}[t] ;$
(d) $S_{4}=\{$ polynomials of degree $\leq 2\} \subseteq \mathbb{Q}[t]$;
(e) $S_{5}=\{p \in \mathbb{Q}[t] \mid p(1)=0\} \subset \mathbb{Q}[t]$.

Solution:

(a) S_{1} is not a subring and therefore not an ideal, because $1+1 \notin$ $\{-1,0,1\}$.
(b) S_{2} is not an ideal, because it is not closed under multiplication by $t \in \mathbb{Q}[t]$. However, it is a subring: it is non-empty because it contains 0 ; and given any two elements $f=\sum_{i} a_{2 i} t^{2 i} \in S_{2}$ and $g=\sum_{i} b_{2 i} t^{2 i} \in S_{2}$, we have

$$
f-g=\sum_{i}\left(a_{2 i}-b_{2 i}\right) t^{2 i} \in S_{2}
$$

and

$$
f \cdot g=\sum_{i}\left(\sum_{2 j+2 k=i} a_{2 j} b_{2 k}\right) t^{i} \in S_{2}
$$

in both cases because the indices that occur on the right are even.
(c) S_{3} is an ideal in $\mathbb{Q}[t]$. It is the ideal in $\mathbb{Q}[t]$ generated by t^{2}, i.e. the subset of all elements in $\mathbb{Q}[t]$ of the form $f \cdot t^{2}$ for some $\left.f \in \mathbb{Q}[t]\right]$.
(d) S_{4} is not a subring, because $t^{2} \cdot t^{2}$ does not have degree at most 2 .
(e) S_{5} is the ideal generated by $(t-1) \in \mathbb{Q}[t]$. Indeed, the division algorithm tells us that 1 is a root of a polynomial if and only if $(t-1)$ is a factor.
$3 \mathbf{H}$ Show that if R is an integral domain, $a, b, c \in R$, and $a b=a c$, and $a \neq 0$, then $b=c$: that is, one may cancel. Is this the same as the statement "multiplication by a is injective"?
Solution: Very simply, we have $a(b-c)=a b-a c=0$ and since $a \neq 0$ and R is an integral domain we must have $b-c=0$, i.e. $b=c$. Yes, this absolutely does mean that multiplication by a, thought of as a map $R \rightarrow R$, is injective. These are both very useful ways of thinking about what an integral domain is.

GKS, 15/3/24

