MA20217 SOLUTIONS DO NOT PRINT

The annotation [2E] denotes two Engagement Marks, of which there are supposed to be 24 for a student who attempts all of Section A and two questions from Section B. B, S and U means bookwork, seen and unseen, but the boundaries between those are not very sharp.

Section A

- 1. In this question, G is a group and X is a set.
 - (a) Define what is meant by an *action* of G on X.
 - A. An action of G on X is a map $a: G \times X \to X$, in which we denote a(g, x) by g(x), such that if $g_1, g_2 \in G$ and $x \in X$ then $g_1(g_2(x)) = (g_1g_2)(x)$ and $1_G(x) = x$. [2E,B]
 - (b) Given an action of G on X and an element $x \in X$, define the *stabiliser* $\operatorname{Stab}_G(x)$ and show that it is a subgroup of G. [3]
 - A. Stab_g(x) = { $g \in G \mid gx = x$ }. It is a subgroup because it is not empty since 1x = x, and if $g, h \in \text{Stab}_G(x)$ then x = hx so $h^{-1}x = h^{-1}hx = 1x = x$ and ghx = gx = x. $- [\mathbf{1+2E,B}]$
 - (c) Give an example of an action of a group G on a set X and an $x \in X$ such that $\operatorname{Stab}_G(x)$ is not a normal subgroup of G. [1]
 - A. For instance, the stabiliser of 3 in S_3 is of order 2 generated by (12), but (123)(12)(132) = (23) does not stabilise 3. [1,S]
 - (d) Show that if y is in the orbit of x then $\operatorname{Stab}_G(y)$ is conjugate to $\operatorname{Stab}_G(x)$: that is, $g\operatorname{Stab}_G(y)g^{-1} = \operatorname{Stab}_G(x)$ for some $g \in G$. [2]
 - A. If $y \in \operatorname{orb}(x)$ then y = gx for some $g \in G$ so if $h \in \operatorname{Stab}_G(y)$ then $g^{-1}hgx = g^{-1}hy = g^{-1}y = x$ so $g^{-1}\operatorname{Stab}_G(y)g \subset \operatorname{Stab}_G(x)$, and the other inclusion is similar. $- [\mathbf{2},\mathbf{S}]$

[2]

- 2. In this question, R is a commutative ring.
 - (a) Define what it means for a subset M of R to be a maximal ideal.
 - A. *M* is an maximal ideal if it is an ideal (so nonempty and closed under taking linear combinations over *R*) and if *J* is an ideal that contains *M* then J = M or J = R. $- [2\mathbf{E}, \mathbf{B}]$
 - (b) Suppose I is an ideal in R. Show that I is a maximal ideal if and only if I + aR = Rfor every $a \notin I$. [3]
 - A. If I is maximal then I + aR = R because $I + aR \supset I$ (and is an ideal) and $I + aR \ni a$ so $I + aR \neq I$. Conversely, if J is an ideal strictly containing I we take $a \in J \setminus I$ and then $R = I + aR \subseteq J \subseteq R$ so J = R. — $[1+2\mathbf{E},\mathbf{S}]$
 - (c) Now let R = K[x, y], where K is a field. Let $a, b \in K$. Show that the ideal I given by $I = \{f \in K[x, y] \mid f(a, b) = 0\}$ is a maximal ideal of R. [3]
 - A. Put P = (a, b). Then $I = \text{Ker ev}_P$ so $R/I \cong \text{Im}(ev_P)$, but ev_P maps R to K and is surjective because $ev_P(1) = 1$, so the quotient is a field so I is maximal. $-[\mathbf{3},\mathbf{U}]$

- 3. In this question, R is a commutative ring.
 - (a) For I and J ideals of R, define I + J and IJ.
 - A. $I + J = \{a + b \in R \mid a \in I, b \in J\}$ and

$$IJ := \left\{ \sum_{i=1}^{k} a_i b_i \in R \mid k \in \mathbb{N}, \, a_i \in I, \, b_i \in J \text{ for all } 1 \le i \le k \right\}.$$

- [3E,B]

- (b) State the Chinese Remainder Theorem for commutative rings. [1]
- A. Let I, J be ideals in a commutative ring R satisfying I + J = R. Then there is a ring isomorphism $\frac{R}{I \cap J} \cong \frac{R}{I} \times \frac{R}{J}$. [1E,B]
- (c) Define the *characteristic* char R of a commutative ring R. If S is also a commutative ring and char R = m and char S = n, what can you say about char $(R \times S)$? [2]
- A. char R is the order of 1 in the abelian group (R, +). If $r1_{R \times S} = 0$ then $r1_R = 0_R$ and $r1_S = 0_S$ (and conversely), so m|r and n|r. Therefore char $(R \times S) = \text{lcm}(m, n)$ (which is 0 if m = 0 or n = 0). $- [\mathbf{2}, \mathbf{U}]$
- (d) If *I* and *J* are ideals in *R*, show that char $\left(\frac{R}{I} \times \frac{R}{J}\right) = \operatorname{char}\left(\frac{R}{I \cap J}\right)$. [2]
- A. We cannot use CRT but r = 0 in R/I if and only if $r1 \in I$, so r = 0 in $\frac{R}{I} \times \frac{R}{J}$ iff it is 0 in R/I and 0 in R/J iff $r1 \in I \cap J$. The characteristic is the smallest such r and that is also the definition of char $(\frac{R}{I \cap J})$. - [2,U]

Section B

- 4. (a) Define what it means for a commutative ring R to be a unique factorisation domain (abbreviated UFD). [2]
 - A. R is a UFD if it is a domain in which every nonzero nonunit element can be written as the product of finitely many irreducibles in R; and given two such decompositions, say $r_1 \cdots r_s = r'_1 \cdots r'_t$ we have that s = t and, after renumbering if necessary, we have $r_i R = r'_i R$ for $1 \le i \le s$. — [2E,B]
 - (b) Explain briefly why $K[x_1, \ldots, x_n]$ is a UFD for any field K. [2]
 - A. We know that if R is a UFD then R[t] is also a UFD. Also a field is a UFD, and $K[x_1, \ldots, x_n] \cong K[x_1, \ldots, x_{n-1}][x_n]$ so the result follows by induction on n. [2E,S]
 - (c) State and prove Eisenstein's criterion for irreducibility of polynomials with integer coefficients. [6]
 - A. Suppose that $f = \sum_{i=0}^{d} a_i x^i \in \mathbb{Z}[x]$ is of degree d and for some prime $p \in \mathbb{Z}$ we have $p|a_i$ for $0 \leq i < d$ but p does not divide a_d and p^2 does not divide a_0 . Then f is irreducible in $\mathbb{Z}[x]$ (and therefore irreducible in $\mathbb{Q}[x]$). For the prof: suppose that f is reducible in $\mathbb{Z}[x]$, so f = gh. Then, $\operatorname{red}_p f = (\operatorname{red}_p g)(\operatorname{red}_p h)$, but $\operatorname{red}_p f = \bar{a}_d x^d$ by the hypotheses. Since $\mathbb{F}_p[x]$ is a UFD it follows that $\operatorname{red}_p g = bx^{\deg g}$ and $\operatorname{red}_p h = cx^{\deg h}$ for some $b, c \in \mathbb{F}_p$. In particular the constant terms of $\operatorname{red}_p g$ and $\operatorname{red}_p h$ are both zero, so the constant terms of g and h are both divisible by p. But then the constant term a_0 of f is divisible by p^2 . — $[\mathbf{4+2E,B}]$
 - (d) Show that each of the following polynomials with integer coefficients is irreducible.

(i)
$$x^4 + 14x^3 - 49x^2 + 84x - 14.$$
 [2]

A. This is Eisenstein with p = 7. -[2,U]

 $x^4 + 4x^2 - 7$.

(ii)

[3]

- A. This has no rational roots because $t^2 + 4t 7$ has none, so if it factorises it is as $(x^2 + ax + b)(x^2 + cx + d)$, giving a + c = 0 from the x^3 term and ad + bc = 0from the x term, as well as bd = -7. So a(d - b) = 0 so a = 0 = c or d = b, but d = b is impossible because bd = -7. That leaves the possibilities $(x^2 + 7)(x^2 - 1)$ and $(x^2 - 7)(x^2 + 1)$, and neither works. -[3,U]
- (iii) $x^4 + 7x^3 49x^2 + 73x 21.$ [3]
- A. Put x = y + 1: then we get $y^4 + 11y^3 22y^2 + 11$ which is Eisenstein for p = 11. - [3,U]

- 5. In this question, R is an integral domain.
 - (a) Define what is meant by a valuation on R, and what is meant by a Euclidean valuation. [4]
 - A. A valuation is a function $\nu: R \to \mathbb{N} \cup \{-\infty\}$ such that $\nu(a) = -\infty$ if and only if a = 0, and for any $a, b \in R$ we have $\nu(ab) \ge \nu(a)$. It is a Euclidean valuation if, furthermore, for any nonzero $a, b \in R$ there exist $q \in R$ and $r \in R$ with $\nu(r) < \nu(b)$, such that a = qb + r. [4E,B]
 - (b) Define what it means for R to be a *principal ideal domain* (abbreviated *PID*), and what it means for R to be a *Euclidean domain*. [2]
 - A. R is a PID if every ideal is of the form aR for some $a \in R$. It is a Euclidean domain if it has a Euclidean valuation. $[2\mathbf{E}, \mathbf{B}]$
 - (c) Show that if R is a Euclidean domain then R is a PID.
 - A. Denote the Euclidean valuation on R by ν and suppose I is a nonzero ideal in R. Consider the image $\nu(I \setminus \{0\})$, i.e. $\{\nu(a) \in \mathbb{N} \mid a \in I, a \neq 0\}$. This is a nonempty subset of \mathbb{N} , so it has a least element σ . Choose $b \in I$ such that $\nu(b) = \sigma$. Then if $a \in I$ there exist $q, r \in R$ such that a = qb + r, and r = 0 or $\nu(r) < \nu(b) = \sigma$. But if $r \neq 0$ then $r = a - qb \in I$, so $\nu(r) > \sigma$. This is a contradiction, so we must have r = 0, but then $a = qb \in bR$. Since a was arbitrary, that means $I \subseteq bR$; but $b \in I$ so we also have $bR \subseteq I$. Hence I = bR and so I is a principal ideal. — $[\mathbf{4}, \mathbf{B}]$
 - (d) Suppose that R is a PID and S is a subring of R containing 1_R . Is S necessarily a PID? Give a proof or counterexample. [2]
 - A. A field is a PID so we may take $R = \mathbb{C}$ and $S = \mathbb{Z}[\sqrt{-5}]$: we know that S is not a PID. -[2,S]
 - (e) Suppose that R is a PID and I is a prime ideal of R, with $I \neq R$. Is the quotient ring R/I necessarily a PID? Give a proof or counterexample. [3]
 - A. Yes. R/I is a domain because I is prime. If J is an ideal in R/I we look at \tilde{J} , the preimage of J in R. It is an ideal, and since R is a PID we may assume $\tilde{J} = aR$ and then J is generated by a + I. [3,U]
 - (f) By considering the ring $\mathbb{R}[x, y]$, or otherwise, give an example of a valuation that is not a Euclidean valuation. [3]
 - A. The total degree function is a valuation, but it cannot be a Euclidean valuation because $\mathbb{R}[x, y]$ is not a PID: the ideal $\langle x, y \rangle$ is not principal, for instance. $-[\mathbf{3}, \mathbf{U}]$

[4]

- 6. In this question, G is a group.
 - (a) Suppose that $S \subseteq G$ is a subset. Say, in terms of elements, what is meant by the subgroup $\langle S \rangle$ generated by S. [2]
 - A. It is the group consisting of all products of elements of S and their inverses, i.e. $\langle S \rangle = \{s_1 \dots s_k \mid k \in \mathbb{N}, s_i \in S \text{ or } s_i^{-1} \in S\}. [\mathbf{2E}, \mathbf{B}]$
 - (b) Show that $\langle S \rangle$ is equal to the intersection of all subgroups of G that contain S. [3]
 - A. If a subgroup H of G contains S then it contains $\langle S \rangle$ because H is closed under the group operations. Hence $\langle S \rangle$ is contained in this intersection. On the other hand an element that is in all subgroups of G that contain S is in $\langle S \rangle$ as that is one of those subgroups. So $\langle S \rangle$ contains the intersection. $[\mathbf{3E}, \mathbf{S}]$
 - (c) Is it true that if S_1 and S_2 are subsets of G then $\langle S_1 \cap S_2 \rangle = \langle S_1 \rangle \cap \langle S_2 \rangle$? Give a proof or a counterexample. [2]
 - A. No. If η is a generator of a cyclic group C of order > 2 then $\langle \{\eta\} \rangle = \langle \{\eta^{-1}\} \rangle = C$ but $\{\eta\} \cap \{\eta^{-1}\} = \emptyset$ and $\langle \emptyset \rangle = 1$. $- [\mathbf{2}, \mathbf{U}]$
 - (d) Suppose that $S \subseteq G$ and $gSg^{-1} \subseteq S$ for all $g \in G$. Does it follow that $\langle S \rangle$ is a normal subgroup of G? Give a proof or a counterexample. [3]
 - A. Yes. One way to see this is to say that $gs_1 \dots s_k g^{-1} = (gs_1g^{-1}) \dots (gs_kg^{-1})$ and if $s_i \in S$ then $gs_ig^{-1} \in S$, while if $s_i^{-1} \in S$ then $(gs_ig^{-1})^{-1} = gs_i^{-1}g^{-1} \in S$. [2+1E,U]
 - (e) If $a, b \in G$ then the *commutator* of a and b, denoted [a, b], is the element

$$[a,b] = aba^{-1}b^{-1} \in G.$$

Let $C \subseteq G$ be the set of all commutators, i.e. $C = \{[a,b] \mid a, b \in G\}$. Show that the *derived subgroup* $G' = \langle C \rangle$ is a normal subgroup of G and that G/G' is abelian. [4]

- A. We use (d), noting that $g[a, b]g^{-1} = [gag^{-1}, gbg^{-1}]$. Hence G' is a normal subgroup. Moreover, in any group, [a, b] = 1 if and only if ab = ba and applying that to G/G'we get $[aG', bG'] = [a, b]G' = 1_{G/G'}$ so aG' and bG' commute, so G/G' is abelian. $- [\mathbf{4}, \mathbf{U}]$
- (f) What is the derived subgroup of the symmetric group S_n , for $n \ge 3$? Justify your answer briefly. [Hint: compute some commutators, and remember that every even permutation is a product of cycles of length 3.] [4]
- A. Notice first that $[\sigma, \tau]$ is an even permutation for any $\sigma, \tau \in S_n$, because, writing ε for signature, $\varepsilon(\sigma^{-1}) = \varepsilon(\sigma)^{-1} = \varepsilon(\sigma)$ so $\varepsilon([\sigma, \tau]) = (\varepsilon(\sigma)\varepsilon(\tau))^2 = 1$. So $G' < A_n$. But G' contains all 3-cycles since [(12), (13)] = (123) and the 3-cycles generate A_n . $- [\mathbf{4}, \mathbf{U}]$