ALGEBRA 2B (MA20217)

ALGEBRA 2B MOCK EXAM

This is a mock exam which has not been checked as carefully as a real exam would be. In the real exam you will be asked to attempt all of Section A and two questions out of three from Question B (if you attempt them all, your best answers will count): here I have just indicated those sections with a letter after the question number. The numbers in square brackets are a general indication of how many marks that part would be worth if there were any marks: full marks would be 60.

1A. Define what is meant by a normal subgroup of a group G. [2]

Show that if $\phi \colon G \to H$ is a group homomorphism then the kernel $\operatorname{Ker} \phi$ is a normal subgroup of G. [2]

Suppose that $\psi \colon G \to H$ is a map such that $\{g \in G \mid \phi(g) = 1\}$ is a normal subgroup of G. Is it true that ϕ is necessarily a homomorphism? Give a proof or a counterexample. [2]

Show that there cannot exist a surjective homomorphism from S_5 to S_4 (the symmetric groups). [2]

2A. Define what it means for an ideal P to be a *prime ideal* of a commutative ring R. [2]

Give an example of a ring in which every nonzero prime ideal is maximal. [1]

Consider the ring $Q = \{\frac{a}{b} \in \mathbb{Q} \mid \text{hcf}(b,3) = 1\}$. Show that $\langle 3 \rangle$ is a prime ideal in Q. Are there any other nonzero prime ideals in Q? Justify your answer briefly. [5]

3A. State and prove the Chinese Remainder Theorem. [5]

If the characteristic of R is n (possibly n=0) and I is an ideal of R, show that char R/I divides char R. [3]

4B. Define the terms Euclidean domain, principal ideal domain (PID) and unique factorisation domain (UFD). [5]

Show that every Euclidean domain is a PID. [5]

State Eisenstein's criterion for irreducibility of an element of $\mathbb{Q}[x]$. [2]

For each of the following polynomials, say with brief reasons whether or not it is irreducible in $\mathbb{Q}[x]$.

- (a) $x^4 2x^3 4x^2 17x 20$
- (b) $2x^4 + 5x^3 + 25x^2 10x 10$
- (c) $2x^4 + 13x^3 + 2x^2 + 3x + 2$
- **5B.** Define what it means for a group G to act on a set X. [2]

If G acts on X, say what is meant by the *orbit* of an element of $x \in X$, and what is meant by the *stabiliser* of an element $x \in X$. [4]

Show that the rule $g(h) = ghg^{-1}$ defines an action of G on G, for any group G, called the conjugation action. [2]

Take $G = S_n$ and consider the conjugation action of S_n on S_n .

Suppose that $\sigma = (12...k)$, for some $k \leq n$. What is the orbit of σ under this action? What is its stabiliser? [4]

The alternating group A_5 is a subgroup of S_5 so it also acts on S_5 by conjugation. Consider the elements (12345) and (21345). Do they have the same orbit under the action of A_5 ? Justify your answer carefully. [6]

6B. Suppose that G is a group and $S \subseteq G$ is a subset. Say what is meant by the subgroup $\langle S \rangle$ generated by S. [2]

Show that $\langle S \rangle$ is equal to the intersection of all subgroups of G that contain S. [2]

If H_1 and H_2 are both subgroups of a group G, the product subgroup H_1H_2 is defined to be $\langle R \rangle$, where $R = \{h_1h_2 \mid h_1 \in H_1, h_2 \in H_2\}$

- (a) Explain why $H_1H_2 = H_2H_1$, even if G is not abelian. [2]
- (b) If S_1 and S_2 are subsets of G, show that $\langle S_1 \cup S_2 \rangle = \langle S_1 \rangle \langle S_2 \rangle$. [2]
- (c) Is it true that $\langle S_1 \cap S_2 \rangle = \langle S_1 \rangle \cap \langle S_2 \rangle$? Give a proof or a counterexample. [2]
- (d) Suppose that $S \subseteq G$ and $gSg^{-1} \subseteq S$ for all $g \in G$. Does it follow that
- $\langle S \rangle$ is a normal subgroup of G? Give a proof or a counterexample. [2]
- (e) If $a, b \in G$ then the *commutator* of a and b, denoted [a, b], is the element $[a, b] = aba^{-1}b^{-1} \in G$. Let $C \subset G$ be the set of all commutators, i.e. $C = \{[a, b] \mid a, b \in G\}$, and let $G' = \langle C \rangle$. Show that G' is a normal subgroup of G, that G/G' is abelian, and that if H is a normal subgroup of G such that G/H is abelian then there is a surjective group homomorphism $G/H \to G/G'$. [6]

GKS, 6/4/23