ALGEBRA 2B (MA20217)

SEMESTER 2 MATHEMATICS: PROBLEM SHEET 8

Arrange with your tutors about marking for this sheet. A copy of this sheet is on Moodle and at
http://people.bath.ac.uk/masgks/Algebra2B/sheet8.algebra2b.pdf

1. Verify that the relation defined on T in the construction of $\mathcal{Q}(R)$, in Lemma V.20, is in fact an equivalence relation.
2. In this question R is a commutative ring and I and J are ideals in R. Say whether each of the following statements is true or not: give a proof or a counterexample.
(a) If I and J are both prime ideals then $I \cap J$ is a prime ideal.
(b) If I and J are both prime ideals then $I J$ is a prime ideal.
(c) If I and J are both prime ideals then $I+J$ is a prime ideal.
(d) If I and J are both maximal ideals then $I \cap J$ is a maximal ideal.
(e) If I and J are both maximal ideals then $I J$ is a maximal ideal.
(f) If I and J are both maximal ideals then $I+J$ is a maximal ideal.
3. Show directly that if R is a PID and $p \in R$ is irreducible then the ideal $p R$ is a maximal ideal. Deduce that $R / p R$ is a field (Theorem VI.22).
4. What is the content of each of the following polynomials?
(a) $3 x^{3}-12 x^{2}-9 \in \mathbb{Z}[x]$.
(b) $3 x^{3}-12 x^{2}-9 \in \mathbb{Q}[x]$.
(c) $3 w x^{3}-12 w x^{2}-9 w \in R[x]$, where $R=\mathbb{Z}[w]$.
(d) $3 w x^{3}-12 w x^{2}-9 w \in S[w]$, where $S=\mathbb{Z}[x]$.
(e) $3 w x^{3}+3 x^{3}-12 w^{2} x^{2}-12 w x^{2}-9 w-9 \in R[x]$, where $R=\mathbb{Z}[w]$.
5. Say whether each of the following polynomials is reducible or irreducible, giving reasons.
(a) $3 x^{3}-12 x^{2}-9 \in \mathbb{Z}[x]$.
(b) $3 x^{3}-12 x^{2}-9 \in \mathbb{Q}[x]$.
(c) $x^{2}+5 x-3 \in \mathbb{F}_{11}[x]$.
(d) $x^{2}+5 x-3 \in \mathbb{F}_{13}[x]$.
(e) $x^{2}+5 x-3 \in \mathbb{F}_{37}[x]$.
(f) $x^{3}+5 x-3 \in \mathbb{F}_{13}[x]$.
(g) $x^{3}+5 x-3 \in \mathbb{F}_{11}[x]$.
6. Say whether each of the following polynomials is reducible or irreducible in $\mathbb{Q}[x]$, giving reasons.
(a) $x^{4}-10 x^{3}-15 \in \mathbb{Z}[x]$.
(b) $x^{4}-10 x^{3}-15 \in \mathbb{Q}[x]$.
(c) $x^{4}-x^{3}-10 x^{2}+7 x+3 \in \mathbb{Q}[x]$.
(d) $x^{4}-14 x^{3}+36 x^{2}-34 x-4 \in \mathbb{Q}[x]$.
(e) $x^{3}+5 x-3 \in \mathbb{Q}[x]$.

GKS, 19/4/24

