
Cody Johnson Algorithms 1

Algorithms
An algorithm is a set of steps to perform a procedure. For example, the number guessing game is a game
in which your opponent thinks of a integer n on an interval [a, b], and you try to guess his number with the
rule that after every guess he must tell you if your guess was correct, too high, or too low. An algorithm to
win this game (in at most blog2(b− a+ 1)c guesses, too) is the binary search algorithm:

1 If a = b, then you are done. Otherwise, guess g =
⌊
a+b

2
⌋
.

2 If g = n, then you are done. If g > n, then perform this algorithm on the interval [a, g−1]. If g < n,
then perform this algorithm on the interval [g + 1, b].

As we will see, algorithms are a very powerful technique in advanced Olympiad problems, especially
given recent IMO trends. In fact, algorithms can be used to prove some of the hardest IMO combinatorics
problems ever. In this article, we will discuss greedy algorithms, reduction algorithms, and invariants and
monovariants. Some indicators that an algorithm may solve a problem include:

1. A procedure or operation is given. An algorithm would be a helpful organization of a set of allowed
steps. Example:

Example 1.1 (USAMO 2003). At the vertices of a regular hexagon are written six nonnegative
integers whose sum is 20032003. Bert is allowed to make moves of the following form: he may pick
a vertex and replace the number written there by the absolute value of the difference between the
numbers written at the two neighboring vertices. Prove that Bert can make a sequence of moves,
after which the number 0 appears at all six vertices.

2. You seek a construction. An algorithm is a powerful method to construct a configuration satisfying
some given conditions. Example:

Example 1.2. Let ∆ be the maximum degree of the vertices of a given graph. Devise a method
to color this graph using at most ∆ + 1 colors such that no two neighboring vertices are of the
same color.

3. A complex object or configuration is given that you want to reduce. Example:

Example 1.3 (USAMTS 2015). A finite set S of unit squares is chosen out of a large grid of
unit squares. The squares of S are tiled with isosceles right triangles of hypotenuse 2 so that
the triangles do not overlap each other, do not extend past S, and all of S is fully covered by
the triangles. Additionally, the hypotenuse of each triangle lies along a grid line, and the vertices
of the triangles lie at the corners of the squares. Show that the number of triangles must be a
multiple of 4.

4. You are looking to represent all positive integers n in some given form. Often you are able to represent
the items greedily. Example:

Example 1.4 (Zeckendorf’s Theorem). Prove that every positive integer can be written uniquely
as the sum of one or more Fibonacci numbers, no two of which are consecutive Fibonacci numbers.

5. You are packing anything. Often you are able to pack the items greedily.

France IMO Training Camp 2015

2 Algorithms Cody Johnson

Example 1.5 (Germany 2000). There are stones with a total mass of 9 tons that should be
transported by trucks. None of the stones is heavier than 1 ton and each vehicle has a capacity
of 3 tons.
Determine the minimum number of necessary trucks such that the stones can be transported at
the same time for sure.

6. You are looking for a winning strategy. A winning strategy is, by definition, an algorithm to ensure a
player of winning a game. Example:

Example 1.6 (Netherlands 2014). Let n be a positive integer. Daniel and Merlijn are playing
a game. Daniel has k sheets of paper lying next to each other on a table, where k is a positive
integer. On each of the sheets, he writes some of the numbers from 1 up to n (he is allowed to
write no number at all, or all numbers). On the back of each of the sheets, he writes down the
remaining numbers. Once Daniel is finished, Merlijn can flip some of the sheets of paper (he is
allowed to flip no sheet at all, or all sheets). If Merlijn succeeds in making all of the numbers
from 1 up to n visible at least once, then he wins. Determine the smallest k for which Merlijn can
always win, regardless of Daniel’s actions.

We will come back to actually solving these example problems.

Greedy Algorithms
The greedy algorithm is an algorithm that chooses the optimal choice in the short run. A classical
example of this is the change-making problem: given a set S of coin denominations, what is the smallest
amount of coins it takes to make a given amount of money M? When S = {1, 5, 10, 25}, the United States
denominations, we can always apply a greedy algorithm to construct the optimal solution:

1 Append the largest element x ∈ S such that x ≤M to the solution set.

2 Apply the algorithm again on M − x.

For example, if we wanted to construct M = 91, we would first append 25, then apply the algorithm
again on 91 − 25 = 66. Then we would append 25, apply it again on 66 − 25 = 41, append 25, apply it
again on 41 − 25 = 16, append 10, apply it again on 16 − 10 = 6, append 5, apply it again on 6 − 5 = 1,
and append 1 to finish. This gives the set (25, 25, 25, 10, 5, 1). It can be seen that for S = {1, 5, 10, 25},
this algorithm produces the optimal solution. However, note that a greedy algorithm does not always give
the optimal solution. If S = {1, 3, 4} and M = 6, then the greedy algorithm would give (4, 1, 1) when (3, 3)
works and is minimal.

Example 2.1 (Binary Number System). Prove that every positive integer can be written uniquely as
the sum of one or more distinct powers of 2.

First, we show that each integer has a representation by using a greedy algorithm. Choose the largest
power of 2, call it 2k, such that 2k ≤ n. If n = 2k, then we are already done. Otherwise, we perform the
algorithm on n − 2k. Since the powers of 2 have to be distinct, we would have to show that n − 2k < 2k.
However, we already know this to be true, as n < 2k+1 from the maximality of k.

Our algorithm devised a method to find the representation of a number. However, when we write our
proof, we would use strong induction. As a base case, 1 = 20. Assume for all 1 ≤ n < 2k, for some
k ≥ 1, each n has a representation; we will prove the proposition for all 1 ≤ n < 2k+1. We know that on the

France IMO Training Camp 2015

Cody Johnson Algorithms 3

interval 1 ≤ n < 2k, the representation has largest term at most 2k−1. Adding 2k to each n on this interval,
we find a representation for all 1 + 2k ≤ n < 2k + 2k = 2k+1. Additionally, n = 2k is its own representation.
Therefore, our proposition holds for all 1 ≤ n < 2k+1, so we are done.

To show that this representation is unique, at each step in the induction we have to show that each
2k ≤ n < 2k+1 must have a term of 2k in its representation. Assuming the contrary, each of these has
representation with sum at most n ≤ 20 + 21 + · · ·+ 2k−1 = 2k − 1 < n, which is a contradiction.

Here is an extension of the techniques in the first problem:

Example 2.2 (Zeckendorf’s Theorem). Prove that every positive integer can be written uniquely as
the sum of one or more Fibonacci numbers, no two of which are consecutive Fibonacci numbers.

We will use a greedy algorithm to find a representation. Let Fk be the largest Fibonacci number less
than n. Then we will reduce it to n − Fk, but we have to show that Fk−1 > n − Fk in order to have the
non-consecutive property. However, this is true because n < Fk + Fk−1 = Fk+1 from the maximality of k.

Now we use strong induction formalize the proof. As a base case, 1 = F1. Assume for all 1 ≤ n < Fk, for
some k ≥ 3, each n has a representation; we will prove the proposition for all 1 ≤ n < Fk+1. First, n = Fk is
obviously representable. On the interval 1 ≤ n < Fk−1, the largest term in the representation must be Fk−2,
so adding Fk to each term of this interval to find a representation for 1 +Fk < n+Fk < Fk−1 +Fk = Fk+1.
Therefore, we’re done.

For the purpose of this article, we need not show that this representation is unique. It is a fun bonus
problem, though.

Here is another basic example of a greedy algorithm:

Example 2.3. Let ∆ be the maximum degree of the vertices of a given graph. Devise a method to
color this graph using at most ∆ + 1 colors such that no two neighboring vertices are of the same color.

We shall use the following greedy algorithm: for each vertex, we shall color it with any color that has
not been used by any of its neighbors. Since each vertex has at most ∆ neighbors, at least one of the ∆ + 1
colors has not been used, so such a color will always exist. Thus, we are done.

Now we will look at some harder Olympiad problems involving greedy algorithms:

Example 2.4. Let A1, A2, . . . , An be subsets of {1, 2, . . . , n} of size 3. Prove that
⌊
n
3
⌋
members of

{1, 2, . . . , n} can be colored such that each Ai has at least 1 member that is not colored.

There is no condition that each set needs a colored number in it. We may want to reword the problem
so that we can work backwards: Let A1, A2, . . . , An be subsets of {1, 2, . . . , n} of size 3. Prove that

⌈ 2n
3
⌉

members of {1, 2, . . . , n} can be colored such that each Ai has at least 1 member that is colored.
Why not try a greedy approach? Let A be the set of sets among A1, A2, . . . , An without any colored

elements at any given moment. At each step, we want to color the number that appears the most in A to
reduce |A| by as much as possible.

Suppose that after x applications of this algorithm, all elements of A become disjoint. Then the algorithm
would terminate after x + |A| applications in total. However, note that x ≤ n

2 because each application
removes at least 2 sets, and |A| ≤ n−x

3 because there are n − x numbers remaining to be partitioned into
disjoint sets of size 3. Therefore,

x+ |A| ≤ x+ n− x
3 = n

3 + 2x
3 ≤

n

3 + n

3 = 2n
3

which implies the algorithm terminates in at most
⌈ 2n

3
⌉
applications, so we are done.

France IMO Training Camp 2015

4 Algorithms Cody Johnson

Example 2.5 (IMO 1983). Is it possible to choose 1983 distinct positive integers, all less than or equal
to 100, 000, no three of which are consecutive terms of an arithmetic progression?

Here is some intuition behind the problem: the number 100, 000 seems irrelevant and arbitrarily large, so
it would make us think that we could do it for smaller values and extend it. We know that we should
definitely should start by constructing small sequences using a greedy approach.

We start with the sequence 1, 2. 3 cannot be added because of 1 → 2 → 3, so we add 4. We add 5. 6
cannot be added because of 2→ 4→ 6, 7 cannot be added because of 3→ 5→ 7, 8 cannot be added because
of 2 → 5 → 8, and 9 cannot be added because of 1 → 5 → 9. We add 10. We add 11. We cannot add 12
because of 10 → 11 → 12. We add 13. We add 14. The next number is all the way at 28. Eventually, we
get the sequence {1, 2, 4, 5, 10, 11, 13, 14, 28, 29}. We should analyze when gaps appear, like 2 → 4, 5 → 10
and 14 → 28. One striking observation is that the sequence of numbers after a gap is 4 → 10 → 28. That
is just 31 + 1 → 32 + 1 → 33 + 1. Now we know that 3 is important in this problem, specifically powers
of 3. This suggests us considering our construction in base 3, but then subtracting 1 from each term. Our
construction is thus 1 + {0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}. With
this construction from our original greedy algorithm, we have practically solved the problem.

Consider the set S of all base 3 numbers less than 100, 000 whose digits are just 0 and 1. We assert that
no three distinct numbers x, y, z ∈ S satisfy (1 + y) − (1 + x) = (1 + z) − (1 + y), or x + z = 2y. Indeed,
the digits of 2y must be only 0s and 2s. The sum of any two corresponding digits of x and z can either be
0, 1, 2, which occurs when they are (0, 0), (0, 1), or (1, 1), respectively. Thus, since 1 cannot appear as a digit
of x + z, we cannot have any two corresponding digits of x and z differ. Thus, x = z, which is impossible
because x and z distinct. This proves our claim.

Finally, we must show that |S| ≥ 1983. Note that 1 + 111111111113 < 100, 000, and there are 211 =
2048 > 1983 elements of S less than or equal to 1 + 11111111111. Hence, we are done.

In fact, if we were to replace 100, 000 with N , this greedy approach gives a sequence of size O
(
N log3 2).

This has been improved to N−
√

8 ln 2 lnN(1+o(1)) with Behrend’s construction.

Example 2.6 (Russia 2005). In a 2×n array, we have positive reals such that the sum of the numbers
in each of the n columns is 1. Show that we can select one number in each column such that the sum
of the selected numbers in each row is at most n+1

4 .

We could start by just selecting just the smallest number in each column. However, what if the smaller
numbers always occurred in the same row? Indeed, we find that this greedy algorithm fails if we have

0.4 0.4 0.4 . . . 0.4
0.6 0.6 0.6 . . . 0.6

because the sum in the top row would be 0.4n which will eventually be greater than 0.25n+ 0.25. But,
if we could refine this technique so it would work for both of the rows at the same time, we would be done.
We somehow want to select the smallest numbers from one row and the smallest numbers from the other
row. We can do this by changing the order of the columns such that one row is in non-decreasing order
while the other row is in non-increasing order: let a1, a2, . . . , an be the numbers in the top row such that
a1 ≤ a2 ≤ · · · ≤ an.

a1 a2 a3 . . . an
1− a1 1− a2 1− a3 . . . 1− an

Choose the largest value of i such that a1 + a2 + · · ·+ ai ≤ n+1
4 . We want to show that

n+ 1
4 ≥ (1− ai+1) + (1− ai+2) + · · ·+ (1− an) = (n− i)− (ai+1 + ai+2 + · · ·+ an)

or

France IMO Training Camp 2015

Cody Johnson Algorithms 5

ai+1 + ai+2 + · · ·+ an ≥
3n− 1

4 − i

Since a1 ≤ a2 ≤ · · · ≤ ai+1, we have

a1 + a2 + · · ·+ ai+1

i+ 1 ≤ ai+1

and since ai+1 ≤ ai+2 ≤ · · · ≤ an, we have

ai+1 + ai+2 + · · ·+ an
n− i

≥ ai+1

Combining the two, we get

ai+1 + ai+2 + · · ·+ an
n− i

≥ a1 + a2 + · · ·+ ai+1

i+ 1

so

ai+1 + ai+2 + · · ·+ an ≥ (n− i) · a1 + a2 + · · ·+ ai+1

i+ 1 > (n− i) ·
n+1

4
i+ 1

from the maximality of i. Finally, we need to show that n−i
i+1

n+1
4 ≥ 3n−1

4 − i. This rearranges to
(n− 1)2 ≥ 4i(n− i− 1) which follows from AM-GM on 2

√
i(n− i− 1) ≤ i+ (n− i− 1) = n− 1, so we are

done.
Finally, we will end on a greedy algorithm problem that appeared on the IMO 2014.

Example 2.7 (IMO 2014). A set of lines in the plane is in general position if no two are parallel and
no three pass through the same point. A set of lines in general position cuts the plane into regions,
some of which have finite area; we call these its finite regions. Prove that for all sufficiently large n, in
any set of n lines in general position it is possible to colour at least

√
n lines blue in such a way that

none of its finite regions has a completely blue boundary.

Surely, we will devise an algorithm to color at least
√
n lines blue. Whenever you see lines in general

position, you should immediately think about the vertices formed by the intersection of two lines. Call two
such vertices adjacent if they lie on the same line and no other vertex on that line lies between them.

At each step in our algorithm, we are going to color a line blue; the hard part is determining when we
can color a line blue. A simple idea to do this is to mark some bad vertices such that we cannot color a
line blue if it passes through a marked vertex. So at each step in our algorithm, we are going to color a line
blue and then mark some bad vertices.

Which vertices should we mark after we color a line? Remember, we are marking vertices to ensure that
no finite region has an entirely blue boundary. This suggests that we should look at when two blue lines
intersect. When we color a line `, for each other blue line `′ it intersects, consider the intersection point X.
Furthermore, let A and B be the two adjacent vertices to X on `. There is a case in which one of these
points does not exist, but in this case we can just pick any arbitrary point on that side. Define C and D
analogously on `′. Let `A, `B , `C , and `D be the other lines passing through A, B, C, and D, respectively.
In the diagram below, a thick line represents a blue line:

France IMO Training Camp 2015

6 Algorithms Cody Johnson

X

CA

D B

` `′

`A `C

`D `B

A greedy approach would suggest marking as few points as possible to ensure that we would have no
entirely blue boundaries. Before guessing how to actually do the marking, we can check to see how many
vertices we can mark at most to get a tight enough bound. Suppose that our algorithm ends up coloring at
most k lines blue. Since we are going to be marking some of A, B, C, or D, each of which already has a
blue line passing through it, each marked vertex has exactly one uncolored line passing through it. Thus,
the number of marked vertices is at least the number of uncolored lines, n− k. If we mark at most m points
for each of the k intersections, the number of marked vertices is at most m

(
k
2
)
, so

m

(
k

2

)
= mk(k − 1)

2 ≥ n− k =⇒ n ≤ k(m(k − 1) + 2)
2

Keeping in mind that we want n ≤ k2, we see that at each step we can mark at most m = 2 points to
keep a tight enough bound. Now we know exactly what to look for! We just need to find an algorithm that
marks at most 2 vertices around each blue-blue intersection in a way that none of the finite regions have an
entirely blue boundary!

We know that each of AXD, DXB, BXC, and CXA is a part of a region (not necessarily finite). The
way to mark the fewest vertices while protecting each of these regions is most likely to mark the opposite
vertices like A and B or C and D. If any of the lines `A, `B , `C , or `D are blue, then we obviously should
not mark the vertex at its intersection. This leads us to one possible marking scheme: if `A and `B are both
uncolored, mark A and B and stop! If `C and `D are both uncolored, mark C and D and stop! Otherwise,
at least two of `A, `B , `C , and `D are blue, so just mark any of the other intersections that are not blue-blue,
which will be at most 2 points to mark. This algorithm ensures that there will be no finite regions with
entirely blue boundaries because there cannot be a step where an entirely blue boundary is created, so we
are done.

Although the greedy algorithm is one of the most basic types of algorithms, it can be used to tackle very
hard IMO problems. And even when we are not explicitly using a greedy algorithm in a proof, just knowing
how to think greedily can often give intuitive and elegant solutions. Despite their ability to frequently give
sufficient bounds, greedy algorithms are famous for not always working, so be careful when asserting that
greedy algorithms give optimal results.

Problems

Problem 2.1 (Germany 2000). There are stones with a total mass of 9 tons that should be transported
by trucks. None of the stones is heavier than 1 ton and each vehicle has a capacity of 3 tons.

Determine the minimum number of necessary trucks such that the stones can be transported at the
same time for sure.

Problem 2.2 (Factoradic Number System). Prove that for each positive integer n, there exists a set
of integers a1, a2, a3, . . . such that ai ≤ i for all i and

France IMO Training Camp 2015

Cody Johnson Algorithms 7

n = a1 · 1! + a2 · 2! + a3 · 3! + . . .

Bonus: Prove that this set is unique.

Problem 2.3 (Netherlands 2014). Let n be a positive integer. Daniel and Merlijn are playing a game.
Daniel has k sheets of paper lying next to each other on a table, where k is a positive integer. On each
of the sheets, he writes some of the numbers from 1 up to n (he is allowed to write no number at all, or
all numbers). On the back of each of the sheets, he writes down the remaining numbers. Once Daniel is
finished, Merlijn can flip some of the sheets of paper (he is allowed to flip no sheet at all, or all sheets).
If Merlijn succeeds in making all of the numbers from 1 up to n visible at least once, then he wins.
Determine the smallest k for which Merlijn can always win, regardless of Daniel’s actions.

Problem 2.4 (IMOSL 2001, generalised). A set of three nonnegative integers {x, y, z} with x < y < z
is called historic if {z − y, y − x} = {a, b} for 0 < a < b. Show that the set of all nonnegative integers
can be written as the union of pairwise disjoint historic sets.

Problem 2.5 (Math Prize for Girls 2010). Let S be a set of n points in the coordinate plane. Say that
a pair of points is aligned if the two points have the same x-coordinate or y-coordinate. Prove that S
can be partitioned into disjoint subsets such that (a) each of these subsets is a collinear set of points,
and (b) at most n3/2 unordered pairs of distinct points in S are aligned but not in the same subset.

Problem 2.6 (IMOSL 2013). Let n be an positive integer. Find the smallest integer k with the
following property; Given any real numbers a1, · · · , ad such that a1 + a2 + · · ·+ ad = n and 0 ≤ ai ≤ 1
for i = 1, 2, · · · , d, it is possible to partition these numbers into k groups (some of which may be empty)
such that the sum of the numbers in each group is at most 1.

Problem 2.7 (IMO 2014). For each positive integer n, the Bank of Cape Town issues coins of denom-
ination 1

n . Given a finite collection of such coins (of not necessarily different denominations) with total
value at most most 99 + 1

2 , prove that it is possible to split this collection into 100 or fewer groups, such
that each group has total value at most 1.

Invariants and Monovariants

Example 3.1 (USAMO 1999). Let a1, a2, . . . , an (n > 3) be real numbers such that

a1 + a2 + · · ·+ an ≥ n and a2
1 + a2

2 + · · ·+ a2
n ≥ n2

Prove that max{a1, a2, . . . , an} ≥ 2.

France IMO Training Camp 2015

8 Algorithms Cody Johnson

Assume for the sake of contradiction that a1, a2, . . . , an < 2. We will use an algorithm that keeps
sn = a1 + a2 + · · · + an invariant and increases tn = a2

1 + a2
2 + · · · + a2

n. For each 1 ≤ i ≤ n − 1, in order,
perform the following:

1 Let u = ai and v = ai+1.

2 Replace ai with 2 and ai+1 with u+ v − 2.

Clearly, this algorithm preserves sn. Since ai increases from ai < 2 to ai = 2, ai+1 is decreased. This
ensures that at each step, ai+1 < 2. Furthermore, at each step, we have

a2
i + a2

i+1 − u2 − v2 = 22 + (u+ v − 2)2 − u2 − v2 = 2(2− u)(2− v) > 0
so tn strictly increases. At the end of the algorithm, tn > n2 because of the strict increase. Furthermore,

an = sn − 2(n− 1) ≥ n− 2(n− 1) = −n+ 2, so a2
n ≤ (n− 2)2 = n2 − 4n+ 4. Finally, we must have

n2 < tn = 22 · (n− 1) + n2 − 4n+ 4 = n2

which is a contradiction.

Example 3.2 (USAMO 2003). At the vertices of a regular hexagon are written six nonnegative integers
whose sum is 20032003. Bert is allowed to make moves of the following form: he may pick a vertex and
replace the number written there by the absolute value of the difference between the numbers written
at the two neighboring vertices. Prove that Bert can make a sequence of moves, after which the number
0 appears at all six vertices.

Clearly these numbers are huge, so we need some way of reducing them. Modulo 2 works quite nicely.
Let (a1, a2, . . . , a6) be the numbers on the hexagon:

a3

a2a1

a6

a5 a4

The key observation is that the given operation cannot increase the maximum of a configuration. Our
algorithm will work in two steps: first, show that any hexagon with an odd sum can turn into

0

01

0

0 0

modulo 2. Second, show that such a hexagon can turn into another hexagon with an odd sum and a
smaller maximum (or all zeros). For the first part, we have four cases (symmetrically):

1

01

0

1 0

→ 0

01

0

0 0

1

11

1

1 0

→ 1

01

0

1 0

0

11

1

0 0

→ 0

10

1

0 0

→ 0

10

0

0 0

France IMO Training Camp 2015

Cody Johnson Algorithms 9

0

01

1

0 1

→ 0

11

1

0 0

So we can assume a1 is odd and a2, . . . , a6 are even. Now we look at where the maximum m is on the
hexagon. When m is even, consider the sequence of moves at a2, a3, . . . , a6 in order. Modulo 2, that is:

0

01

0

0 0

→ 0

11

0

0 0

→ 1

11

0

0 0

→ 1

11

0

0 1

→ 1

11

0

1 1

→ 1

11

0

1 1

It preserves an odd sum. If m = a2, a3, . . . , a5, then it was replaced by an odd number, so it must have
decreased. If m = a6, then note that the difference between its neighbors at the fifth step must be strictly
less than m because m is maximal.

Now consider when m is odd, or m = a1. If a3 > 0 then move at a2, a6, a1, and a6 in order. Modulo 2,
that is

0

01

0

0 0

→ 0

11

0

0 0

→ 0

11

1

0 0

→ 0

10

1

0 0

→ 0

10

0

0 0

Since a′2 = |m− a3| < m, the maximum has reduced. Otherwise, by symmetry, a3 = a5 = 0, so perform
the following:

0

a2a1

a6

0 a4

→ 0

a1a1

a1

0 0

→ 0

a10
a1

0 0

→ 0

00

0

0 0

Example 3.3 (IMOSL 1994). Peter has three accounts in a bank, each with an integral number of
dollars. He is only allowed to transfer money from one account to another so that the amount of money
in the latter is doubled. Prove that Peter can always transfer all his money into two accounts. Can
Peter always transfer all his money into one account?

1. Let the accounts have 0 < A ≤ B ≤ C dollars each. We want min{A,B,C} = 0 at some point, so we
should try to create an algorithm to strictly decrease the value of min{A,B,C}.
Consider (A,B,C) = (7, 39, 52). The first thought is to take (7, 39, 52) → (14, 25, 52) → (28, 11, 52),
but we see that it quickly fails. We want the steps that ensure we can donate the most of B to A.
Instead, we could take (7, 39, 52)→ (14, 32, 52)→ (28, 32, 38)→ (56, 4, 38).
We can try some other random ones, like (9, 50, 125) → (18, 41, 125) → (36, 5, 125) or (15, 29, 61) →
(30, 14, 61). One observation we see is that if B ≤ 2A, then the lowest we can go is (A,B,C) →
(2A,B − A,C). Going one level deeper in complexity, on the interval 2A ≤ B ≤ 4A, we have two
cases: 2A ≤ B ≤ 3A gives (A,B,C) → (2A,B,C − A) → (4A,B − 2A,C) and 3A ≤ B ≤ 4A gives
(A,B,C)→ (2A,B−A,C)→ (4A,B− 3A,C). One could naturally expect that on 4A ≤ B ≤ 8A, we
would need to split this interval into 4 smaller ones. In fact, drawing a binary tree, we can come up
with the following table for some small values:

interval minimum
[A, 2A] B −A
[2A, 3A] B − 2A
[3A, 4A] B − 3A
[4A, 5A] B − 4A
[5A, 6A] B − 5A
[6A, 7A] B − 6A
[7A, 8A] B − 7A

France IMO Training Camp 2015

10 Algorithms Cody Johnson

The pattern here is clear: we need to prove that B can be reduced to B (mod A). Since we are dealing
with powers of 2, we should look at the binary representation of some numbers specifically involving
B (mod A). In the case of (7, 39, 52), we have 39 = 7 · 5 + 4 = 111 · 101 + 100. The corresponds with
removing first from B, then from C, then from B, somewhat reminiscent of the number 101.
In fact, letting B = mA + n, we assert that the following algorithm will reduce B to B (mod A):
consider m = mkmk−1 . . .m1m0 when written in binary. Then at the ith step, for 0 ≤ i ≤ k, take from
B if mi = 1 and take from the C if mi = 0. This is easy to prove because at the beginning of the ith
step, there are 2iA dollars in the first account. Thus, after the ith step, we subtract 2imiA from B.
After the k + 1 steps, the second account has B − (20m0 + 21m1 + · · ·+ 2kmk) = B −mA = n. Since
n = B (mod A), we are done.

2. If the accounts have an odd sum, then the final account cannot be doubled, so the answer is no.

Problems

Problem 3.1 (IMOSL 1989). A natural number is written in each square of an m×n chess board. The
allowed move is to add an integer k to each of two adjacent numbers in such a way that non-negative
numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and
sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.

Problem 3.2 (China Girls Math Olympiad 2011). There are n boxes B1, B2, . . . , Bn from left to right,
and there are n balls in these boxes.

1. If there is at least 1 ball in B1, we can move one to B2.

2. If there is at least 1 ball in Bn, we can move one to Bn−1.

3. If there are at least 2 balls in Bk, 2 ≤ k ≤ n− 1 we can move one to Bk−1, and one to Bk+1.

Prove that, for any arrangement of the n balls, we can achieve that each box has one ball in it.

Problem 3.3 (MEMO 2008). On a blackboard there are n ≥ 2, n ∈ Z+ numbers. At each step, we
select two numbers from the blackboard and replace both of them by their sum. Determine all numbers
n for which it is always possible to yield n identical numbers after a finite number of steps.

Problem 3.4 (IMOSL 2013). A crazy physicist discovered a new kind of particle wich he called an
imon, after some of them mysteriously appeared in his lab. Some pairs of imons in the lab can be
entangled, and each imon can participate in many entanglement relations. The physicist has found a
way to perform the following two kinds of operations with these particles, one operation at a time.

1. If some imon is entangled with an odd number of other imons in the lab, then the physicist can
destroy it.

2. At any moment, he may double the whole family of imons in the lab by creating a copy I ′ of
each imon I. During this procedure, the two copies I ′ and J ′ become entangled if and only if the
original imons I and J are entangled, and each copy I ′ becomes entangled with its original imon
I; no other entanglements occur or disappear at this moment.

France IMO Training Camp 2015

Cody Johnson Algorithms 11

Prove that the physicist may apply a sequence of much operations resulting in a family of imons, no
two of which are entangled.

Reduction Algorithms

Algorithms can be used to reduce a complex configuration to a simple one while preserving its combinatorial
function in the problem.

Example 4.1 (Cody Johnson). Consider an ordered set S of 6 integers. A move is defined by the
following rule: for each element of S, add either 1 or −1 to it. Show that there exists a finite sequence
of moves such that the elements of the resulting set, S ′ = (n1, n2, . . . , n6), satisfy n1n5n6 = n2n4n6 =
n3n4n5.

The problem is that the elements of S could be anything, so n1n5n6 = n2n4n6 = n3n4n5 could be
anything! If there were a way to reduce the possibilities to a small number, it would be helpful...

We see that any set of integers can be reduced to a set with elements only being 0, 1. We see this is
true by the following algorithm: fix one element e and reduce it to zero by applying a sufficient number
of moves. Then, to reduce another term, we will apply either an odd or even number of moves. If it is
an even number of moves, apply e + (1 − 1) + (1 − 1) + · · · = 0. If it is an odd number of moves, apply
e + 1 + (1 − 1) + (1 − 1) + · · · = 1. Thus, we can reduce the other elements of the set while preserving the
first element. Therefore, we only need to consider sets with elements in {0, 1}. Therefore, n1n5n6, n2n4n6,
and n3n4n5 are either 0 or 1.

Finally, after using the algorithm to reduce the problem, we can tackle the easy problem. Assume for the
sake of contradiction that not all three of the products is equal. This means at least one of n1, n2, . . . , n6 is
equal to 0, otherwise each of the products would be 1.

If n4 = 0, then n1 = n5 = n6 = 1. Then we could just perform the operation once to get n4 = 1,
n1 = n5 = n6 = 0 in which case n1n5n6 = n2n4n6 = n3n4n5 = 0. The cases of n5, n6 = 0 can be handled
similarly.

If n1 = 0, then we must have either n2 = n4 = n6 = 1 or n3 = n4 = n5 = 1. In both cases, we have
n4 = 1, and either n6 = 1 or n5 = 1. Therefore, perform the operation to get n1 = 1 and n4 = n6 = 0
or n4 = n5 = 0, in which case n1n5n6 = n2n4n6 = n3n4n5 = 0. The cases of n2, n3 = 0 can be handled
similarly. Therefore, we are done.

Example 4.2 (USAMTS 2015). A finite set S of unit squares is chosen out of a large grid of unit
squares. The squares of S are tiled with isosceles right triangles of hypotenuse 2 so that the triangles do
not overlap each other, do not extend past S, and all of S is fully covered by the triangles. Additionally,
the hypotenuse of each triangle lies along a grid line, and the vertices of the triangles lie at the corners
of the squares. Show that the number of triangles must be a multiple of 4.

First, we can reduce the problem to only connected cycles. This is easy to see because if a connected
cycle has 0 triangles modulo 4, then the union of some connected cycles also has 0 triangles modulo 4. Let’s
draw one example cycle:

France IMO Training Camp 2015

12 Algorithms Cody Johnson

One could try counting the number of times a triangle is pointed in each direction, but that only gives
that the total is even. One could try looking at the way each triangle is pointed in the cycle, how each
orientation moves is a step up, down, left, or right. These become hard to count and manipulate.

An immediate idea is to use an algorithm to reduce each cycle in total number of triangles while preserving
its size modulo 4. From our drawing, some certain parts of the cycle look “easy" to reduce:

Each of the circled regions seems “out of place." We are reassured that this approach seems right because
we can reduce them while preserving the size of the cycle modulo 4. Resolving the circled regions, the cycle
reduces to:

which looks much simpler, yet has the same size modulo 4. Although this worked for this configuration,
we need to examine what we actually did in order to formalize our algorithm. In two of the three regions,
we took a region in the form of

and reduced it to

France IMO Training Camp 2015

Cody Johnson Algorithms 13

This seems lucrative, so let us ignore the third case we reduced. We show that every connected cycle of
positive size has a region Rn of n + (n − 1) + 2 = 2n + 1 triangles in the configured as shown in the below
diagram:

· · ·

Indeed, if it did not have such a region, it would either be a line or would contain the following region:

· · ·

· · ·

· · ·

...

...

both of which contradict the finiteness of a cycle. Thus, each cycle has such a region.
First, if n = 1, then we have the region

which is either the obviously reducible

or the less obviously reducible

→ →

both decreasing the cycle’s size by 4. If the region is in the form of

· · ·

then it must also be in the form of

· · ·

Hence, we can remove the five leftmost triangles and add one to get

· · ·

reducing the cycle’s size by a net 4 triangles. Symmetrically, we only need to consider one more case:

France IMO Training Camp 2015

14 Algorithms Cody Johnson

· · ·
B

A

C

D

If there is another step of the cycle in rectangle ABCD, then the cycle must cross line AD. Therefore,
there would be another smaller Rn in ABCD. Hence, we can assume without loss of generality that there
are no other steps of the cycle in ABCD, otherwise we would choose the other smaller region to work with.
Finally, we reduce the region by removing the four steps with hypotenuses parallel to AB and CD to get

· · ·

which also reduces the cycle by 4. We have shown that this algorithm can always be applied if the cycle
has a positive size. Noting that cycles of length 1 to 3 do not completely tile a region of unit squares, we
are done because the only residue modulo 4 that the size of a cycle can take is 0. This algorithm reduced a
large, complex family of cycles to just one case that was easy to solve.

Example 4.3 (China 2010). There are some finite number of cards placed at the points A1, A2, . . . , An
and O, where n ≥ 3. We can perform one of the following operations in each step:

1. If there are more than 2 cards at some point Ai, we can remove 3 cards from this point and place
one each at Ai−1, Ai+1, and O. Note that indices are taken modulo n.

2. If there are at least n cards at O, we can remove n cards from O and place one each at
A1, A2, . . . , An.

Show that the if total number of cards is at least n2 + 3n+ 1, we can make the number of cards at
each vertex at least n+ 1 after finitely many steps.

The problem with this question is we have no idea how many cards are on each vertices. Fortunately,
through the algorithm, we can control the number of cards on each vertex. Indeed, we can always apply the
first operation until each vertex has at most 2 cards. The center must have at least n2+3n+1−2n = n2+n+1
cards in it.

However, once we do this, we are stuck. And when we are stuck, we should try the only thing that works!
Applying the second algorithm, each vertex has either 1, 2, or 3 cards. So we will count the number of each
occurrence: let there be a vertices with 1 card, b with 2, and c with 3. We have a+ b+ c = n, so the center
must have at least

n2 + 3n+ 1− (a+ 2b+ 3c) = n2 + 3n+ 1− (2n− a+ c) = n2 + n+ 1 + a− c

cards. Once we apply the second operation n times, each vertex will have at least n + 1 cards and the
center will have at least n2 + n + 1 + a − c − n2 = n + 1 + a − c cards. Therefore, it suffices to prove that
a ≥ c... or force the inequality to be true! One way to do this is by showing that between any two 3s, there
is at least one 1, but there is a problem when the 3s are consecutive.

Fortunately this problem is easily resolved; here is an algorithm to ensure that there are no consecutive
3s: consider a string x, 3, 3, . . . , 3, y where x, y 6= 3. Applying the first operation on the 3s from right to left,
we get x+ 1, 1, 2, 2, . . . , 2, 1, y + 1. Since we can do this on all chains of consecutive 3s, we can always reach
a state with no consecutive 3s.

Finally, we can use another algorithm to eliminate all chains of x, 3, 2, 2, . . . , 2, 3, y. Starting at the 3 and
moving to the right, apply the first operation to get x+ 1, 1, 1, . . . , 1, y+ 1. x+ 1, y+ 1 ≤ 3 from the above,
so this algorithm ensures that there is a 1 between any two 3s. Hence, a ≥ c so we are done.

Problems

France IMO Training Camp 2015

Cody Johnson Algorithms 15

Problem 4.1 (United Kingdom 2011). Initially there are m balls in one bag, and n in the other, where
m,n > 0. Two different operations are allowed:

1. Remove an equal number of balls from each bag

2. Double the number of balls in one bag.

Is it always possible to empty both bags after a finite sequence of operations? Operation 2 is now
replaced with “Triple the number of balls in one bag." Is it now always possible to empty both bags
after a finite sequence of operations?

Problem 4.2 (IMO 2010). Each of the six boxes B1, B2, B3, B4, B5, B6 initially contains one coin.
The following operations are allowed

1. Choose a non-empty box Bj , 1 ≤ j ≤ 5, remove one coin from Bj and add two coins to Bj+1;

2. Choose a non-empty box Bk, 1 ≤ k ≤ 4, remove one coin from Bk and swap the contents (maybe
empty) of the boxes Bk+1 and Bk+2.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes
B1, B2, B3, B4, B5 become empty, while box B6 contains exactly 201020102010 coins.

Problem 4.3 (IMO 2007). In a mathematical competition some competitors are friends. Friendship is
always mutual. Call a group of competitors a clique if each two of them are friends. (In particular, any
group of fewer than two competitiors is a clique.) The number of members of a clique is called its size.

Given that, in this competition, the largest size of a clique is even, prove that the competitors can
be arranged into two rooms such that the largest size of a clique contained in one room is the same as
the largest size of a clique contained in the other room.

France IMO Training Camp 2015

16 Algorithms Cody Johnson

Solutions to Problems

Problem 2.1 (Germany 2000). There are stones with a total mass of 9 tons that should be transported
by trucks. None of the stones is heavier than 1 ton and each vehicle has a capacity of 3 tons.

Determine the minimum number of necessary trucks such that the stones can be transported at the
same time for sure.

Consider 10 stones of mass 0.9 each; clearly these cannot be packed into 3 trucks. Place stones on the
truck using a greedy algorithm, noticing that each truck can be packed with greater than 2 tons else we can
pack more. Therefore, the mass on the first three trucks is greater 6, meaning the remaining mass of less
than 3 tons can be packed on the fourth truck. Thus the answer is 4.

Problem 2.2 (Factoradic Number System). Prove that for each positive integer n, there exists a set
of integers a1, a2, a3, . . . such that ai ≤ i for all i and

n = a1 · 1! + a2 · 2! + a3 · 3! + . . .

Bonus: Prove that this set is unique.

We will use a greedy algorithm to find a representation. Let ak−1(k − 1)! < n < k!, with ak−1 maximal.
Then we will reduce it to n− ak−1(k − 1)!, but we have to show that n− ak−1(k − 1)! < (k − 1)!. However,
this is true because n < ak−1(k − 1)! + (k − 1)! ≤ (k − 1)(k − 1)! + (k − 1)! = k! from the maximality of k.

Now we use strong induction formalize the proof. As a base case, 1 = 1 ·1!. Assume for all 1 ≤ n < k!, for
some k ≥ 2, each n has a representation; we will prove the proposition for all 1 ≤ n < (k+1)!. We know that
on the interval 1 ≤ n < k!, the representation has largest term at most (k− 1)(k− 1)!. For each 1 ≤ ak ≤ k,
adding ak ·k! to each n on this interval, we find a representation for all 1+ak ·k! ≤ n < k!+ak ·k! = (ak+1)·k!.
Additionally, n = ak · k! is its own representation. Combining these disjoint intervals, our proposition holds
for all 1 ≤ n < ak · k! + k! ≤ k · k! + k! = (k + 1)!, so we are done.

To show that this representation is unique, at each step in the induction we have to show that each
k! ≤ n < (k+ 1)! must have a term of ak · k! in its representation. Assuming the contrary, each of these has
representation with sum at most n ≤ 1 · 1! + 2 · 2! + 3 · 3! + · · ·+ (k − 1) · (k − 1)! = k!− 1 < n, which is a
contradiction.

Problem 2.3 (Netherlands 2014). Let n be a positive integer. Daniel and Merlijn are playing a game.
Daniel has k sheets of paper lying next to each other on a table, where k is a positive integer. On each
of the sheets, he writes some of the numbers from 1 up to n (he is allowed to write no number at all, or
all numbers). On the back of each of the sheets, he writes down the remaining numbers. Once Daniel is
finished, Merlijn can flip some of the sheets of paper (he is allowed to flip no sheet at all, or all sheets).
If Merlijn succeeds in making all of the numbers from 1 up to n visible at least once, then he wins.
Determine the smallest k for which Merlijn can always win, regardless of Daniel’s actions.

On the first page, one side must have at least dn2 e numbers on it. Then perform this algorithm with k−1
pages and n−dn2 e = bn2 c numbers. Considering n in binary, bn2 c removes the units digit of n, so the number
of applications this algorithm takes to terminate is equal to the number of digits in the binary representation
of n, blog2 nc+ 1. Note: this algorithm is the binary search algorithm!

To finish, we need to find a construction that requires at least blog2 nc + 1 pages. It suffices to prove
that 2m requires m + 1 pages. For 1 ≤ i ≤ m, on the ith page, write on one side all of the numbers whose
ith digit in binary is 1 (where the units digit is the 1st digit). The chosen sides of these m cards must have
one number x in common whose digits correspond to which side was chosen on each card, so the number
2m − 1 − x whose digits are opposite to x is not on any of the sides. Note: if x = 2m, then we can take
2m − 1. Since one number is not on any of the sides, we require at least m+ 1 pages.

France IMO Training Camp 2015

Cody Johnson Algorithms 17

Problem 2.4 (IMOSL 2001, generalised). A set of three nonnegative integers {x, y, z} with x < y < z
is called historic if {z − y, y − x} = {a, b} for 0 < a < b. Show that the set of all nonnegative integers
can be written as the union of pairwise disjoint historic sets.

For each historic set {x, y, z} with x < y < z that we construct, color x red, y green, and z blue. Begin
with all nonnegative integers uncolored. We use the following algorithm to construct historic sets, coloring
each integer exactly once:

1 Consider the smallest uncolored number k.

2 If k + a is uncolored, construct the set {k, k + a, k + a + b} and color it accordingly. Otherwise,
construct the set {k, k + b, k + a+ b} and color it accordingly.

Now we show that it works. First, k + a + b must be initially uncolored because it is greater than all
other colored numbers.

Suppose that k + b is already colored. Then it cannot be red because it is greater than k. It cannot be
green because k + b− a, k + b− b ≥ k. If it were blue, then k + b− (a+ b) = k − a must be red. However,
since k was uncolored at that moment, our algorithm says that we must color k − a+ a = k. Therefore, we
have reached a contradiction, concluding our proof.

Problem 2.5 (Math Prize for Girls 2010). Let S be a set of n points in the coordinate plane. Say that
a pair of points is aligned if the two points have the same x-coordinate or y-coordinate. Prove that S
can be partitioned into disjoint subsets such that (a) each of these subsets is a collinear set of points,
and (b) at most n3/2 unordered pairs of distinct points in S are aligned but not in the same subset.

We will use induction on n. As a base case, n = 0 is trivial. Now assume that there are at most k3/2

pairs of aligned points in S is for all 0 ≤ k ≤ n− 1, for some positive integer n.
Consider the largest subset T of S whose points either all have the same x-coordinate or all have the

same y-coordinate (in fact, assume without loss of generality it is the same x-coordinate). Let t = |T |. For
each point P ∈ T , it is part of another set of size at most t with the same y-coordinate, so the number of
points in S\T aligned with some point in T is at most t · t = t2. But obviously this can only be at most n
pairs because that is the number of points in total. Therefore, it suffices to prove that

min{t2, n}+ (n− t)3/2 ≤ n3/2

If n ≤ t2, then

min{t2, n}+ (n− t)3/2 ≤ n+ (n−
√
n)3/2 ≤ n3/2

for n ≥ 4, or t ≥ 2. When t = 1, no two points are aligned, the problem statement clearly holds. If
n ≥ t2, then

min{t2, n}+ (n− t)3/2 ≤ t2 + (n− t2)3/2 ≤ n3/2

where the rightmost inequality can be seen from the fact that the inequality holds at n = t2 and the
right-hand side always grows faster than the left-hand side (since n3/2 is convex and the right-hand side is
its translation t2 units to the right and up).

Problem 2.6 (IMOSL 2013). Let n be an positive integer. Find the smallest integer k with the
following property; Given any real numbers a1, · · · , ad such that a1 + a2 + · · ·+ ad = n and 0 ≤ ai ≤ 1
for i = 1, 2, · · · , d, it is possible to partition these numbers into k groups (some of which may be empty)
such that the sum of the numbers in each group is at most 1.

France IMO Training Camp 2015

18 Algorithms Cody Johnson

Consider the set a1 = a2 = · · · = a2n−1 = n
2n−1 . We see that a1 + a2 + · · ·+ a2n−1 = (2n− 1) n

2n−1 = n,
and if any two are in the same group then it will have sum at least 2n

2n−1 > 1. Therefore, at least k = 2n− 1
groups are necessary.

Now suppose that we pack the numbers into as few groups as possible, say g1 ≤ g2 ≤ · · · ≤ gm. Then
gi + gj > 1 for all i, j, else we could combine the groups, reducing m. Furthermore, g1 + g2 + · · ·+ gm = n.
Thus,

2n = (g1 + g2) + (g2 + g3) + · · ·+ (gm + g1) > 1 + 1 + · · ·+ 1 = m

so m ≤ 2n− 1. The answer is 2n− 1 groups.

Problem 2.7 (IMO 2014). For each positive integer n, the Bank of Cape Town issues coins of denom-
ination 1

n . Given a finite collection of such coins (of not necessarily different denominations) with total
value at most most 99 + 1

2 , prove that it is possible to split this collection into 100 or fewer groups, such
that each group has total value at most 1.

Replace 100 with m and 99 + 1
2 with m − 1

2 . We are going to greedily put coins into the groups, so
we will have to make some improvements just to simplify the problem. There is at most 1 coin of
denomination 1

2k (otherwise combine them into one coin of denomination 1
2k + 1

2k = 1
k) and at most 2k coins

of denomination 1
2k+1 (otherwise combine them into one coin of denomination 1

2k+1 + 1
2k+1 + · · ·+ 1

2k+1 = 1).
We can also assume that there are no coins of denomination 1

1 because removing one of them would reduce
the problem to m− 1 groups of size (m− 1)− 1

2 , which is the same problem.
For each k, group all coins of the form 1

2k+1 and 1
2k+2 . There is at most a total value of 2k

2k+1 + 1
2k+2 <

2k
2k+1 + 1

2k+1 = 1 in each of these groups. For 1 ≤ k ≤ m− 1, this is m− 1 groups that take care of the coins
of denominations 1

3 to 1
2m . We would also have to place 1

2 into its own group, which is a total of m groups.
Now we will use a greedy algorithm to place the coins of denomination smaller than 1

2m . Place these
coins into whatever groups still have space. We have to prove that this algorithm will always be able to
group every coin of denomination smaller than 1

2m . Assume the contrary, that there is a coin left over. This
means all of the other groups are packed with at least 1− 1

2m+1 coins which is a contradiction because that
would mean there is a total value of at least m

(
1− 1

2m+1

)
> m− 1

2 , so we are done.

Problem 3.1 (IMOSL 1989). A natural number is written in each square of an m×n chess board. The
allowed move is to add an integer k to each of two adjacent numbers in such a way that non-negative
numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and
sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.

Apply the chess board coloring. Let b and w be the sums in the black and white squares. We see that
b− w is invariant, and at the end b− w = 0, so b = w is necessary.

Now we prove it is sufficient. Consider the numbers in squares (x, y, z) adjacent in that order, and
we want to find an algorithm to make x = 0. If x ≤ y, apply (x, y, z) → (0, y − x, z). If x ≥ y, apply
(x, y, z)→ (x, x, z + x− y)→ (0, 0, z + x− y). We can apply this algorithm first to all the rows from left to
right, then to all the columns from top to bottom to reduce the problem to a 2× 2 square.

In the 2×2 square, we can make at least one number in each row 0. If they are in the same column, then
b = w implies that the remaining numbers are equal, so eliminate them. If they are in opposite columns,
then one of b, w is 0, so all entries must be 0.

Problem 3.2 (China Girls Math Olympiad 2011). There are n boxes B1, B2, . . . , Bn from left to right,
and there are n balls in these boxes.

France IMO Training Camp 2015

Cody Johnson Algorithms 19

1. If there is at least 1 ball in B1, we can move one to B2.

2. If there is at least 1 ball in Bn, we can move one to Bn−1.

3. If there are at least 2 balls in Bk, 2 ≤ k ≤ n− 1 we can move one to Bk−1, and one to Bk+1.

Prove that, for any arrangement of the n balls, we can achieve that each box has one ball in it.

We use the following algorithm:

1 Perform the second and third operation until they can no longer be performed. This leaves boxes
B2, B3, . . . , Bn−1 with at most 1 ball and Bn with at most 0 balls.

2 Consider the smallest k such thatBk has 0 balls. That is, (B1, B2, B3, . . . , Bk−1, Bk) = (x, 1, 1, . . . , 1, 0).

3 Apply the first operation to get (x− 1, 2, 1, . . . , 1, 0).

4 Apply the third operation on B2, B3, . . . , Bk−1 to end up with (x, 1, 1, . . . , 1, 1, 0, 1).

5 Repeat 2 and 3 enough to get (x, 1, 1, . . . , 1, 1, 0) → (x, 1, 1, . . . , 1, 0, 1) → (x, 1, 1, . . . , 0, 1, 1) →
. . . (x, 0, 1, 1, . . . , 1, 1).

6 Apply the first step to get (x− 1, 1, 1, 1, . . . , 1, 1).

7 Apply 2 through 6 to get the desired result.

The only issue is proving that 1 always terminates. To do this, weight the boxes to create a monovariant,
then show that the weighted sum is bounded above. In fact, any application of the second or third operation
strictly increases the sum

B02n +B12n−1 +B22n−2 + · · ·+Bn−121 +Bn20

because 2(Bn−1 + 1) + (Bn − 1) = 2Bn−1 + Bn + 1 > 2Bn−1 + Bn and 2n−i+1(Bi−1 + 1) + 2n−i(Bi −
2) + 2n−i−1(Bi+1 + 1) = Bi−12n−i+1 +Bi2n−i +Bi+12n−i−1 + 2n−i+1 − 2 · 2n−i + 2n−i−1 > Bi−12n−i+1 +
Bi2n−i +Bi+12n−i−1 from 2n−i+1 − 2 · 2n−i + 2n−i−1 = 2n−i−1 > 0.

Finally, since

B02n +B12n−1 +B22n−2 + · · ·+Bn−121 +Bn20 ≤ n · 2n

this algorithm must terminate, so we are done.

Problem 3.3 (MEMO 2008). On a blackboard there are n ≥ 2, n ∈ Z+ numbers. At each step, we
select two numbers from the blackboard and replace both of them by their sum. Determine all numbers
n for which it is always possible to yield n identical numbers after a finite number of steps.

For odd n, we quickly notice the counterexample (2, 2, . . . , 2, 1). Let m be the maximum among the
numbers. The invariant here is the parity of the number of terms that are equal to m, which must end up
even.

We assert that all even numbers work. Let a1, a2, . . . , a2n be the numbers on the board. Since n is
even, we can group the terms into pairs: (a1, a2), (a3, a4), . . . , (a2n−1, a2n). Furthermore, let b1, b2, . . . , b2n
be a1, a2, . . . , a2n divided by the largest power of 2 that divides all terms. Then, perform the following
algorithm:

1 For each 1 ≤ i ≤ n, replace (a2i−1, a2i) with (a2i−1 +a2i, a2i−1 +a2i). Now a2i−1 = a2i for 1 ≤ i ≤ n.

2 For each 1 ≤ i ≤ n, if a2i−1 = a2i is odd, replace (a2i, a2i) with (2a2i, 2a2i). Repeat this step until
each of a1, a2, . . . , a2n has the same common power of 2, i.e., b1, b2, . . . , bn are all odd. This step can
be referred to as “dividing" a pair (b2i−1, b2i) by 2.

France IMO Training Camp 2015

20 Algorithms Cody Johnson

3 Add the largest pair with the smallest pair.

4 Return to step 2.

This algorithm may look somewhat complex, but it is actually fairly easy:

a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6
3 4 4 2 3 3 3 4 4 2 3 3 initial
7 7 6 6 6 6 7 7 6 6 6 6 1
14 14 6 6 6 6 7 7 3 3 3 3 2
20 20 20 20 6 6 10 10 10 10 3 3 3
20 20 20 20 12 12 5 5 5 5 3 3 2
32 32 20 20 32 32 8 8 5 5 8 8 3
32 32 160 160 32 32 1 1 5 5 1 1 2
192 192 192 192 32 32 6 6 6 6 1 1 3
192 192 192 192 256 256 3 3 3 3 1 1 2
256 256 192 192 256 256 4 4 3 3 4 4 3
256 256 768 768 256 256 1 1 3 3 1 1 2
1024 1024 1024 1024 256 256 4 4 4 4 1 1 3
1024 1024 1024 1024 1024 1024 1 1 1 1 1 1 2

Now we have to prove that this algorithm terminates. Consider a set of (b1, b2, . . . , bn) with all odd
elements and b1 + b2 + · · ·+ bn > 6 (else we are already done). It’s clear that we can such a state from any
given position. After applying 3 and 2 , we assert that b1 + b2 + · · · + bn has decreased. Without loss of
generality, let (b1, b2) be the maximum pair and (b3, b4) the minimum pair. After the operation, we have
b′1, b

′
2, . . . , b

′
n. We know that for some k, since b1 + b3 is even,

b′1 + b′3 = b′1 + b′3 = b1 + b3

2k ≤ b1 + b3

and similarly with b2 + b4. Therefore, the sum always decreases, so it will always decrease to 6.

Problem 3.4 (IMOSL 2013). A crazy physicist discovered a new kind of particle wich he called an
imon, after some of them mysteriously appeared in his lab. Some pairs of imons in the lab can be
entangled, and each imon can participate in many entanglement relations. The physicist has found a
way to perform the following two kinds of operations with these particles, one operation at a time.

1. If some imon is entangled with an odd number of other imons in the lab, then the physicist can
destroy it.

2. At any moment, he may double the whole family of imons in the lab by creating a copy I ′ of
each imon I. During this procedure, the two copies I ′ and J ′ become entangled if and only if the
original imons I and J are entangled, and each copy I ′ becomes entangled with its original imon
I; no other entanglements occur or disappear at this moment.

Prove that the physicist may apply a sequence of much operations resulting in a family of imons, no
two of which are entangled.

Let the imons be the vertices of a graph, and connect two vertices of the graph G with an edge if the
two are entagled. We assert that we can always decrease the chromatic number χ(G) (the minimum number
of colors to color the vertices of a graph such that no two adjacent vertices are the same color) with an
algorithm:

1 Apply the first operation until all vertices have an even degree to get G′. Clearly χ(G′) ≤ χ(G).

France IMO Training Camp 2015

Cody Johnson Algorithms 21

2 Apply the second operation to get G′′. We can still color this graph with χ(G′) colors: each instance
a vertex on G′ was colored with ci (out of the χ(G′) colors c1, c2, . . . , cχ(G′)), we can color the copied
vertex with ci+1, for example. The degree of each vertex of G′′ is thus odd.

3 Delete the vertices of some color c one by one. Since no two vertices of c are connected, the degrees
don’t change as we perform this. The resulting graph has χ(G′′) = χ(G′)− 1 ≤ χ(G)− 1.

Problem 4.1 (United Kingdom 2011). Initially there are m balls in one bag, and n in the other, where
m,n > 0. Two different operations are allowed:

1. Remove an equal number of balls from each bag

2. Double the number of balls in one bag.

Is it always possible to empty both bags after a finite sequence of operations? Operation 2 is now
replaced with “Triple the number of balls in one bag." Is it now always possible to empty both bags
after a finite sequence of operations?

1. Perform the following algorithm:

1 If m = n remove all the balls from each bag.
2 Assume without loss of generality m > n. Remove n− 1 balls from each bag.
3 Double the bag with 1 ball in it to get 2 balls.
4 Remove 1 from each bag.
5 Repeat 3 and 4 until both bags have 1 ball.
6 Remove 1 ball from both bags.

It is clear that this algorithm terminates.

2. Let m + n ≡ 1 (mod 2). Then (m − k) + (n − k) ≡ m + n ≡ 1 (mod 2) and 3m + n ≡ m + n ≡ 1
(mod 2). Thus, m+ n 6= 0, so it is actually impossible.

Problem 4.2 (IMO 2010). Each of the six boxes B1, B2, B3, B4, B5, B6 initially contains one coin.
The following operations are allowed

1. Choose a non-empty box Bj , 1 ≤ j ≤ 5, remove one coin from Bj and add two coins to Bj+1;

2. Choose a non-empty box Bk, 1 ≤ k ≤ 4, remove one coin from Bk and swap the contents (maybe
empty) of the boxes Bk+1 and Bk+2.

Determine if there exists a finite sequence of operations of the allowed types, such that the five boxes
B1, B2, B3, B4, B5 become empty, while box B6 contains exactly 201020102010 coins.

Let N = 201020102010 . Let the boxes have (a1, a2, . . . , a6) coins at a given moment. We assert that
(1, 1, 1, 1, 1, 1) can be turned into (0, 0, 0, 0, 0, N). To do this, we shall prove two statements first.

We assert that (x, 0, 0) can go to (x− y, 2y, 0). Indeed, (x, 0, 0)→ (x− 1, 21, 0) and

(x− y, 2y, 0)→ (x− y, 2y − 1, 2)→ (x− y, 2y − 1, 4) . . . (x− y, 0, 2y+1)→ (x− y − 1, 2y+1, 0)

In particular, (x, 0, 0) can go to (0, 2x, 0).

France IMO Training Camp 2015

22 Algorithms Cody Johnson

Now let Tn = 222...︸ ︷︷ ︸
n

. We assert that (x−y, 0, 0, 0) can go to (0, Ty, 0, 0). Indeed, (x, 0, 0, 0)→ (x−1, 2, 0, 0)

and

(x− y, Ty, 0, 0)→ (x− y, 0, 2Ty = Ty+1, 0)→ (x− y − 1, Ty+1, 0, 0)
In particular, (x, 0, 0, 0) can go to (0, Tx, 0, 0).
To solve the original problem, consider

(1, 1, 1, 1, 1, 1)→ (1, 1, 1, 1, 0, 3)→ (1, 1, 1, 0, 3, 0)→ (1, 1, 0, 3, 0, 0)→ (1, 0, 3, 0, 0, 0)
→ (0, 3, 0, 0, 0, 0)→ (0, 0, 16, 0, 0, 0)→ (0, 0, 0, T16, 0, 0)

Notice that

201020102010
< (211)20102010

= 211·20102010
< 220102011

< 2(211)2011
= 2211·2011

< 22215

< T16

so apply the second operation on the last 3 boxes to reach (0, 0, 0, N/4, 0, 0). Finally, apply the first
operation sufficiently to reach

(0, 0, 0, N/4, 0, 0)→ (0, 0, 0, 0, N/2, 0)→ (0, 0, 0, 0, 0, N)

Problem 4.3 (IMO 2007). In a mathematical competition some competitors are friends. Friendship is
always mutual. Call a group of competitors a clique if each two of them are friends. (In particular, any
group of fewer than two competitiors is a clique.) The number of members of a clique is called its size.

Given that, in this competition, the largest size of a clique is even, prove that the competitors can
be arranged into two rooms such that the largest size of a clique contained in one room is the same as
the largest size of a clique contained in the other room.

Let the two rooms be A and B; let c(X) be the maximum size of a clique in room X. We will use an
algorithm to create such a configuration:

1 Let C be one of the the largest cliques with |C| = 2n. Send the members of C to A and the others
to B. We have c(A) ≥ c(B).

2 As long as c(A) > c(B), send one person from A to B. c(A) has decreased by exactly 1 and c(B)
has increased by at most 1. Thus, this step leaves c(A) ≤ c(B) ≤ c(A) + 1. Also, c(A) = |A| ≥ n
else there will be n+ 1 members of C in B and n− 1 members of C in A, implying c(B)− c(A) =
(n+ 1)− (n− 1) = 2 > 1, contradiction.

If c(A) = c(B), then we are done, so c(B) = c(A) + 1. If there is a member of C in B not in a largest
clique of B, then move him back to A to finish. Otherwise, for each largest clique in B move 1 competitor
who is not a member of C back to A. This decreases c(B) by 1, so to finish, we must show that c(A) did
not change after this operation.

Clearly c(A) did not decrease. Let X and Y be the sets members of C in A and B, respectively. Let Z
be the largest clique in A.

Note that c(B) + 1 > n, and n is greater than the number of members of C in B. Therefore, every clique
of largest size in B must contain Y .

Finally, we assert that Z ∪ Y is a clique. Each competitor in Z is either a member of C, in which case it
knows all members of Y , or it was a member of a clique containing Y but then moved into A, in which case
it knows all members of Y . Therefore, Z ∪ Y is a clique, so

|C| ≥ |Z ∪ Y | = |Z|+ |Y | = |Z|+ (|C| − |X|)
so |X| ≥ |Z|. This proves that c(A) could not increase in the operation of sending some members back,

so the largest cliques in each of the two rooms have the same size.

France IMO Training Camp 2015

