ALGEBRA 2B (MA20217)

SEMESTER 3 MATHEMATICS: PROBLEM SHEET 6

Homework questions, marked H, should be handed in by the time agreed with your tutor. A copy of this sheet is on Moodle and at
http://people.bath.ac.uk/masgks/Algebra2B/sheet6.algebra2b.pdf
$1 \mathbf{W}$ Let R and S be rings. Show that $R \times S=\{(r, s) \mid r \in R, s \in S\}$ becomes a ring if we define

$$
(a, b)+(c, d)=(a+c, b+d) \quad \text { and } \quad(a, b) \cdot(c, d)=(a c, b d)
$$

for $a, c \in R$ and $b, d \in S$. (This ring is called the direct product of R and $S)$.
$2 \mathbf{H}$ Let R be a commutative ring, and let $a \in R$. Show that if R is an integral domain then the equation $x^{2}=a$ has at most two solutions in R. Find a commutative ring R and an element $a \in R$ such that $x^{2}=a$ has more than two solutions.
$\mathbf{3} \mathbf{H}$ Consider the evaluation homomorphism $\varphi: \mathbb{R}[t] \rightarrow \mathbb{C}$ defined by setting $\phi(f)=f(i)$. Identify $\operatorname{Ker}(\phi)$: using the division algorithm, prove carefully that your answer is correct.
What does the First Isomorphism Theorem tell us in this case?
$4 \mathbf{W}$ Prove that if I and J are ideals in a ring R, then $I+J, I J$ and $I \cap J$ are ideals in R and $I J \subseteq I \cap J \subseteq I+J$.
5 A Let R be a finite ring, i.e. the number $|R|$ of elements of R is finite. Show that $|R|$ is divisible by char R. Deduce that if $|R|=p$ is prime, then $R \cong \mathbb{Z} / p \mathbb{Z}$.
By considering the map $m_{a}: R \rightarrow R$ given by $m_{a}(b)=a b$, or otherwise, show that a finite integral domain is a field.

GKS, 22/3/24

