ALGEBRA 2B (MA20217)

PROBLEM SHEET 4 WITH SOLUTIONS

1 W Prove the assertions in III.17(v) in the notes: that in the action of $\operatorname{SL}(2, \mathbb{Z})$ on the upper half-plane $\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$, the stabiliser of most $z \in \mathbb{H}$ is $\pm I$, but the stabiliser of $i \in \mathbb{H}$ is a group of order 4 generated by $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and the stabiliser of $\omega=e^{2 \pi i / 3}$ is of order 6 , generated by $\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$.
Solution: It is important to show both inclusions. Clearly $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)(i)=$ $\frac{1}{-i}=i$ and since $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$ we have $1+\omega=\frac{1}{2}+i \frac{\sqrt{3}}{2}=e^{\pi i / 3}$. Thus $\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)(\omega)=\frac{-1}{1+\omega}=-e^{-\pi i / 3}=e^{\pi i-\pi i / 3}=e^{2 \pi i / 3}=\omega$. But we also need to show that there is nothing else.
If $\frac{a i+b}{c i+d}=i$ then $a i+b=-c+d i$ so $d=a$ and $b=-c$ so the only elements that stabilise i are $\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$ with $a^{2}+b^{2}=1$, and the only way to satisfy $a^{2}+b^{2}=1$ in integers is $a=0$ and $b= \pm 1$ or $b=0$ and $a= \pm 1$, as required. Similarly, if $\frac{a \omega+b}{c \omega+d}=\omega$ then $a \omega+b=c \omega^{2}+d \omega$. They will now probably use $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$ again, which is fine, but I prefer $\omega^{2}=-1-\omega$ so $a \omega+$ $b=-c-c \omega+d \omega$ which (since 1 and ω are linearly independent over \mathbb{Q}) gives $b=-c$ and $a+c=d$. The determinant is 1 so $a d+c^{2}=1$ so $a^{2}+a c+c^{2}=1$. Let's try to find solutions, treating it as a quadratic in a. There are real solutions only if the discriminant $c^{2}-4\left(c^{2}-1\right)$ is non-negative, so we must have $4 \geq 3 c^{2}$ so $c= \pm 1$ or $c=0$, and similarly for a. Of these, only $(a, c)=(\pm 1,0),(a, c)=(0, \pm 1)$ and $(a, c)=(\pm 1, \mp 1)$ actually give solutions, and those give the six matrices required.
$2 \mathbf{H}$ Prove the assertion in the proof of Proposition III.18, that left multiplication by G on $X=\{g H \mid g \in G\}$ defines a group action and that the stabiliser of $1_{G} H$ is H.
Solution: We need to check that if $g_{1}, g_{2} \in G$ and $g H \in X$ then $g_{1}\left(g_{2} g H\right)=$ $\left(g_{1} g_{2}\right) g H$, and that $1(g H)=g H$, according to Definition III.2. But the first two are both equal to $g_{1} g_{2} g H$ and the second is trivial. For the stabiliser, this is the statement that $g H=H$ if and only if $g \in H$, which is a case of Corollary II.6.
$3 \mathbf{W}$ Is it true that if a finite G acts on a set X and the orbits orb ${ }_{G}(x)$ and $\operatorname{orb}_{G}(y)$ are the same size, then $\operatorname{Stab}_{G}(x) \cong \operatorname{Stab}_{G}(y)$? Give a proof or a counterexample.

Solution: False in general. You need two different subgroups of the same order, so let's take $H_{1}=\mathbb{Z} / 2 \times \mathbb{Z} / 2$ and $H_{2}=\mathbb{Z} / 4$ (but any other pair, such as $\mathbb{Z} / 6$ and S_{3}, would do just as well). Let $G=H_{1} \times H_{2}$ and let G act on $X=H_{1} \sqcup H_{2}$ (recall that \sqcup means disjoint union) by $\left(h_{1}, h_{2}\right)(x)=h_{1} x$ if $x \in H_{1}$ and $\left(h_{1}, h_{2}\right)(x)=h_{2} x$ if $x \in H_{2}$. It is immediate that this is an action. Now $\operatorname{Stab}_{G}\left(1_{H_{1}}\right)=\left\{\left(1_{H_{1}}, h_{2}\right) \mid h_{2} \in H_{2}\right\} \cong H_{2}$ and $\operatorname{Stab}_{G}\left(1_{H_{2}}\right)=$ $\left\{\left(h_{1}, 1_{H_{2}}\right) \mid h_{1} \in H_{1}\right\} \cong H_{1}$: these two have the same order, so the orbits are the same size, but they are not isomorphic by the choice we made.
$4 \mathbf{H}$ There are fifteen ways of organising six objects into pairs (unordered). Show this directly by counting. Then use the action of the symmetric group S_{6} to give a different proof using the orbit-stabiliser theorem.
How many ways are there of organising $2 k$ objects into k pairs?
Solution: Directly: we need to know what to pair with object 1 (so five choices) and then what to pair with the next free object (either 2, or $\mathbf{3}$ if we've paired $\mathbf{2}$ with $\mathbf{1}$), and that's three choices. $S o 5 \times 3=15$ ways. There are other ways you can do this count: your correct method may not be exactly the same.
By stabilisers: the permutation action of S_{6} on the objects also acts on the pairings. This action is transitive, because if I can get to the pairing a \& $\mathbf{b}, \mathbf{c} \& \mathrm{~d}, \mathrm{e} \& \mathrm{f}$ from the standard pairing $\mathbf{1} \& \mathbf{2}, \mathbf{3} \& \mathbf{4}, \mathbf{5} \& \mathbf{6}$ by using the permutation that send $\mathbf{1}$ to a, etc. So we can look at the stabiliser of any pairing: let's just use the one we've just called the standard one. Any of the transpositions (12), (34) and (56) will do that, and they generate a group of order eight, isomorphic to $\mathbb{Z} / 2 \times \mathbb{Z} / 2 \times \mathbb{Z} / 2$. So will permutations of the pairs themselves, which is a copy of S_{3} of order six (strictly, $\sigma \in S_{3}$ sends $\mathbf{2 n} \mathbf{- 1} \& \mathbf{2 n}$ to $\mathbf{2 m - 1} \& \mathbf{2 m}$ if $\sigma(n)=m$). That's a stabiliser of order $8 \times 6=48$ so the orbit is of size $6!/ 48=15$.
If instead we have $2 k$ objects, we can take either approach. The direct approach gives $(2 k-1)(2 k-3) \ldots 1$; the approach by stabilisers gives a stabiliser of order 2^{k} (for the transposition of each pair) times k ! (permuting the pairs) and hence orbit of size $\frac{(2 k)!}{2^{k} k!}$.
GKS, 8/3/24

