Section A

- 1. In this question, G is a group and X is a set.
 - (a) Define what is meant by an action of G on X. [2]
 - (b) Given an action of G on X and an element $x \in X$, define the stabiliser $Stab_G(x)$ and show that it is a subgroup of G.
 - (c) Give an example of an action of a group G on a set X and an $x \in X$ such that $\operatorname{Stab}_G(x)$ is not a normal subgroup of G.
 - (d) Show that if y is in the orbit of x then $\operatorname{Stab}_G(y)$ is conjugate to $\operatorname{Stab}_G(x)$: that is, $g \operatorname{Stab}_G(y) g^{-1} = \operatorname{Stab}_G(x)$ for some $g \in G$.
- 2. In this question, R is a commutative ring.
 - (a) Define what it means for a subset M of R to be a maximal ideal. [2]
 - (b) Suppose I is an ideal in R. Show that I is a maximal ideal if and only if I + aR = R for every $a \notin I$.
 - (c) Now let R = K[x, y], where K is a field. Let $a, b \in K$. Show that the ideal I given by $I = \{f \in K[x, y] \mid f(a, b) = 0\}$ is a maximal ideal of R. [3]
- 3. In this question, R is a commutative ring.
 - (a) For I and J ideals of R, define I + J and IJ. [3]
 - (b) State the Chinese Remainder Theorem for commutative rings. [1]
 - (c) Define the *characteristic* char R of a commutative ring R. If S is also a commutative ring and char R = m and char S = n, what can you say about char $(R \times S)$? [2]
 - (d) If I and J are ideals in R, show that $\operatorname{char}\left(\frac{R}{I} \times \frac{R}{J}\right) = \operatorname{char}\left(\frac{R}{I \cap J}\right)$. [2]

Section B

- 4. (a) Define what it means for a commutative ring R to be a unique factorisation domain (abbreviated UFD). [2]
 - (b) Explain briefly why $K[x_1, ..., x_n]$ is a UFD for any field K. [2]
 - (c) State and prove Eisenstein's criterion for irreducibility of polynomials with integer coefficients. [6]
 - (d) Show that each of the following polynomials with integer coefficients is irreducible.

(i)
$$x^4 + 14x^3 - 49x^2 + 84x - 14$$
. [2]

(ii)
$$x^4 + 4x^2 - 7$$
. [3]

(iii)
$$x^4 + 7x^3 - 49x^2 + 73x - 21$$
. [3]

- 5. In this question, R is an integral domain.
 - (a) Define what is meant by a valuation on R, and what is meant by a Euclidean valuation. [4]
 - (b) Define what it means for R to be a principal ideal domain (abbreviated PID), and what it means for R to be a Euclidean domain. [2]
 - (c) Show that if R is a Euclidean domain then R is a PID. [4]
 - (d) Suppose that R is a PID and S is a subring of R containing 1_R . Is S necessarily a PID? Give a proof or counterexample. [2]
 - (e) Suppose that R is a PID and I is a prime ideal of R, with $I \neq R$. Is the quotient ring R/I necessarily a PID? Give a proof or counterexample. [3]
 - (f) By considering the ring $\mathbb{R}[x,y]$, or otherwise, give an example of a valuation that is not a Euclidean valuation. [3]

- 6. In this question, G is a group.
 - (a) Suppose that $S \subseteq G$ is a subset. Say, in terms of elements, what is meant by the subgroup $\langle S \rangle$ generated by S.
 - (b) Show that $\langle S \rangle$ is equal to the intersection of all subgroups of G that contain S. [3]
 - (c) Is it true that if S_1 and S_2 are subsets of G then $\langle S_1 \cap S_2 \rangle = \langle S_1 \rangle \cap \langle S_2 \rangle$? Give a proof or a counterexample.
 - (d) Suppose that $S \subseteq G$ and $gSg^{-1} \subseteq S$ for all $g \in G$. Does it follow that $\langle S \rangle$ is a normal subgroup of G? Give a proof or a counterexample. [3]
 - (e) If $a, b \in G$ then the *commutator* of a and b, denoted [a, b], is the element

$$[a,b] = aba^{-1}b^{-1} \in G.$$

Let $C \subseteq G$ be the set of all commutators, i.e. $C = \{[a,b] \mid a,b \in G\}$. Show that the *derived subgroup* $G' = \langle C \rangle$ is a normal subgroup of G and that G/G' is abelian.

(f) What is the derived subgroup of the symmetric group S_n , for $n \geq 3$? Justify your answer briefly. [Hint: compute some commutators, and remember that every even permutation is a product of cycles of length 3.] [4]