ALGEBRA 2B (MA20217)

SEMESTER 3 MATHEMATICS: PROBLEM SHEET 5

Homework questions, marked H, should be handed in by the time agreed with your tutor. A copy of this sheet is on Moodle and at
http://people.bath.ac.uk/masgks/Algebra2B/sheet5.algebra2b.pdf
$1 \mathbf{H}$. For each of the following commutative rings, say whether it is an integral domain, a field, or neither. Give brief reasons. What are the units in each case?
(a) The set of Gaussian integers $\mathbb{Z}[i]=\{a+i b \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$, (where $i=\sqrt{-1}$) with the usual operations of complex numbers.
(b) $\mathbb{Z} / 9$, with the usual operations.
(c) $\mathbb{C}[t]$.
(d) $\mathbb{Q}[i]=\{a+i b \in \mathbb{C} \mid a, b \in \mathbb{Q}\}$, with the usual operations of complex numbers.
$\mathbf{2} \mathbf{W}$ Decide whether each of the following is a subring, an ideal, or neither; prove your assertions.
(a) $S_{1}=\{-1,0,1\} \subset \mathbb{Z}$;
(b) $S_{2}=\left\{a_{0}+a_{2} t^{2}+a_{4} t^{4}+\cdots . \mid a_{i} \in \mathbb{Q}\right\} \subset \mathbb{Q}[t]$;
(c) $S_{3}=\left\{a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+\cdots, \mid a_{i} \in \mathbb{Q}\right\} \subset \mathbb{Q}[t]$;
(d) $S_{4}=\{$ polynomials of degree $\leq 2\} \subseteq \mathbb{Q}[t]$;
(e) $S_{5}=\{p \in \mathbb{Q}[t] \mid p(1)=0\} \subset \mathbb{Q}[t]$.
$3 \mathbf{H}$ Show that if R is an integral domain, $a, b, c \in R$, and $a b=a c$, and $a \neq 0$, then $b=c$: that is, one may cancel. Is this the same as the statement "multiplication by a is injective"?
GKS, 15/3/24

