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Abstract We examine both the Evolutionary Structural
Optimisation (ESO) and Solid Isotropic Microstructure
with Penalisation (SIMP) methodologies by investigat-
ing a cantilever tie-beam. Initially, both ESO and SIMP
produce designs with higher objective function values rel-
ative to a previously published ‘intuitive’ design. How-
ever, after careful investigation of the numerical parame-
ters such as the initial design domain and the mesh-size,
both methods obtain designs which have lower objective
function values relative to the intuitive design. Thus a
clearer understanding for the numerical parameters and
their influence on optimisation methods is achieved.

Keywords topology optimisation · evolutionary struc-
tural optimisation (ESO) · solid isotropic microstructure
with penalisation (SIMP)

1 Introduction

Topology optimisation is a method for finding the opti-
mal material distribution within a fixed design domain
Ω. An optimum can be defined by various objective func-
tions such as minimum compliance or a fully stressed
design. The design domain is usually discretised using
finite elements with the existence of the elements being
the design variable.

Inherent to many topology optimisation methods is a
numerical instability which results in chequerboard pat-
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terns. There has been much research into the chequer-
board phenomenon including Dı́az and Sigmund (1995)
who find the stiffness of a chequerboard pattern to be
higher and therefore favoured over its continuous equiv-
alent. Also, Jog and Haber (1996) find chequerboard pat-
terns to be a result of mixed finite element models where
the existence of an element is piecewise constant whilst
the displacement of an element is piecewise linear. There
have been various methods developed for dealing with
chequerboard patterns including the use of higher order
elements (Jog and Haber 1996), perimeter constraints
(Haber et al 1996) and filtering to smooth the sensitiv-
ity distribution (Sigmund 1994). A review of numerical
instabilities and how to deal with them can be found in
Sigmund and Petersson (1998).

Solving optimisation problems with discrete design
variables is generally considered to be more difficult than
with continuous design variables (Sigmund and Peters-
son 1998). Thus, a typical method used to solve topology
optimisation problems is to relax the layout design vari-
able by introducing intermediate states for an element
that are between solid and void. This new layout design
variable is analogous to the continuous density of the el-
ement. However, this density is somewhat artificial and
a design with a continuous density distribution cannot
be manufactured. Therefore, the intermediate densities
are penalised using a power-law to give them low stiffness
thus producing a near discrete solution. This approach is
referred to as Solid Isotropic Microstructure with Penal-
isation (SIMP) (Bendsøe 1989; Rozvany and Zhou 1991,
presented in 1990; Rozvany et al 1992; Bendsøe and Sig-
mund 2003).

Reitz (2001) has shown that there exists a discrete
solution to the SIMP problem if a sufficiently high penal-
isation is used. The proof contains the following assump-
tions; there is only one constraint (volume), the objective
function is continuously differentiable and its derivatives
are negative and bounded and also that there exists a
unique discrete solution. Subsequently, Mart́ınez (2005)
relaxes these assumptions by showing, for example, the
solution does not necessarily need to be unique. How-
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ever, using high values of penalisation can result in local
minima since the penalised design problem is not convex
(Petersson and Sigmund 1998). Thus continuation or ho-
motopy methods are used to increase the likelihood of
obtaining a global minimum (Allgower and Georg 1990).

An alternative topology optimisation method is Evo-
lutionary Structural Optimisation (ESO) (Xie and Steven
1993, 1997). ESO slowly removes redundant material to
evolve the structure to an optimum. Redundant material
is characterised by low local sensitivity values, for exam-
ple strain energy, calculated using finite element analysis
(FEA).

Unlike SIMP, ESO was originally developed as a heuris-
tic method derived from engineering intuition. The sub-
sequent research efforts over the following decade demon-
strated numerically that ESO generally finds an optimal
solution (Xie and Steven 1997). Noting that the ESO so-
lution agreed well with the Michell structure where the
compliance - volume (C-V) product is minimum, Tan-
skanen (2002) recently proposed that this reflects the
objective function of the ESO method. It was outlined
that the strategy of removing elements with low strain
energy is analogous to Sequential Linear Programming
(SLP) and leads to a constant strain energy distribution,
hence minimising the C-V product.

Zhou and Rozvany (2001) introduced a numerical ex-
ample where ESO’s strategy of removing the elements in-
creased the total compliance by a factor of 10. This was
because the element removal under consideration funda-
mentally changed the way the loads were transmitted
and hence the structure evolved to a sub-optimal solu-
tion.

Inspired by such an interesting problem, the current
paper further investigates the test problem of Zhou and
Rozvany (2001). The aim of this paper is to compare the
optimisation ability of SIMP and ESO by considering the
effects of discretisation, penalisation and initial design.

In the following section we briefly outline the opti-
misation problem formulations for the SIMP and ESO
strategies. §3 defines the test example used for this in-
vestigation. The influence of mesh density and the initial
design domain is analysed for ESO and then SIMP in the
subsequent sections, which is followed by the conclusions.

2 Problem formulations for the topology

optimisation methods

2.1 The SIMP approach

The SIMP formulation is based on the continuous prob-
lem of minimising the total compliance C parameterised
by a vector of coordinates ξ ∈ Ω with a volume con-
straint Vc,

min : C
subject to : V ≤ Vc

}

. (1)

In the finite element environment, a set of n elements
over ξ ∈ Ω is used to represent a structure. The design
variable x(ξ) is the presence of material which is discrete.
This is relaxed such that it is continuous over (0, 1]. The
intermediate values are penalised by a power-law (typ-
ically, power p ∼ 3) to steer the solution to a discrete
topology.

The optimisation problem is constrained to satisfy
the elastic equilibrium equation (2) for global stiffness
matrix K and load vector f .

Ku = f (2)

The element stiffness Ki can be written in terms of
x = {x1, x2, . . . , xn} as

Ki = xp
i K0, (3)

where xi ∈ (0, 1] and K0 is the element stiffness constant
with xi = 1. Using the above notation for symmetric K,
the total compliance is written as

Cp(x) = fT u = uT Ku =
∑

i

xp
i u

T
i K0ui. (4)

The SIMP optimisation problem is thus defined as

min
x

: Cp(x) =
n

∑

i=1

xp
i u

T
i K0ui

subject to : V (x) ≤ Vc

: 0 < x(ξ)min ≤ x(ξ) ≤ 1























, (5)

where x(ξ)min is a vector of minimum densities to avoid
singularities and V (x) is the current total material vol-
ume (Bendsøe and Sigmund 2003).

SIMP has a well defined objective function and the
optimisation problem in (5) can be tackled using a va-
riety of sophisticated algorithms such as the Method of
Moving Asymptotes (MMA) algorithm (Svanberg 1987).

The penalisation of SIMP causes the design space to
be non-convex and thus there may exist local minima.
When high values of p are used, local minima are often
produced rather than the global minimum. Thus a con-
tinuation method, like that described by Petersson and
Sigmund (1998), is used for such problems. We imple-
ment SIMP initially with a penalisation of pinit = 1 un-
til a solution has converged. The penalisation is then in-
creased by 0.5 and the current solution is used as the new
initial topology. This process is repeated until the penali-
sation value gives as discrete solution as possible but does
not cause the stiffness matrix K to be ill-conditioned.

We implement SIMP in this paper using the MMA
algorithm in conjunction with the MATLAB (The Math
Works, Inc. 2004) code in Sigmund (2001).
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2.2 The ESO approach

ESO optimises a structure by slowly removing material
which has the lowest sensitivity value, such as stress or
strain energy U defined in (6), from the design domain.
The sensitivity chosen reflects the objective function of
the optimisation problem. It has been proposed that the
removal of elements with the lowest strain energy leads
to a design with a uniform strain energy distribution
(Tanskanen 2002).

Ui =
1

2
uT

i Kiui. (6)

Unlike SIMP, ESO treats the design variable x as a
discrete variable which takes a value of either ‘1’ when
an element is present or ‘0’ when completely removed.
Thus the element stiffness Ki for ESO, written in terms
of the elemental design variable xi is

Ki = xiK0, (7)

where xi ∈ {0, 1}.
An outline of the ESO algorithm can be summarised

as follows:

1. An optimisation problem is defined by specifying the
kinematic conditions and the initial design domain,
appropriately discretised, in the FE environment.

2. FEA computes the displacement field and hence the
strain energy of the given design.

3. The elements which satisfy (8) are removed,

Ui ≤ RR · Umin (8)

where RR is the rejection ratio and Umin is the mini-
mum elemental strain energy. The rejection ratio con-
trols the optimisation rate and needs to be sufficiently
small to do so. Thus RR is defined empirically and is
problem dependent.

4. Steps 2 to 3 are repeated until all elements are re-
moved or the stiffness matrix K becomes singular.
The latter case is what we usually see.

5. Examine the evolutionary history and select the de-
sign which has a locally minimum objective function
value and/or desirable volume ratio. We henceforth
refer to the local and global minimum of the iteration
history for a single run as the S-history local and S-
history single-run-global minimum respectively.

Tanskanen (2002) shows that removing elements with
the lowest strain energy achieves a structure with a mini-
mum compliance - volume product. Thus an appropriate
objective function is the compliance - volume product
S(x). Using equations (2) and (7), compliance is defined
as

C(x) =
∑

i

xiu
T
i K0ui (9)

Letting the volume of an element j be vj and for
symmetric K, S(x) is defined as

S(x) = CV = uTKuV =
∑

i

xiu
T
i K0ui

∑

j

xjvj . (10)

Thus we can write the optimisation problem as (Tanska-
nen 2002):

min
x

: S(x) =
∑

i

xiu
T
i K0ui

∑

j

xjvj

: xi ∈ {0, 1} i = 1, 2, . . . , n.















. (11)

The ESO algorithm as described does not stop once
the objective function S(x) has reached a minimum, it
continues to remove elements until either all elements
have been removed or the stiffness matrix K becomes
singular. This further removal of elements may lead to
S-history local minima with significantly smaller volume
than the S-history single-run-global minimum.

One of the main differences in the formulations for
ESO and SIMP is the volume. ESO reduces the volume
to find the optimum topology solution, whereas SIMP
finds the optimum topology solution to the given volume
specified a priori. Thus to make a precise comparison of
the results from ESO with those of SIMP we will consider
the ESO objective function S(x) and constrain SIMP to
the final volume of the ESO solutions. The results are
also to be compared with those of Edwards et al (2006)
where ESO was implemented using von Mises stress as
opposed to strain energy and SIMP was implemented
using the heuristic updating scheme of Bendsøe and Sig-
mund (2003).

We implement ESO in this paper using an INTEL R©

FORTRAN complier with the MA57 multi-frontal linear
solver (Rutherford Appleton Laboratory 2004). The re-
sults from the MA57 linear solver have been validated
against MATLAB (The Math Works, Inc. 2004). MAT-
LAB is then used to produce the graphical images.

2.3 Numerical instabilities and filtering

Topology optimisation can often exhibit an instability
for which the resulting topology contains a chequerboard
pattern of active and removed elements or of high and
low density elements. It has been established that the
appearance of these chequerboard patterns is a numeri-
cal instability and does not represent an optimal design
(Sigmund 1994; Dı́az and Sigmund 1995; Jog and Haber
1996; Kim et al 2000).
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A popular heuristic treatment for preventing che-
querboard formations is chequerboard filtering or local
smoothing of sensitivities similar to low pass filtering
in signal and image processing. This filtering technique
works by smoothing local sensitivities after analysis and
then these smoothed sensitivities are used to modify and
optimise the design.

The filter implemented in this investigation is the
Bartlett filter which takes a weighted average of sensi-
tivities within a specified region (Sigmund 1994). This
specified region is defined by the parameter rmin, the
radius taken from the centre of the element i.

Ŝi =
1

xi

∑

j

Ĥj

∑

j

ĤjxjSj , (12)

where Ŝi is the filtered sensitivity of element i, Si is the
original sensitivity of element i and Ĥ is the weighting
factor for all enclosed elements j within rmin and is de-
termined based on the distance between elements i and
j, (13).

Ĥj = rmin − dist(i, j). (13)

3 Tie-beam test problem

The tie-beam test problem was presented in Zhou and
Rozvany (2001) with the aim of highlighting the possible
shortcomings of ESO. This tie-beam is used in this in-
vestigation for further examination of the ESO method
by comparing the solutions obtained with those of the
well-established SIMP method.

The test problem is an L-shaped clamped beam with
a roller support at the top of the vertical section of the
beam which is referred to as the vertical tie, Figure 1.
There is a single load case consisting of a vertical tensile
load of intensity Ly = 1.0 and a horizontal compressive
load of intensity Lx = 2.0. The Young’s modulus (E) is
specified as 1 and the Poisson’s ratio (ν) is 0. This test
problem is modelled using n = 100 four node plane stress
elements with unit thickness (Zhou and Rozvany 2001).
This mesh, as specified in the literature, is particularly
coarse as the width of the vertical tie is only one element.

With the objective of optimisation defined as min-
imising compliance, Zhou and Rozvany (2001) suggest
the design of Figure 2 as an ‘intuitive optimal solution’
with a total compliance of C(x) = 1117, a volume of
V (x) = 40 and S(x) = 44684. This design is henceforth
referred to as the “tie-beam solution” as it has no proof
of optimality.

In addition to the tie-beam solution of Figure 2, there
exists a sub-optimal design with both larger volume and
compliance than the intuitive design. We refer to this
sub-optimal design as the “cantilever solution ” since the

A

Lx

= 2
Ly = 132

3

B4

Fig. 1 Test problem with a coarse mesh (Zhou and Rozvany
2001) having V (x) = 100, C(x) = 390, S(x) = 38986 and the
load intensities Lx and Ly are defined per unit area

Fig. 2 Tie-beam solution with V (x) = 40, C(x) = 1117 and
S(x) = 44684

roller support at the top is removed producing a system
which behaves like a cantilevered beam. An example of
a cantilever solution is illustrated in Figure 3.

Fig. 3 An example of a cantilever solution where V (x) = 96,
C(x) = 4387 and S(x) = 421180

Zhou and Rozvany (2001) used elemental strain en-
ergy as the sensitivity for ESO. When Figure 1 is anal-
ysed using FEA the element with the lowest strain energy
is identified to be element ‘A’. This strain energy based
ESO algorithm therefore removes element ‘A’ in the first
iteration and the present algorithm does not allow re-
admission of the element. The removal of element ‘A’
detaches the beam from the roller support and the beam
effectively becomes a cantilever beam, transmitting the
vertical load as bending.

The change in load transmission to bending increases
the ESO objective function from S(x) = 38986 to S(x) =
460523. However, since ESO is not minimising compli-
ance C(x), rather the compliance - volume product S(x)
it is clear that the tie-beam solution of Figure 2 is not
a minimum design of S(x). The tie-beam solution is not
a minimum of S(x) because S(x) for the initial design
domain is 13% lower than it is for the tie-beam solution.

4 Application of ESO

In this section, the previously described test problem is
modified to have a larger initial design domain and to
finer computational meshes. For consistency all compli-
ance calculations are made using the refined mesh. The
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results of applying ESO to the revised test problems are
presented.

4.1 Investigation of ESO using a coarse mesh with a
rectangular initial design domain

To investigate the effects of the initial design domain on
the test problem, the initial design domain is modified to
a rectangle containing the original problem and is shown
in Figure 4.

Lx

= 2

Ly = 132

7

Fig. 4 Rectangular initial design domain encompassing orig-
inal design domain with V (x) = 224, C(x) = 283 and
S(x) = 63430

We apply ESO with the filtering technique of §2.3
to the ESO sensitivities by taking a weighted average of
elemental strain energy. We use rmin = 1.05 which is par-
ticularly small since the mesh is coarse. Experience has
shown that a very small rejection ratio is also required to
ensure slow material removal and therefore RR = 1.03 is
used. Using these optimisation parameters, an S-history
single-run-global minimum is reached after 97 iterations.

The material design x of the S-history single-run-
global minimum is illustrated in Figure 5 and has a
volume of V (x) = 101. The original initial design do-
main of Figure 1 has a similar volume to this S-history
global solution with V (x) = 100. However, the objective
function for the S-history single-run-global minimum is
S(x) = 39997 which is 3% higher than for the original
initial design domain where S(x) = 38986. The differ-
ence in S(x) is caused through the inability of ESO to
replace previously removed elements if required.

Fig. 5 S-history single-run-global minimum design of S(x)
(c) by ESO for the rectangular initial design domain. V (x) =
101, C(x) = 396 and S(x) = 39997. The compliance C(x) is
calculated using the refined mesh of Figure 7

In comparison to the tie-beam solution of Figure 2,
the S-history single-run-global minimum has lower S(x)
and C(x) = 396 but higher V (x) since S(x) = 44684,
C(x) = 1117 and V (x) = 40 for the tie-beam solution.

Thus the design of Figure 5 has a more efficient use of
material, but more weight, compared to the tie-beam
solution.
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Fig. 6 Iteration history for the ESO objective function when
applied to a rectangular initial design domain. The sharp
increase around ‘c’ represents the point where the vertical
tie is detached.

Figure 6 shows the iteration history of the objective
function S(x) and the volume V (x). The S-history single-
run-global minimum is achieved at ‘c’ (Figure 5). How-
ever, the volume continues to decrease since ESO does
not have a stopping criterion and material continues to
be removed. Thus the vertical tie becomes detached and
the objective function increases significantly. The detach-
ment of the vertical tie occurs only two iterations after
the S-history single-run-global minimum (c) is achieved.

To understand why ESO cannot further reduce the
volume of the test problem, we investigate the appropri-
ateness of the given mesh size below.

4.2 Investigation of mesh size

In order to understand why the ESO algorithm evolves
the structure towards the cantilever beam, we return to
the original initial design domain of Figure 1 and the
optimality criterion of constant strain energy.

The tie-beam configuration primarily transmits the
applied loads axially. Thus we simplify the configuration
into a pin-jointed truss and ignore the negligible bending
stress in region ‘B’ marked in Figure 1. The simplified
system transmits the total horizontal load Fx and the
total vertical load Fy completely to the horizontal beam
and the vertical tie respectively.

Let Ax be the cross-sectional area to which Fx is
applied and Ay be the cross-sectional area of the vertical
tie which Fy is applied. Then the mean strain energy per
element in the vertical tie is
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F 2

y dy

2AynyE
(14)

where dy = 4 is the length of the vertical tie and ny

is the number of elements in the vertical tie. Also, the
horizontal beam has a mean strain energy per element
of

F 2

xdx

2AxnxE
(15)

where dx = 32 is the length of the main beam and nx is
the number of elements in that beam. Thus for constant
strain energy, we must have

F 2

xdx

2AxnxE
=

F 2

y dy

2AynyE
. (16)

The test problem has a horizontal load intensity of
Lx = 2 and a vertical load intensity of Ly = 1. These load
intensities are measured in load per unit area where each
element is of unit size. In the horizontal beam where the
total cross-sectional area is 3 units, the total horizontal
applied load is Fx = 6, and in the vertical tie the total
vertical applied load is Fy = 1. Therefore the required
cross-sectional area of the vertical tie for constant strain
energy can be obtained as

62 · 32

2 · 3 · 96 · 1
=

12 · 4

2Ay · 4 · 1
⇒ Ay =

1

4
. (17)

The required element size for the vertical tie is 1/4 of
the original element size. It can therefore be deduced
that the vertical tie is eliminated in the early stages of
optimisation because the vertical tie has a mesh which
is too coarse to have constant strain energy. In order to
compare the results those in Edwards et al (2006), the
mesh is refined such that the element size is 1/6 of the
original size.

4.3 Investigation of ESO using a refined mesh with the
original initial design domain

4

Ly32

3

Lx

Fig. 7 Original initial design domain with a refined mesh
having V (x) = 100, C(x) = 390, S(x) = 38986

Applying the mesh refinement gives the initial design
domain of Figure 7 which is the same as Figure 1 but
with n = 3600 plane stress elements. We optimise this
test problem with the refined initial design domain via
ESO again using RR = 1.03. However, the filter we apply
is rmin = 2.5 of the new element size. This is equivalent
to rmin = 0.42 of the original element size. The filter
size is different to that used with the coarse mesh of
the original initial design domain because an appropriate
filter size for the new element size is smaller than the size
of an original element.

To compare with the tie-beam solution, we select a
design with a volume V (x) ≈ 40. Figure 8 presents a
design with a volume of V (x) = 39, C(x) = 1058 and
S(x) = 41699. Comparing this design with the tie-beam
solution of Figure 2, we find this S-history local mini-
mum has the lower volume, compliance and thus volume
- compliance product S(x). We note that this design of
Figure 8 exhibits a grillage-like structure at the beam-tie
intersection and that the vertical tie remains.

Fig. 8 Design for the S-history local minimum (d) by ESO on
a refined initial design domain with V (x) = 39, C(x) = 1058
and S(x) = 41699

Figure 9 shows the graph of the objective function
S(x) and volume V (x). The S-history local minimum
of Figure 8 is marked ‘d’ at iteration 687. The graph
clearly shows the volume decreases after the S-history
global minimum has been achieved at ‘e’ and thus there
exist other S-history local minima in between ‘d’ and ‘e’.
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Fig. 9 Iteration history of S(x), for ESO applied to the re-
fined initial design domain
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The S-history single-run-global minimum occurs after
only 16 iterations and is illustrated in figure 10. The com-
pliance C(x) = 392 and the objective function S(x) =
38671. However, the volume has only been reduced by
1% to V (x) = 99. Thus, in terms of ESO, this design
has the lowest S(x) of all designs so far, including the
tie-beam solution of Figure 2.

F
ւ

F
ց

Fig. 10 Design for the S-history single-run-global minimum
of S(x) (e) by ESO on a refined initial design domain having
V (x) = 99, C(x) = 392, S(x) = 38671

The two tie configuration design, illustrated in Fig-
ure 10, is favoured by ESO because there exists a local
strain energy concentration at the re-entrant corners of
the main beam where it meets the vertical tie at ‘F ’
for example. This local strain energy concentration in-
creases the elemental strain energy along the boundary
hence favouring the internal elements for removal. This
pattern of element removal, determined by local concen-
trations, may be considered as a shortcoming of ESO
since the severe strategy for the complete removal in ESO
exacerbates the numerical issues at the sharp corners.

Edwards et al (2006) used von Mises stress as the
sensitivity for ESO. An objective-history local minimum
with volume V (x) ≈ 40, which has lower compliance
than the tie-beam solution of Figure 2, was obtained.
The topology of the objective-history local minimum also
contained a grillage-like structure at the beam-tie in-
terface. The obective-history single-run-global minimum
obtained in Edwards et al (2006) also only had a 1% vol-
ume reduction and the vertical tie took the two tie config-
uration. Thus ESO produces consistent results whether
von Mises stress or strain energy is used as the sensitiv-
ity.

4.4 Investigation of ESO using the refined mesh with a
rectangular initial design domain

We continue to investigate by applying ESO to a rect-
angular initial design domain with the finer mesh such
that n = 6064, Figure 11.

As with the coarse mesh of Figure 4, S(x) = 63430
for the rectangular initial design domain, which is higher
than S(x) = 44684 for the tie-beam solution of Figure
2. However, the previous design using a refined mesh
(Figure 8) has an even lower S(x) (compared to the tie-
beam solution of Figure 2). Thus we expect to achieve
a design similar to that of Figure 8 rather than of the
tie-beam solution of Figure 2.

Lx

Ly32

7

Fig. 11 Refined rectangular initial design domain encom-
passing original design, V (x) = 224, C(x) = 283 and S(x) =
63430

We apply ESO with RR = 1.03 and with a filter of
rmin = 2.5 for the refined element size. An S-history local
minimum of S(x) is produced and is illustrated in Figure
12. The volume for this design is V (x) = 43 and the
compliance is C(x) = 958. The objective of compliance
and volume product is S(x) = 41469 which is marked ‘g’
in Figure 13. The value of the objective function S(x) is
slightly lower than for the design of Figure 8 using the
original initial design domain.

Fig. 12 Material distribution for the S-history local mini-
mum (g) when ESO is applied to a refined rectangular initial
design domain. V (x) = 43, C(x) = 958 and S(x) = 41469.

Figure 13 shows the iteration history for S(x) and
volume V (x). The path of the objective function is smooth
until ‘h’ when the S-history single-run-global minimum
is achieved. This design at ‘h’ is similar to Figure 10
with a high volume of V (x) = 111, C(x) = 355 and
S(x) = 39543. The volume then continues to decrease
as elements continue to be removed, thus producing the
S-history local minimum at ‘g’.

It is observed that designs of ESO are dependent on
the mesh size and the numerical singularities caused by
the severe complete removal strategy of ESO. If an ap-
propriate mesh is used, then ESO obtains topological
consistent solutions with a grillage-like configuration and
is therefore not dependent on the initial design domain.

5 Application of SIMP

As a comparison to ESO, we now apply SIMP to both the
original initial design domain and the rectangular initial
design domain. SIMP is also implemented using these
two design domains with finer computational meshes.
SIMP is applied using the MMA algorithm and the con-
tinuation method, the initial penalisation of which is var-
ied. In each case, SIMP is constrained to the final vol-
ume of the ESO calculations or to the tie-beam solution
of Figure 2 where appropriate.
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Fig. 13 ESO iteration history where a refined rectangular
initial design domain is used.

5.1 Investigation of SIMP using a coarse mesh with the
original initial design domain

We begin this investigation by applying SIMP to the
original coarse initial design domain of Figure 1 using the
MMA algorithm and the continuation method described
in §2.1. Throughout this section, the convergence of x

measured for iteration k is defined as max |xk −xk−1| <
0.01. ESO did not find a solution to this original coarse
design domain and therefore the volume constraint of
SIMP is defined as V (x) ≤ 40 so that the solution can
be compared to the tie-beam solution of Figure 2. The
filter is defined the same for ESO as rmin = 1.05.

The SIMP solution to the original test problem with
a coarse mesh using p = 1 is given in Figure 14 with
C(x) = 958 and so S(x) = 38373. However, this solution
of Figure 14 is not discrete and thus has very low com-
pliance C(x) and therefore S(x). As the penalisation is
increased, the solution becomes more discrete and hence
the compliance also increases, as shown in Figure 15.

Fig. 14 Solution obtained by SIMP with p = 1, V (x) =
40, C(x) = 958 and S(x) = 38373. The compliance C(x) is
calculated using the refined mesh of Figure 7

If a penalisation of p > 10 is used, the stiffness matrix
K becomes ill-conditioned. Thus we choose the solution
for p = 10 as a sufficiently discrete solution, which in
this case is given in Figure 16 with C(x) = 1334 and
so S(x) = 53450. Unlike ESO, SIMP has produced a
tie-beam-like solution with an equivalent volume to the
tie-beam solution of Figure 2. However, the coarse repre-
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Fig. 15 Variation of compliance C(x) with penalisation p
when implementing the continuation method to the original
coarse initial design domain of Figure 1

sentation of the inclined main beam increases the com-
pliance by 20% compared to the tie-beam solution of
Figure 2.

Fig. 16 Solution of SIMP with p = 10, V (x) = 40, C(x) =
1334 and S(x) = 53450. The compliance C(x) is calculated
using the refined mesh of Figure 7

5.2 Investigation of SIMP using a coarse mesh with a
rectangular initial design domain with

We apply SIMP to the rectangular initial design domain,
Figure 4. To begin with we specify the volume constraint
as V (x) ≤ 101 to be consistent with the result obtained
using ESO in Figure 5, and the filter as rmin = 1.05.
The solution obtained is illustrated in Figure 17 with
C(x) = 385 and S(x) = 38926 which is lower than for
the original coarse design domain and the ESO solution
of Figure 5.

When we specify the volume constraint as V (x) ≤
40, as it is for the tie-beam solution of Figure 2, and a
filter of rmin = 1.05, application of SIMP leads to the
minimum illustrated in Figure 18 with C(x) = 1361 and
S(x) = 54703.

Using a rectangular initial design domain when ap-
plying SIMP yields a similar design as with the origi-
nal initial design domain. Edwards et al (2006) used a
heuristic optimality criterion without continuation and
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Fig. 17 Solution obtained by SIMP with p = 10, V (x) =
101, C(x) = 385 and S(x) = 38926. The compliance C(x) is
calculated using the refined mesh of Figure 7

Fig. 18 SIMP solution using a rectangular initial design do-
main with p = 10, V (x) = 40, C(x) = 1361 and S(x) =
54703. The compliance C(x) is calculated using the refined
mesh of Figure 7

also obtained similar inclined tie-beam solutions. How-
ever, it is observed that both C(x) and S(x) are con-
sistently higher for the inclined SIMP solutions than for
the tie-beam solution of Figure 2.

So far we have only found local solutions which sug-
gest there exists multiple continuation paths to differ-
ent local solutions (Allgower and Georg 1990). To find
a solution with lower compliance than so far obtained
with SIMP and the tie-beam solution of figure 2, we
need to explore different continuation paths. Therefore
we change the initial material layout by varying the ini-
tial penalisation pinit of the continuation method.

5.3 Investigation of initial penalisation of SIMP using
the original coarse initial design domain

We now apply SIMP to the original coarse initial design
domain of Figure 1 using the continuation method but
with a different initial penalisation of pinit = 1.5. A dis-
crete design is still required and so the upper bound of
pupp = 10 remains. Also, the penalisation power remains
to be increased reasonably slowly at increments of 0.5.

The revised continuation method is applied to the
original initial design domain. The volume constraint re-
mains as V (x) ≤ 40, as it is for the tie-beam solution
of Figure 2, together with a filter of rmin = 1.05, which
is sufficient to remove chequerboard patterns. This leads
to the same continuation path and hence inclined tie-
beam solution as in the previous section, Figure 19. This
particular solution has C(x) = 1334 and S(x) = 53450,
which is exactly the same as that in Figure 16.

When the rectangular coarse initial design domain is
used however, application of SIMP leads to a new mini-
mum, Figure 20, which does have a horizontal main beam
and a grey vertical tie. C(x) = 1050 and S(x) = 42214,

Fig. 19 Minimum of SIMP for the coarse initial design do-
main using a revised initial penalisation of pinit = 1.5. p = 10,
V (x) = 40, C(x) = 1334 and S(x) = 53450. The compliance
C(x) is calculated using the refined mesh of Figure 7

which are significantly lower than the solid tie-beam so-
lution of Figure 2 where C(x) = 1117 and S(x) = 44684.

Fig. 20 Minimum of SIMP for the coarse rectangular initial
design domain using a revised initial penalisation of pinit =
1.5. p = 10, V (x) = 40, C(x) = 1050 and S(x) = 42214.
The compliance C(x) is calculated using the refined mesh of
Figure 7

Further investigations have shown that when higher
initial penalisation values are used, SIMP is destabilised
and the solution reverts to that with an inclined main
beam. In fact, only when the initial penalisation is in a
small neighbourhood of pinit = 1.5 do we obtain the hor-
izontal main beam solution with lower compliance than
the inclined tie-beam solutions and the tie-beam solution
of Figure 2.

5.4 Investigation of SIMP using a refined mesh with the
original initial design domain

SIMP is applied to the original initial design domain with
refined mesh of Figure 7. The volume constraint is speci-
fied as V (x) ≤ 39 to be consistent with the ESO solution
in §4.3 and the filter is changed to rmin = 2.5 for the re-
fined element size, since the element size is now much
smaller.

The solution, which contains an inclined main beam,
is illustrated in Figure 21 with C(x) = 1029 and S(x) =
40571. C(x) and S(x) are now lower than the tie-beam
solution of Figure 2 and S(x) is within 3% of the equiv-
alent design from ESO presented in Figure 8.

We now define the volume constraint to be the same
as for the S-history single-run-global minimum of V (x) ≤
99, which produces the solution illustrated in Figure 22.
The compliance for this new solution is C(x) = 397 and
S(x) = 39197, which in both cases are slightly higher
than for the ESO equivalent of Figure 10. Also, unlike
the ESO equivalent solution, S(x) is higher for this SIMP



10

Fig. 21 Minimum of SIMP using the refined initial design
domain with p = 10, V (x) = 39, C(x) = 1029 and S(x) =
40571

solution than it is for the original initial design domain
of Figure 1.

Fig. 22 Minimum of SIMP using the refined initial design
domain with p = 10, V (x) = 99, C(x) = 397 and S(x) =
39197

The results thus far have shown that refining the
mesh allows for SIMP to find smooth tie-beam-like de-
signs with an inclined main beam when V (x) ≈ 40 is
specified. Edwards et al (2006) also obtained inclined tie-
beam solutions with low compliance when the heuristic
optimality criterion was used. We now change the design
domain to be rectangular and refine the mesh.

5.5 Investigation of SIMP using a refined mesh with a
rectangular initial design domain

SIMP is applied to the test problem with the rectangular
initial design domain and a refined mesh, Figure 11. The
filter of rmin = 2.5 for the refined element size is used
with the volume constraint of V (x) ≤ 43, which is the
same as for the equivalent ESO solution of Figure 12.
This leads to the smooth inclined design of Figure 23
with C(x) = 935 and S(x) = 40996. The results are
consistent with those of the original initial design domain
with a fine mesh in §5.4.

Fig. 23 Minimum of SIMP when applied to the refined test
problem with a rectangular initial design domain. p = 10,
V (x) = 43, C(x) = 935 and S(x) = 40996

Results similar those of ESO are also obtained when
SIMP is constrained to the higher volume of the S-history
global optimum produced by ESO, V (x) ≤ 111. This
solution has a compliance of C(x) = 350 and S(x) =
39035. Therfore, SIMP also finds that the larger volume
solutions have a better stiffness - volume ratio compared
to the solutions with V (x) ≈ 40 solutions.

Refining the mesh for either initial design domain, re-
sults in an inclined tie-beam solution when V (x) ≈ 40 is
specified. These smooth solutions then have lower com-
pliance C(x) and S(x) compared to the tie-beam solution
of Figure 2. They are also comparable to the results from
ESO (§4.3 and §4.4). We note here that changing the ini-
tial penalisation of the continuation method as we did in
§5.3 does not change the material layout of the solution.
An inclined tie-beam solution is always achieved.

6 Conclusions

Topology optimisation methods of ESO and SIMP have
been investigated using the tie-beam test problem in-
troduced in Zhou and Rozvany (2001). ESO and SIMP
were likely to encounter some difficulties since they were
solving integer programming problems using heuristic al-
gorithms based on local sensitivities. This investigation
has identified some of the difficulties associated with the
two methods and the reasons behind the said difficul-
ties. A comprehensive summary of the results is given in
Table 1.

ESO and SIMP solve different optimisation problems,
however, their objective functions are both based on com-
pliance and volume. SIMP solves for a continuous min-
imiser which has low compliance for a specified volume
and produces a smooth solution. S(x) is the discrete ob-
jective function used with ESO and produces a num-
ber of minima representing a balance of compliance and
volume. Given the numerical difficulties in solving such
problems, both methods have been observed to perform
well.

ESO failed to solve the test problem with the given
coarse initial design domain. However, a simple analy-
sis indicated that the mesh of the test problem was too
coarse for further optimisation. Hence, due to the lack
of termination criteria together with the severe com-
plete element removal in the current ESO algorithm,
non-optimal modification in a coarse mesh environment
was inevitable. This non-convergent property of ESO
needs to be addressed, perhaps by an appropriate ele-
ment addition algorithm.

Upon mesh refinement or the use of an enlarged ini-
tial design domain, ESO was able to find consistent topo-
logical tie-beam solutions. These tie-beam solutions of
ESO had reductions on both S(x) and C(x) when com-
pared to the tie-beam solution in Zhou and Rozvany
(2001). In fact, the solution with the lowest S(x) was
produced by ESO.
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Table 1 A summary of all SIMP and ESO solutions

Optimisation method and parameter Solution S(x) C(x) V (x)

Intuitive tie-beam solution (Zhou and Rozvany 2001) (Figure 2) 44684 1117 40

SIMP solution, original Ω (Figure 16) 53450 1334 40

SIMP solution, rectangular Ω (Figure 18) 54706 1361 40

SIMP solution, original Ω, pinit = 1.5 (Figure 19) 53450 1334 40

SIMP solution, rectangular Ω, pinit = 1.5 (Figure 20) 42214 1050 40

ESO solution, rectangular Ω (Figure 5) 39997 396 101

SIMP solution, rectangular Ω (Figure 17) 38926 385 101

ESO solution, refined original Ω1 (Figure 10) 38671 392 99

SIMP solution, refined original Ω (Figure 22) 39197 397 99

ESO solution, refined original Ω (Figure 8) 41699 1058 39

SIMP solution, refined original Ω2 (Figure 21) 40571 1029 39

ESO solution, refined, rectangular Ω (Figure 12) 41469 958 43

SIMP solution, refined, rectangular Ω (Figure 23) 40996 935 43
1 Minimum S(x) of all solutions
2 Minimum S(x) of all solutions with V (x) ≈ 40

SIMP found tie-beam-like solutions when a standard
continuation parameter was applied. These solutions all
have inclined main beams although the coarse mesh rep-
resentation artificially increased the total compliance rel-
ative to tie-beam solution in Zhou and Rozvany (2001).
Thus is can be said that SIMP is less sensitive to the
mesh-size since it appears to consistently find the same
inclined tie-beam solution.

SIMP has many continuation paths leading to dif-
ferent local solutions. This was investigated by varying
the initial penalisation and the initial design domain. A
different continuation path was found when the rectan-
gular initial design domain with Pinit = 1.5 was used.
This new continuation path of SIMP produced a hor-
izontal tie-beam solution which had lower compliance
than the tie-beam solution in Zhou and Rozvany (2001).
Therefore care is required when applying the continua-
tion method with SIMP.

Using a fine computational mesh with SIMP gave tie-
beam-like solutions with an inclined main beam when
the volume constraint was specified as V (x) ≈ 40. These
SIMP solutions using a refined mesh compared well with
the ESO S-history local solutions also produced using a
refined mesh with the same volume. The difference in

S(x) was as close as 3% for some solutions, but SIMP
produced the overall optimum.

When the volume constraint was specified as V (x) ≤
99 and a fine computational mesh was used, ESO and
SIMP produced similar results, however, ESO produced
the overall optimum solution.
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