Section A

1. In this question, G is a group and X is a set.
(a) Define what is meant by an action of G on X.
(b) Given an action of G on X and an element $x \in X$, define the stabiliser $\operatorname{Stab}_{G}(x)$ and show that it is a subgroup of G.
(c) Give an example of an action of a group G on a set X and an $x \in X$ such that $\operatorname{Stab}_{G}(x)$ is not a normal subgroup of G.
(d) Show that if y is in the orbit of x then $\operatorname{Stab}_{G}(y)$ is conjugate to $\operatorname{Stab}_{G}(x)$: that is, $g \operatorname{Stab}_{G}(y) g^{-1}=\operatorname{Stab}_{G}(x)$ for some $g \in G$.
2. In this question, R is a commutative ring.
(a) Define what it means for a subset M of R to be a maximal ideal.
(b) Suppose I is an ideal in R. Show that I is a maximal ideal if and only if $I+a R=R$ for every $a \notin I$.
(c) Now let $R=K[x, y]$, where K is a field. Let $a, b \in K$. Show that the ideal I given by $I=\{f \in K[x, y] \mid f(a, b)=0\}$ is a maximal ideal of R.
3. In this question, R is a commutative ring.
(a) For I and J ideals of R, define $I+J$ and $I J$.
(b) State the Chinese Remainder Theorem for commutative rings.
(c) Define the characteristic char R of a commutative ring R. If S is also a commutative ring and char $R=m$ and char $S=n$, what can you say about $\operatorname{char}(R \times S)$?
(d) If I and J are ideals in R, show that $\operatorname{char}\left(\frac{R}{I} \times \frac{R}{J}\right)=\operatorname{char}\left(\frac{R}{I \cap J}\right)$.

Section B

4. (a) Define what it means for a commutative ring R to be a unique factorisation domain (abbreviated UFD).
(b) Explain briefly why $K\left[x_{1}, \ldots, x_{n}\right]$ is a UFD for any field K.
(c) State and prove Eisenstein's criterion for irreducibility of polynomials with integer coefficients.

(d) Show that each of the following polynomials with integer coefficients is irreducible.
(i) $x^{4}+14 x^{3}-49 x^{2}+84 x-14$ [2]
(ii) $x^{4}+4 x^{2}-7$. [3]
(iii) $x^{4}+7 x^{3}-49 x^{2}+73 x-21$. [3]
5. In this question, R is an integral domain.
(a) Define what is meant by a valuation on R, and what is meant by a Euclidean valuation.
(b) Define what it means for R to be a principal ideal domain (abbreviated PID), and what it means for R to be a Euclidean domain.

(c) Show that if R is a Euclidean domain then R is a PID.
(d) Suppose that R is a PID and S is a subring of R containing 1_{R}. Is S necessarily a PID? Give a proof or counterexample.
(e) Suppose that R is a PID and I is a prime ideal of R, with $I \neq R$. Is the quotient ring R / I necessarily a PID? Give a proof or counterexample.

(f) By considering the ring $\mathbb{R}[x, y]$, or otherwise, give an example of a valuation that is not a Euclidean valuation.
6. In this question, G is a group.
(a) Suppose that $S \subseteq G$ is a subset. Say, in terms of elements, what is meant by the subgroup $\langle S\rangle$ generated by S.
(b) Show that $\langle S\rangle$ is equal to the intersection of all subgroups of G that contain S.
(c) Is it true that if S_{1} and S_{2} are subsets of G then $\left\langle S_{1} \cap S_{2}\right\rangle=\left\langle S_{1}\right\rangle \cap\left\langle S_{2}\right\rangle$? Give a proof or a counterexample.
(d) Suppose that $S \subseteq G$ and $g S g^{-1} \subseteq S$ for all $g \in G$. Does it follow that $\langle S\rangle$ is a normal subgroup of G ? Give a proof or a counterexample.
(e) If $a, b \in G$ then the commutator of a and b, denoted $[a, b]$, is the element

$$
[a, b]=a b a^{-1} b^{-1} \in G .
$$

Let $C \subseteq G$ be the set of all commutators, i.e. $C=\{[a, b] \mid a, b \in G\}$. Show that the derived subgroup $G^{\prime}=\langle C\rangle$ is a normal subgroup of G and that G / G^{\prime} is abelian.
(f) What is the derived subgroup of the symmetric group S_{n}, for $n \geq 3$? Justify your answer briefly. [Hint: compute some commutators, and remember that every even permutation is a product of cycles of length 3.]

