
ALGEBRA 2B (MA20217)

ALGEBRA 2B MOCK EXAM

This is a mock exam which has not been checked as carefully as a real exam
would be. In the real exam you will be asked to attempt all of Section A
and two questions out of three from Question B (if you attempt them all,
your best answers will count): here I have just indicated those sections with
a letter after the question number. The numbers in square brackets are a
general indication of how many marks that part would be worth if there were
any marks: full marks would be 60.

1A. Define what is meant by a normal subgroup of a group G. [2]
Show that if φ : G→ H is a group homomorphism then the kernel Kerφ is
a normal subgroup of G. [2]
Suppose that ψ : G→ H is a map such that {g ∈ G | φ(g) = 1} is a normal
subgroup of G. Is it true that φ is necessarily a homomorphism? Give a
proof or a counterexample. [2]
Show that there cannot exist a surjective homomorphism from S5 to S4 (the
symmetric groups). [2]
Solution: H ⊆ G is a normal subgroup of G if H is a subgroup and
g−1Hg = H for every g ∈ G.
Put K = Kerφ and notice first that K is a subgroup because it is not empty
since φ(1) = 1 so 1 ∈ K, and if a, b ∈ K then φ(ab−1) = φ(a)φ(b−1) =
φ(a)φ(b)−1 = 1 so ab−1 ∈ K. Similarly it is normal because if k ∈ K and
g ∈ G then φ(g−1kg) = φ(g)−1φ(k)φ(g) = φ(g)−1φ(g) = 1 so g−1kg ∈ K.
This is not usually true. For example, the map x 7→ x2 from Z to Z has
“kernel” 0 which is a normal subgroup of Z, but it is not a homomorphism
because (1 + 1)2 6= 12 + 12.
The order of S5 is 120 and the order of S4 is 24, so such a homomorphism
would have to have kernel of order 5. But a subgroup of order 5 must be
cyclic (because 5 is prime) so it is generated by the powers of (12345) after
relabelling the symbols if necessary. But (12)(12345)(12) = (13452) which
is not a power of (12345).

2A. Define what it means for an ideal P to be a prime ideal of a commutative
ring R. [2]
Give an example of a ring in which every nonzero prime ideal is maximal.
[1]
Consider the ring Q = {ab ∈ Q | hcf(b, 3) = 1}. Show that 〈3〉 is a prime
ideal in Q. Are there any other nonzero prime ideals in Q? Justify your
answer briefly. [5]
Solution: P is a prime ideal of R if xy ∈ P implies x ∈ P or y ∈ P .
Z is such a ring, for instance because Z/p is a field (there are several other
ways to show this).
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〈3〉 is an ideal by definition. Suppose that x = a
b , y = c

d and xy = ac
bd ∈ 〈3〉.

Then there exists e
f ∈ Q such that 3e

f = ac
bd , so 3bde = acf . But 3 does not

divide f , and 3 is prime so it must divide a or c: wlog 3|a, say a = 3a′. Now
x = 3a′

b ∈ 〈3〉.
There are no other nonzero prime ideals because every nonzero element of
Q that is not in 〈3〉 is a unit: if 3 does not divide a then a

b ∈ Q has the

inverse b
a ∈ Q. So 〈3〉 is a maximal ideal (in fact we could have used this

to prove that it is a prime ideal) so any other prime ideal P would have to
be contained in 〈3〉, i.e. consist of multiples of 3. But then we have 3x ∈ P
for some x: choose this x to be divisible by 3 as few times as possible. Now
3 6∈ P and x 6∈ P so P is not prime.

3A. State and prove the Chinese Remainder Theorem. [5]
If the characteristic of R is n (possibly n = 0) and I is an ideal of R, show
that charR/I divides charR. [3]
Solution:
The first part is bookwork. For the second part, if n = 0 there is nothing
to prove since every integer (even 0) divides 0: otherwise, consider addition
only and look at the subgroup G generated by 1 (this is the prime subring).
It is a group of order n, and the prime subring of R/I is G/(I ∩ G) so we
have charR = |G| = |G/(I ∩R)| · |I ∩R| = |I ∩R| · charR/I.

4B. Define the terms Euclidean domain, principal ideal domain (PID) and
unique factorisation domain (UFD). [5]
Show that every Euclidean domain is a PID. [5]
State Eisenstein’s criterion for irreducibility of an element of Q[x]. [2]
For each of the following polynomials, say with brief reasons whether or not
it is irreducible in Q[x].
(a) x4 − 2x3 − 4x2 − 17x− 20
(b) 2x4 + 5x3 + 25x2 − 10x− 10
(c) 2x4 + 13x3 + 2x2 + 3x+ 2
Solution: All but the polynomials are bookwork.
(a) I don’t see anything obvious so let’s try some substitutions. Replacing x
with x+ 1 gives a constant coefficient of −42, which is encouraging because
that gives us a chance of Eisenstein with p = 2, 3 or 7, but unfortunately
the x3 coefficient is 2 and the x coefficient is odd because of the 17. Before
we give up, though, let’s try replacing x with x − 1. That gives an x3

coefficient of 6 but the constant coefficient is 1 + 2 − 4 + 17 − 20 = −4
which is no good. Perhaps we should try factorising. No linear factors
(calculus) so if anything it’s (x2 + ax + b)(x2 + cx + d), and then we have
bd = −20 and a + c = −2. Let’s do some guessing. How about b = 4 and
d = −5? Then the x term gives −5a + 4c = −17 and a = −c − 2 so that’s
9c = −27. Lucky! If we had picker b = −4 and d = 5 we’d have had to
try again. But now we are being told c = −3 and a = 1: does that work?
(x2 + x + 4)(x2 − 3x − 5) = x4 − 2x3 − 4x2 − 17x − 20. Yes. (This was a
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bit fortunate. 20 is too factorisable. We might have wasted time with 10
and −2 or −20 and 1. This is most likely to work when the constant term
is prime).
(b) That’s Eisenstein, with p = 5. Irreducible.
(c) Lets try some substitutions again. Replacing x with x + 1 gives us a
constant term 22, but x− 1 gives 10. Where did we just see that? Oh yes,
it’s just the polynomial from (b) again. Irreducible.
5B. Define what it means for a group G to act on a set X. [2]
If G acts on X, say what is meant by the orbit of an element of x ∈ X, and
what is meant by the stabiliser of an element x ∈ X. [4]
Show that the rule g(h) = ghg−1 defines an action of G on G, for any group
G, called the conjugation action. [2]
Take G = Sn and consider the conjugation action of Sn on Sn.
Suppose that σ = (12 . . . k), for some k ≤ n. What is the orbit of σ under
this action? What is its stabiliser? [4]
The alternating group A5 is a subgroup of S5 so it also acts on S5 by conju-
gation. Consider the elements (12345) and (21345). Do they have the same
orbit under the action of A5? Justify your answer carefully. [6]
Solution: The first two are bookwork. The conjugation action was men-
tioned: we just need to check that conjugation by 1 does nothing, which is
obvious, and that conjugation by gk is the same as conjugation by k followed
by conjugation by g. And indeed (gk)(h) = gkh(gk)−1 = g(khk−1)g−1. The
most difficult thing here is for the examiner, who has to remember to write
ghg−1 and not g−1hg.
If we take any other k-cycle, say τ = (a1 . . . ak), then σ is conjugate to τ via
any element of Sn that sends 1 to a1, 2 to a2 and so on (the element a, in
fact). And all elements of Sn do that for some a1 . . . an so that’s the orbit:
all the elements with the same cycle type, in this case all the k-cycles. The
stabiliser is all the elements that permute (1 . . . k) cyclically, i.e. the ones
that have (1 . . . k) in their cycle decomposition. They can do what they like
to the other n− k symbols.
These two don’t have the same orbit under A5. The recipe above tells us
that we can get from one to the other by conjugating by (12), but that’s
odd. The only other thing we could do would be to conjugate by something
in the stabiliser, but those are 5-cycles and 5-cycles are even permutations.
So we can do it only with (12)(5-cycle) and that’s odd, so we can’t do it in
A5.

6B. Suppose that G is a group and S ⊆ G is a subset. Say what is meant
by the subgroup 〈S〉 generated by S. [2]
Show that 〈S〉 is equal to the intersection of all subgroups of G that contain
S. [2]
If H1 and H2 are both subgroups of a group G, the product subgroup H1H2

is defined to be 〈R〉, where R = {h1h2 | h1 ∈ H1, h2 ∈ H2}
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(a) Explain why H1H2 = H2H1, even if G is not abelian. [2]
(b) If S1 and S2 are subsets of G, show that 〈S1 ∪ S2〉 = 〈S1〉〈S2〉. [2]
(c) Is it true that 〈S1 ∩ S2〉 = 〈S1〉∩〈S2〉? Give a proof or a counterexample.
[2]
(d) Suppose that S ⊆ G and gSg−1 ⊆ S for all g ∈ G. Does it follow that
〈S〉 is a normal subgroup of G? Give a proof or a counterexample. [2]
(e) If a, b ∈ G then the commutator of a and b, denoted [a, b], is the element
[a, b] = aba−1b−1 ∈ G. Let C ⊂ G be the set of all commutators, i.e.
C = {[a, b] | a, b ∈ G}, and let G′ = 〈C〉. Show that G′ is a normal
subgroup of G, that G/G′ is abelian, and that if H is a normal subgroup of
G such that G/H is abelian then there is a surjective group homomorphism
G/H → G/G′. [6]
Solution: The first part is bookwork. For the second part, If a subgroup
H of G contains S then it contains 〈S〉 because H is closed under the group
operations. Hence 〈S〉 is contained in this intersection. On the other hand
an element that is in all subgroups of G that contain S is in 〈S〉 as that is
one of those subgroups. So 〈S〉 contains the intersection.
(a) is a trick really. R contains both H1 and H2 (take h2 = 1 and then take
h1 = 1) so actually H1H2 = 〈H1 ∪H2〉, which obviously doesn’t depend on
the order.
(b) is the same thing. Both sides consist of words with letters from (or
inverses of letters from) S1 and S2.
(c) is false. You could take the integers mod 3 and S1 = {1}, S2 = {2}.
Those both generate Z/3, but their intersection is empty.
(d) Yes. One way to see this is to say that gs1 . . . skg

−1 = (gs1g
−1) . . . (gskg

−1)
and if si ∈ S then gsig

−1 ∈ S, while if s−1i ∈ S then (gsig
−1)−1 = gs−1i g−1 ∈

S.
(e) We use (d), noting that g[a, b]g−1 = [gag−1, gbg−1]. Hence G′ is a nor-
mal subgroup. Moreover, in any group, [a, b] = 1 if and only if ab = ba
and applying that to G/G′ we get [aG′, bG′] = [a, b]G′ = 1G/G′ so aG′ and
bG′ commute, so G/G′ is abelian. The last part comes from the first iso-
morphism theorem: since the quotient is abelian we must have killed all the
commutators, i.e. H ⊇ G′, so we can do that first. and then go on as in
Theorem II.24.

GKS, 6/4/23
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