ALGEBRA 2B (MA20217)

SEMESTER 3 MATHEMATICS: PROBLEM SHEET 7

This sheet will be discussed in the first tutorial after Easter. A copy of this sheet is on Moodle and at
http://people.bath.ac.uk/masgks/Algebra2B/sheet7.algebra2b.pdf

1. Give proofs or counterexamples to each of the following statements.
(a) If G is a group and G acts on X, then for any normal subgroup $K \triangleleft G$ the rule $(K g)(x):=g(x)$ defines an action of G / K on X.
(b) If G acts on X and $H \leq G$ then $\operatorname{Stab}_{H}(x) \leq \operatorname{Stab}_{G}(x)$.
(c) If G acts on X and $K \triangleleft G$ then $\operatorname{Stab}_{K}(x) \triangleleft \operatorname{Stab}_{G}(x)$.
(d) If G_{1} and G_{2} act on X and $G_{1} \cong G_{2}$. then $\operatorname{Stab}_{G_{1}}(x) \cong \operatorname{Stab}_{G_{2}}(x)$ for every $x \in X$.
(e) If G_{1} and G_{2} act on X and $G_{1} \cong G_{2}$. then $\operatorname{Stab}_{G_{1}}(x) \cong \operatorname{Stab}_{G_{2}}(x)$ for every $x \in X$.
(f) The action of $\mathrm{SL}(2 \mathbb{Z})$ on the upper half-plane $\mathbb{H} \subset \mathbb{C}$ by Möbius transformations is transitive.
(g) The action of $\mathrm{SL}(2 \mathbb{R})$ on the upper half-plane $\mathbb{H} \subset \mathbb{C}$ by Möbius transformations is transitive.
(h) If R is a ring of characteristic m and I is an ideal of R then char $R / I=$ m.
(i) If R is a ring of characteristic m and I is an ideal of R then char R / I divides m.
2. In each of the following cases, say whether φ is a ring homomorphism or not. Give reasons. If it is, say what the kernel and image of φ are.
(a) $\varphi: \mathbb{Z}[i] \rightarrow \mathbb{Z}$ given by $\varphi(z)=\operatorname{Re}(z)$, the real part of z.
(b) $\varphi: M_{3 \times 3}(\mathbb{C}) \rightarrow \mathbb{C}$ given by $\varphi(A)=\operatorname{det}(A)$.
(c) $\varphi: \mathbb{R}[t] \rightarrow \mathbb{R}[t]$ given by $\varphi(f(t))=f\left(t^{2}\right)$.
(d) $\varphi\left(M_{2 \times 2}(\mathbb{Z}) \rightarrow M_{2 \times 2}\left(\mathbb{F}_{2}\right)\right)$ by $\varphi\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right)=\left(\begin{array}{ll}\bar{a} & \bar{b} \\ \bar{c} & \bar{d}\end{array}\right)$ where for $n \in \mathbb{Z}$ we define $\bar{n}=1$ if n is odd and $\bar{n}=0$ if n is even.
3.

(a) Which of the following rings is an integral domain? Give reasons.

$$
\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} ; \quad \mathbb{Z} / 10 \mathbb{Z} ; \quad \mathbb{Z}[\sqrt{10}]
$$

(b) What is the characteristic of each of the following rings?

$$
\mathbb{Z} ; \quad \mathbb{Z} / 15 \mathbb{Z} ; \quad R / 3 R, \text { where } R=\mathbb{Z} / 15 \mathbb{Z} \text {. }
$$

(c) If $R=\mathbb{Z}[\pi]$, what is the field of fractions $\mathcal{Q}(R)$?
(d) Suppose that R is an integral domain, $F=\mathcal{Q}(R)$ and S is a proper subring of F with $1_{R} \in S$, such that $\mathcal{Q}(S)=F$. Does this necessarily imply that $S=R$? You must give a proof or a counterexample.
(e) Suppose that R is an integral domain. For each of the following rings A, say whether A is always a domain; never a domain; or possibly a domain, depending on what R is. Give brief proofs or counterexamples.
(a) A is the direct product $R \times R$.
(b) A is the ring of formal power series $R[t t]$ (this is ring whose elements are power series $\sum_{i=0}^{\infty} a_{i} t^{i}$ with $a_{i} \in R$: "formal" means we don't worry about whether they converge, even if it makes sense to ask that question).
(c) $R / 6 R$, where 6 means $1_{R}+1_{R}+1_{R}+1_{R}+1_{R}+1_{R}$.

GKS, 4/4/24

