ALGEBRA 2B (MA20217)

SEMESTER 3 MATHEMATICS: PROBLEM SHEET 6

Homework questions, marked H, should be handed in by the time agreed with your tutor. A copy of this sheet is on Moodle and at

http://people.bath.ac.uk/masgks/Algebra2B/sheet6.algebra2b.pdf

1 W Let R and S be rings. Show that $R \times S = \{(r,s) \mid r \in R, s \in S\}$ becomes a ring if we define

$$(a,b) + (c,d) = (a+c,b+d)$$
 and $(a,b) \cdot (c,d) = (ac,bd)$

for $a, c \in R$ and $b, d \in S$. (This ring is called the direct product of R and S).

- **2 H** Let R be a commutative ring, and let $a \in R$. Show that if R is an integral domain then the equation $x^2 = a$ has at most two solutions in R. Find a commutative ring R and an element $a \in R$ such that $x^2 = a$ has more than two solutions.
- **3 H** Consider the evaluation homomorphism $\varphi \colon \mathbb{R}[t] \to \mathbb{C}$ defined by setting $\phi(f) = f(i)$. Identify $\text{Ker}(\phi)$: using the division algorithm, prove carefully that your answer is correct.

What does the First Isomorphism Theorem tell us in this case?

- **4 W** Prove that if I and J are ideals in a ring R, then I+J, IJ and $I\cap J$ are ideals in R and $IJ\subseteq I\cap J\subseteq I+J$.
- **5** A Let R be a finite ring, i.e. the number |R| of elements of R is finite. Show that |R| is divisible by char R. Deduce that if |R| = p is prime, then $R \cong \mathbb{Z}/p\mathbb{Z}$.

By considering the map $m_a: R \to R$ given by $m_a(b) = ab$, or otherwise, show that a finite integral domain is a field.

GKS, 22/3/24