ALGEBRA 2B (MA20217)

PROBLEM SHEET 3 WITH SOLUTIONS

1 W Consider the map $\varphi \colon \mathbb{R} \to \mathbb{C}^*$ given by $\varphi(x) = e^{2\pi i x}$. (Remember what the group operations on \mathbb{R} and \mathbb{C}^* are.) Verify that φ is a group homomorphism. What is its kernel? Describe the three maps π , $\bar{\varphi}$ and ι from the factorisation in Corollary II.26.

Solution: $\varphi(x+y)=e^{2\pi i(x+y)}=e^{2\pi ix}e^{2\pi iy}$ so φ is a homomorphism. The kernel is \mathbb{Z} so π sends x to $x+\mathbb{Z}$, which is effectively its fractional part, $\bar{\varphi}$ sends $t\in[0,1)$ to $e^{2\pi it}$ or just sends x to $e^{2\pi ix}$, and ι sends $z\in S^1=\{z\mid |z|=1\}$ to $z\in\mathbb{C}^*$.

- **2 H** In each of the following cases say what the kernel and image of the group homomorphism φ are and describe π , $\bar{\varphi}$ and ι briefly.
 - (a) $\varphi: S_n \to \mathbb{Z}/2$ where $\varphi(\sigma)$ is the signature of σ .
 - (b) $G = \mathrm{SL}(2,\mathbb{Z})$ and $\varphi(M)$ is M mod p for some prime p. The hard part is to determine the image of φ : you may want to use the Chinese Remainder Theorem.

Solution:

- (a) The kernel is A_n and the image is $\mathbb{Z}/2$ since both odd and even permutations exist. In this case the factorisation is almost trivial: π sends σ to σA_n , then $\bar{\varphi}$ writes down the signature of σ and ι either does nothing (if your possible signatures are 0 and 1) or more sends -1 to 1 and 1 to 0, depending on whether you prefer to write signatures additively or multiplicatively.
- (b) This is harder than it looks. The kernel is what is called $\Gamma(p)$ ("the principal congruence subgroup of level p"), given by $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(p)$ if and only if p divides all of a-1, d-1, b and c. The hard part is that the image is $\mathrm{SL}(2,\mathbb{F}_p)$: in other words, if $N=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathrm{SL}(2,\mathbb{F}_p)$ then there exists $M=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2,\mathbb{Z})$ such that $\varphi(M)=N$. It is not enough to take a,b,c,d to be arbitrary integers that are $\alpha,\beta,\gamma,\delta$ mod p because all we then know is that $ad-bc\equiv 1$ mod p: we want it to be actually 1. Suppose that ad-bc=kp+1. Then $(a+\lambda p)d-(b-\mu p)c=(k+(\lambda d+\mu c))p+1$, and $M'=\begin{pmatrix} a+\lambda p & b-\mu p \\ c & d \end{pmatrix}$ also satisfies $\varphi(M')=N$, for any $\lambda,\mu\in\mathbb{Z}$. So if we can choose λ and μ

so that $\lambda c + \mu d = -k$, we are done. We can do that if $\operatorname{hcf}(c,d) = 1$, but that is not necessarily the case. However, we still have the freedom to add multiples of p to c and d. Moreover, c and d are not both divisible by p (because otherwise $\det N = 0$). Suppose that c is not divisible by p. Then the Chinese Remainder Theorem allows us to solve $\nu p + c \equiv 1 \mod d$ (we are finding amn integer that is $c \mod p$ and $1 \mod d$), and then $\operatorname{hcf}(\nu p + c, d) = 1$. So we replace $c \mod p$ and $b - \mu p$. If $b \mid c$ then we just interchange the roles of $b \cap d$ and $b \cap d$.

After that, π is reduction modulo $\Gamma(p)$, $\bar{\varphi}$ takes $M\Gamma(p)$ to N, and ι is the identity.

3 W In I.40 we mentioned "the smallest subgroup that contains S" (a subset of G) as another way to describing $\langle S \rangle$. Let G be a group, suppose $S \subset G$ and let H be the intersection of all (not necessarily proper) subgroups of G that contain S. Show that H is a subgroup, and that any subgroup that contains S also contains H. Deduce that $H = \langle S \rangle$.

Solution: In general, intersections of subgroups are subgroups, because if $H = \bigcap_{\alpha \in A} H_{\alpha}$ and $h_1, h_2 \in H$ then $h_i \in H_{\alpha}$ for all α , so $h_1 h_2^{-1} \in H_{\alpha}$ for all α , so $h_1 h_2^{-1} \in H$. Since clearly $1 \in H$ we also have $H \neq \emptyset$, so H is a subgroup.

According to I.41, $\langle S \rangle = \{s_1 \dots s_k \mid s_i \text{ or } s_i^{-1} \in S \text{ for all } i\}$. It is a subgroup (again see I.41) and it contains S, so $\langle S \rangle \supseteq H$. On the other hand, any subgroup containing S has to contain $s_1 \dots s_k$, so $\langle S \rangle$ is contained in any subgroup containing S, in particular $\langle S \rangle \subseteq H$.

4 H

- (a) Let G be a group and suppose $S \subseteq G$ is a subset. Is there a smallest normal subgroup of G that contains S? If so, can you describe what the elements look like?
- (b) If H < G, define the normaliser $N_G(H)$ to be the largest subgroup of G such that H is normal in $N_G(H)$. Make this definition precise, and show that $N_G(H)$ is a subgroup of G. Is $N_G(H)$ a normal subgroup of G?

Solution:

(a) Yes, this exists: we can construct it as we constructed H in Q3, replacing "subgroup" by "normal subgroup". The elements are all conjugates of elements of S or their inverses, and products of those: that is, things of the form $s_1 \ldots s_k$ where for each s_i there is a $g_i \in G$ such that $g_i s_i g_i^{-1} \in S$ or else $g_i s_i^{-1} g_i^{-1} \in S$.

(b) This also exists: it is the group generated by the union of all subgroups G' of G such that $H \triangleleft G$. This is a non-empty union because H is such a subgroup. It is a group by definition: in this case, in fact, the union is already a group, because one of the groups G' is in fact $N_G(H)$. But it is not normal itself in general: if we take H to be the subgroup of S_3 generated by (12), which is not normal, then the only subgroup that strictly contains H is the group $G = S_3$. So the only subgroup G' in which H is normal is H itself, so $N_G(H) = H$ which is not a normal subgroup.

GKS, 1/3/24