ALGEBRA 2B (MA20217)

PROBLEM SHEET 3 WITH SOLUTIONS

$1 \mathbf{W}$ Consider the map $\varphi: \mathbb{R} \rightarrow \mathbb{C}^{*}$ given by $\varphi(x)=e^{2 \pi i x}$. (Remember what the group operations on \mathbb{R} and \mathbb{C}^{*} are.) Verify that φ is a group homomorphism. What is its kernel? Describe the three maps $\pi, \bar{\varphi}$ and ι from the factorisation in Corollary II.26.
Solution: $\varphi(x+y)=e^{2 \pi i(x+y)}=e^{2 \pi i x} e^{2 \pi i y}$ so φ is a homomorphism. The kernel is \mathbb{Z} so π sends x to $x+\mathbb{Z}$, which is effectively its fractional part, $\bar{\varphi}$ sends $t \in[0,1)$ to $e^{2 \pi i t}$ or just sends x to $e^{2 \pi i x}$, and ι sends $z \in S^{1}=\{z \mid$ $|z|=1\}$ to $z \in \mathbb{C}^{*}$.
$2 \mathbf{H}$ In each of the following cases say what the kernel and image of the group homomorphism φ are and describe $\pi, \bar{\varphi}$ and ι briefly.
(a) $\varphi: S_{n} \rightarrow \mathbb{Z} / 2$ where $\varphi(\sigma)$ is the signature of σ.
(b) $G=\mathrm{SL}(2, \mathbb{Z})$ and $\varphi(M)$ is $M \bmod p$ for some prime p. The hard part is to determine the image of φ : you may want to use the Chinese Remainder Theorem.

Solution:

(a) The kernel is A_{n} and the image is $\mathbb{Z} / 2$ since both odd and even permutations exist. In this case the factorisation is almost trivial: π sends σ to σA_{n}, then $\bar{\varphi}$ writes down the signature of σ and ι either does nothing (if your possible signatures are 0 and 1) or more sends -1 to 1 and 1 to 0 , depending on whether you prefer to write signatures additively or multiplicatively.
(b) This is harder than it looks. The kernel is what is called $\Gamma(p)$ ("the principal congruence subgroup of level p "), given by $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma(p)$ if and only if p divides all of $a-1, d-1, b$ and c. The hard part is that the image is $\mathrm{SL}\left(2, \mathbb{F}_{p}\right)$: in other words, if $N=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{SL}\left(2, \mathbb{F}_{p}\right)$ then there exists $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})$ such that $\varphi(M)=N$. It is not enough to take a, b, c, d to be arbitrary integers that are $\alpha, \beta, \gamma, \delta \bmod p$ because all we then know is that $a d-b c \equiv 1 \bmod p$: we want it to be actually 1. Suppose that $a d-b c=k p+1$. Then $(a+\lambda p) d-(b-\mu p) c=(k+(\lambda d+\mu c)) p+1$, and $M^{\prime}=\left(\begin{array}{cc}a+\lambda p & b-\mu p \\ c & d\end{array}\right)$ also satisfies $\varphi\left(M^{\prime}\right)=N$, for any $\lambda, \mu \in \mathbb{Z}$. So if we can choose λ and μ
so that $\lambda c+\mu d=-k$, we are done. We can do that if $\operatorname{hcf}(c, d)=1$, but that is not necessarily the case. However, we still have the freedom to add multiples of p to c and d. Moreover, c and d are not both divisible by p (because otherwise $\operatorname{det} N=0$). Suppose that c is not divisible by p. Then the Chinese Remainder Theorem allows us to solve $\nu p+c \equiv 1$ $\bmod d(w e$ are finding amn integer that is $c \bmod p$ and $1 \bmod d$), and then $\operatorname{hcf}(\nu p+c, d)=1$. So we replace c with $\nu p+c$, which does not change N, and then replace a and b with $a+\lambda p$ and $b-\mu p$. If $p \mid c$ then we just interchange the roles of c and d.
After that, π is reduction modulo $\Gamma(p), \bar{\varphi}$ takes $M \Gamma(p)$ to N, and ι is the identity.
$\mathbf{3}$ W In I. 40 we mentioned "the smallest subgroup that contains S " (a subset of G) as another way to describing $\langle S\rangle$. Let G be a group, suppose $S \subset G$ and let H be the intersection of all (not necessarily proper) subgroups of G that contain S. Show that H is a subgroup, and that any subgroup that contains S also contains H. Deduce that $H=\langle S\rangle$.
Solution: In general, intersections of subgroups are subgroups, because if $H=\bigcap_{\alpha \in A} H_{\alpha}$ and $h_{1}, h_{2} \in H$ then $h_{i} \in H_{\alpha}$ for all α, so $h_{1} h_{2}^{-1} \in H_{\alpha}$ for all α, so $h_{1} h_{2}^{-1} \in H$. Since clearly $1 \in H$ we also have $H \neq \varnothing$, so H is a subgroup.
According to I.41, $\langle S\rangle=\left\{s_{1} \ldots s_{k} \mid s_{i}\right.$ or $s_{i}^{-1} \in S$ for all $\left.i\right\}$. It is a subgroup (again see I.41) and it contains S, so $\langle S\rangle \supseteq H$. On the other hand, any subgroup containing S has to contain $s_{1} \ldots s_{k}$, so $\langle S\rangle$ is contained in any subgroup containing S, in particular $\langle S\rangle \subseteq H$.

4 H

(a) Let G be a group and suppose $S \subseteq G$ is a subset. Is there a smallest normal subgroup of G that contains S ? If so, can you describe what the elements look like?
(b) If $H<G$, define the normaliser $N_{G}(H)$ to be the largest subgroup of G such that H is normal in $N_{G}(H)$. Make this definition precise, and show that $N_{G}(H)$ is a subgroup of G. Is $N_{G}(H)$ a normal subgroup of G ?

Solution:

(a) Yes, this exists: we can construct it as we constructed H in $Q 3$, replacing "subgroup" by "normal subgroup". The elements are all conjugates of elements of S or their inverses, and products of those: that is, things of the form $s_{1} \ldots s_{k}$ where for each s_{i} there is a $g_{i} \in G$ such that $g_{i} s_{i} g_{i}^{-1} \in S$ or else $g_{i} s_{i}^{-1} g_{i}^{-1} \in S$.
(b) This also exists: it is the group generated by the union of all subgroups G^{\prime} of G such that $H \triangleleft G$. This is a non-empty union because H is such a subgroup. It is a group by definition: in this case, in fact, the union is already a group, because one of the groups G^{\prime} is in fact $N_{G}(H)$. But it is not normal itself in general: if we take H to be the subgroup of S_{3} generated by (12), which is not normal, then the only subgroup that strictly contains H is the group $G=S_{3}$. So the only subgroup G^{\prime} in which H is normal is H itself, so $N_{G}(H)=H$ which is not a normal subgroup.

GKS, 1/3/24

