ALGEBRA 2B (MA20217)

PROBLEM SHEET 4 WITH SOLUTIONS

1 W Prove the assertions in III.17(v) in the notes: that in the action of $SL(2,\mathbb{Z})$ on the upper half-plane $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im } z > 0\}$, the stabiliser of most $z \in \mathbb{H}$ is $\pm I$, but the stabiliser of $i \in \mathbb{H}$ is a group of order 4 generated by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and the stabiliser of $\omega = e^{2\pi i/3}$ is of order 6, generated by $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$.

Solution: It is important to show both inclusions. Clearly $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ $(i) = \frac{1}{-i} = i$ and since $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ we have $1 + \omega = \frac{1}{2} + i\frac{\sqrt{3}}{2} = e^{\pi i/3}$. Thus $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ $(\omega) = \frac{-1}{1+\omega} = -e^{-\pi i/3} = e^{\pi i - \pi i/3} = e^{2\pi i/3} = \omega$. But we also need to show that there is nothing else.

to show that there is nothing else. If $\frac{ai+b}{ci+d} = i$ then ai + b = -c + di so d = a and b = -c so the only elements that stabilise i are $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ with $a^2 + b^2 = 1$, and the only way to satisfy $a^2 + b^2 = 1$ in integers is a = 0 and $b = \pm 1$ or b = 0 and $a = \pm 1$, as required. Similarly, if $\frac{a\omega+b}{c\omega+d} = \omega$ then $a\omega + b = c\omega^2 + d\omega$. They will now probably use $\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ again, which is fine, but I prefer $\omega^2 = -1 - \omega$ so $a\omega + b = -c - c\omega + d\omega$ which (since 1 and ω are linearly independent over \mathbb{Q}) gives b = -c and a + c = d. The determinant is 1 so $ad + c^2 = 1$ so $a^2 + ac + c^2 = 1$. Let's try to find solutions, treating it as a quadratic in a. There are real solutions only if the discriminant $c^2 - 4(c^2 - 1)$ is non-negative, so we must have $4 \ge 3c^2$ so $c = \pm 1$ or c = 0, and similarly for a. Of these, only $(a, c) = (\pm 1, 0), (a, c) = (0, \pm 1)$ and $(a, c) = (\pm 1, \mp 1)$ actually give solutions, and those give the six matrices required.

2 H Prove the assertion in the proof of Proposition III.18, that left multiplication by G on $X = \{gH \mid g \in G\}$ defines a group action and that the stabiliser of 1_GH is H.

Solution: We need to check that if $g_1, g_2 \in G$ and $gH \in X$ then $g_1(g_2gH) = (g_1g_2)gH$, and that 1(gH) = gH, according to Definition III.2. But the first two are both equal to g_1g_2gH and the second is trivial. For the stabiliser, this is the statement that gH = H if and only if $g \in H$, which is a case of Corollary II.6.

3 W Is it true that if a finite G acts on a set X and the orbits $\operatorname{orb}_G(x)$ and $\operatorname{orb}_G(y)$ are the same size, then $\operatorname{Stab}_G(x) \cong \operatorname{Stab}_G(y)$? Give a proof or a counterexample.

Solution: False in general. You need two different subgroups of the same order, so let's take $H_1 = \mathbb{Z}/2 \times \mathbb{Z}/2$ and $H_2 = \mathbb{Z}/4$ (but any other pair, such as $\mathbb{Z}/6$ and S_3 , would do just as well). Let $G = H_1 \times H_2$ and let G act on $X = H_1 \sqcup H_2$ (recall that \sqcup means disjoint union) by $(h_1, h_2)(x) = h_1 x$ if $x \in H_1$ and $(h_1, h_2)(x) = h_2 x$ if $x \in H_2$. It is immediate that this is an action. Now $\operatorname{Stab}_G(1_{H_1}) = \{(1_{H_1}, h_2) \mid h_2 \in H_2\} \cong H_2$ and $\operatorname{Stab}_G(1_{H_2}) = \{(h_1, 1_{H_2}) \mid h_1 \in H_1\} \cong H_1$: these two have the same order, so the orbits are the same size, but they are not isomorphic by the choice we made.

4 H There are fifteen ways of organising six objects into pairs (unordered). Show this directly by counting. Then use the action of the symmetric group S_6 to give a different proof using the orbit-stabiliser theorem.

How many ways are there of organising 2k objects into k pairs?

Solution: Directly: we need to know what to pair with object 1 (so five choices) and then what to pair with the next free object (either 2, or 3 if we've paired 2 with 1), and that's three choices. So $5 \times 3 = 15$ ways. There are other ways you can do this count: your correct method may not be exactly the same.

By stabilisers: the permutation action of S_6 on the objects also acts on the pairings. This action is transitive, because if I can get to the pairing **a** & **b**, **c** & **d**, **e** & **f** from the standard pairing **1** & **2**, **3** & **4**, **5** & **6** by using the permutation that send **1** to **a**, etc. So we can look at the stabiliser of any pairing: let's just use the one we've just called the standard one. Any of the transpositions (12), (34) and (56) will do that, and they generate a group of order eight, isomorphic to $\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2$. So will permutations of the pairs themselves, which is a copy of S_3 of order six (strictly, $\sigma \in S_3$ sends **2n-1** & **2m** if $\sigma(n) = m$). That's a stabiliser of order $8 \times 6 = 48$ so the orbit is of size 6!/48 = 15.

If instead we have 2k objects, we can take either approach. The direct approach gives $(2k - 1)(2k - 3) \dots 1$; the approach by stabilisers gives a stabiliser of order 2^k (for the transposition of each pair) times k! (permuting the pairs) and hence orbit of size $\frac{(2k)!}{2^k k!}$.

GKS, 8/3/24