
Localized periodic patterns for the non-symmetric generalized
Swift-Hohenberg equation

C. J. Budd1, and R. Kuske2

1Centre for Nonlinear Mechanics, University of Bath, UK, BA2 7AY
2Department of Mathematics, University of British Columbia, Canada V6T 1Z2.

Supported in part by NSF-DMS 0072311 and an NSERC Discovery Grant.
Corresponding author: rachel@math.ubc.ca, phone: (604) 822-4973, fax: (604)822-6074

Abstract

A new asymptotic multiple scale expansion is used to derive envelope equations for
localized spatially periodic patterns in the context of the generalized Swift-Hohenberg
equation. An analysis of this envelope equation results in parametric conditions
for localized patterns. Furthermore, it yields corrections for wave number selection
which are an order of magnitude larger for asymmetric nonlinearities than for the
symmetric case. The analytical results are compared with numerical computations
which demonstrate that the condition for localized patterns coincides with vanishing
Hamiltonian and Lagrangian for periodic solutions. One striking feature of the choice
of scaling parameters is that the derived condition for localized patterns agrees with
the numerical results for a significant range of parameters which are an O(1) distance
from the bifurcation, thus providing a novel approach for studying these localized
patterns.

Keywords: Asymptotic balance, Localized patterns, Lagrangian, Heteroclinic

connection

1 Introduction

Spatially localized oscillatory patterns have been studied in a variety of models and
contexts, including convection, chemical patterns, elasticity, and optics (see [1]-[7] and
references therein). In order to study the appearance of this phenomenon, simplified
models, such as the Swift-Hohenberg equation have been used. The Swift-Hohenberg
equation has also been used as a canonical model to study many other properties of
pattern dynamics.

Heterogeneity is an obvious cause of localized oscillations, since a spatially varying medium
can lead to spatially varying patterns, or patterns appearing only in localized regions of
space; for example, see [8], [9] and [10]. Heterogeneity is not a necessary condition for such
patterns; localized oscillations can also occur in homogeneous systems, where they have
been referred to as stable coexisting patterns [11, 12, 13], or where pinned interfaces or
grain boundaries between rolls and steady states have been studied [14, 15]. It is typically
more difficult to identify parametrically the conditions for spatially localized patterns in
the homogeneous case, since they can arise through different mechanisms, depending on the
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application. A number of experimental and computational results [1, 2, 11, 12, 13, 16], and
many others, have shown that these localized oscillations can occur in different systems
of reaction-diffusion and Swift-Hohenberg models. They appear in parameter regions
corresponding to subcritical bifurcations [11, 13, 16, 17] and bistability regions [1, 2, 12]
and in the presence of both symmetric and asymmetric nonlinearities.

In this paper we look for spatially localized cellular (roll type) patterns in the context of
the generalized Swift-Hohenberg (SH) equation

ut = Lu + f(u) ≡ −
(

q2
c +

∂2

∂x2

)2

u + ru + f(u) (1.1)

f(u) = b2u
2 + b3u

3 + b4u
4 + b5u

5 + . . . . (1.2)

A typical pattern of this type is illustrated in Figure 1.1 and comprises a sequence of near
identical cells close to x = 0 with rapid decay to zero as |x| → ∞ in the final cell. In the
equation (1.2) u plays the same role as the variable for temperature in convection problems
or concentration in chemical reactions, and r plays the role of a control or bifurcation
parameter with a critical value of r = 0. It is well known that the zero solution is stable
to periodic perturbations for r < 0, and for r > 0 extended periodic solutions (rolls) are
stable.

We describe localized oscillatory solutions of (1.1) by deriving an equation for the envelope
or amplitude of the patterns. An asymptotic expansion for u that balances relative sizes of
the linear and nonlinear effects is the basis for the construction of the amplitude equation,
which provides conditions for the localized solutions in terms of the model parameters. In
particular, we are able to construct heteroclinic connections between the steady (zero) state
and oscillatory patterns. The parameter values at which these heteroclinic connections
occur lie at the centre of the range of parameters at which we observe roll patterns with an
arbitrary number of rolls. Then we have a description of the interface or grain boundary
for the coexisting steady state and rolls. The conditions for these heteroclinic connections
between zero and the oscillatory patterns can be written in terms of a relationship between
the bifurcation parameter r and the coefficients bj of the nonlinear term in (1.2) which
takes the form

ε2(r) =
3

4

ν2(bj , r)

g(bj , r)
. (1.3)

Here, the parameters ε2, ν and g are obtained from the coefficients in the amplitude
equation, and we omit their arguments in the remainder of the paper. The parameter
1/ε � 1 represents the length scale of the slow evolution of the pattern and

√
ν the ratio

between the amplitude scale and ε. The expression (1.3) represents a curve which lies in
the center of a region for observing these localized patterns; the region can be described
by including exponentially small corrections to the result (1.3), but we do not compute
these in this paper. These are discussed further in Section 6 and in [14, 15, 18].

Much of the analysis of this paper is motivated by [18] which gives an asymptotic analysis
of the steady state equation for a strut on a Winkler foundation

uξξξξ + Puξξ + u + a2u
2 + a3u

3 + a4u
4 + a5u

5 + . . . . = 0 , (1.4)

with the load P as bifurcation parameter. In studies [7] and [18] of (1.4) and in our
consideration of the generalized Swift-Hohenberg equation (1.1), the focus is on two
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classes of nonlinearity. In terms of the coefficients bj , the first is the general asymmetric
nonlinearity,

b2 6= 0, 0 > b3 > −b2
2h(qc), (1.5)

where h(qc) is a smoothly varying positive function of qc which is defined later (see
3.8). This nonlinearity has been considered computationally in other studies of localized
oscillatory patterns in the Swift-Hohenberg equations [12]. The second is the symmetric
nonlinearity,

b2 = b4 = 0, b3 > 0, b5 < 0, (1.6)

which has the additional symmetry

f(−u) = −f(u).

The symmetric case has been analyzed in [15] and studied computationally in [11].

Localized behaviour, comprising cellular patterns, occurs in the limit ν → 0, where the
respective definitions of ν in the asymmetric and symmetric cases are

ν =
3

2
[b3 + b2

2h(qc)] and ν = b3/
√

|b5| → 0 . (1.7)

In the context of the amplitude equation the limit ν → 0 corresponds to a balance of the
destabilizing and stabilizing nonlinear effects on the oscillations. In Figure 1.1 we show
representative localized patterns of coexisting rolls and steady states for the different
cases of symmetric and asymmetric nonlinearities, constructed from the asymptotic
approximations for u.
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Figure 1.1: Representative graphs of localized cellular patterns for (a) the symmetric nonlinearity
b2 = b4 = 0, and (b) the asymmetric nonlinearity b2 6= 0, both with r < 0.

In Figure 1.2 we show the condition (1.3) in terms of the parameters r and bj for these
localized roll solutions. The symmetric case given by (1.6) is somewhat easier to analyse
as it admits symmetric solutions with zero mean and for which u(x) = −u(x0 − x) for
some x0. We outline the general derivation for the general case (1.5) in the Sections 2
and 3. In the following Sections we show that there is a significant difference between the
cases for symmetric b2 = b4 = 0 and asymmetric b2 6= 0 nonlinearities. The asymptotic
results are compared with numerics for both cases.

The main ingredient of the construction is a crucial scaling of parameters that leads to
an asymptotic expansion that balances relative sizes of the linear and nonlinear effects.
This balance is the key to finding the parametric condition (1.3) for the localized cellular
patterns shown in Figure 1.1. In contrast, previous analyses such as [12] and [15] rely
on a close tie to the bifurcation parameter and the linearized problem about the critical
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Figure 1.2: The asymptotic relationship (1.3) between r and the coefficients bj of the nonlinear
terms in f(u) which corresponds to localized oscillatory solutions with an arbitrary number of cells,
as predicted by the analysis. In the top graph we show the results for the symmetric nonlinearity
r vs. b3/

√
−b5, and in the bottom graph we show the results for the asymmetric nonlinearity r vs.

b3/b2

2. Note that we give the results for r an O(1) distance from the critical value r = 0. In Section
4 we show the agreement with the results presented in this figure and the numerical calculations.

point r = 0. As we show in Sections 2 and 4, an approach of this type gives results
which are valid in general only for parameter values very close to the bifurcation point
r = 0. The analysis presented here is more flexible, and we show that it is valid well for
parameter values an O(1) distance from the bifurcation point. In Section 4 we compare our
analytical results with previous results and numerical results, demonstrating the validity
of the results for the range of r shown in Figure 1.2.

Our analysis also highlights a number of important properties of these localized oscillatory
solutions. We show that the parametric condition (1.3) for localized rolls is equivalent to
finding a periodic solution with vanishing Lagrangian L and Hamiltonian H for (1.1), with
Lagrangian integral L (taken over one period) given by

L ≡
∫

[

−(u′′)2

2
+ 2q2

c

(u′)2

2
− (q4

c − r)
u2

2
+ F (u)

]

dx = 0, and F ′(u) = f(u) . (1.8)

and the first integral, the Hamiltonian H, defined by

H = u′′′u′ − u′′2

2
+ 2q2

c

u′2

2
+ (q4

c − r)
u2

2
+ F (u). (1.9)

The analysis of the amplitude equation also leads to phase corrections and asymptotic
results for the wave number selection of the pattern. There have been a number of previous
studies of the Swift-Hohenberg equation which have been concerned with amplitude
equations, vanishing L and H, phase corrections, and wave number selection for localized
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patterns. We give a careful accounting and comparison of the relevant results in the next
section.

The remainder of this paper is organized as follows: In the next section we outline the
main results and discuss their relationship with previous work. In Section 3 we derive
the amplitude equation, give the analysis leading to the main analytical results, and also
give the stability analysis using the amplitude equation. In Section 4 we compare the
analytical results with computational results. In Sections 5 we demonstrate extensions to
localized patterns with connections to non-zero steady states.

2 Main results and relationship with previous work

Several analyses have pointed towards the description of localized oscillations with
amplitude equations in certain limits. Studies by Pomeau [19] Bensimon [14],
Nepomnyaschy [15] and Sakaguchi and Brand [11] provide a general outline for looking for
conditions for these localized patterns for specific nonlinearities in the Swift-Hohenberg
equation, in terms of particular relative scalings between the bifurcation parameter, length
scales, and the amplitude. These studies recognized some of the ingredients that were
necessary for constructing these solutions, for example, nonlinearities in the amplitude
equation which include quintic terms and particular scaling behavior of the bifurcation
parameter. However, these previous results did not provide a way to map out these
localized cellular patterns in parameter space or to construct these solutions for general
nonlinearities.

We emphasize in this paper that the correct balance with nonlinear terms is crucial, leading
to a flexibility in the results which are valid even for O(1) values of |r|. First we outline
the difference in the approach for deriving the amplitude equation. Then we also compare
other results related to the Lagrangian L, the Hamiltonian H, and wave number selection.

2.1 Overview and description of the amplitude equation

The key feature of the analysis is a description of the behaviour of the solution which is
valid both close to the bifurcation point r = 0 and for values an O(1) distance from r = 0.
We achieve this by considering an expansion which involves three small parameters which
have a subtle interaction. In particular, we look for steady state solutions which have a
slow spatial scale X = εx and an amplitude scale δ with ε � 1, δ � 1. The asymptotic
approximation of the stationary solution for u is given by

u(x) ≡ u(x,X) ∼ δu1(x,X) + δ2u2(x,X) + δ3u3(x,X) + . . . . (2.1)

The scales δ and ε are related via the expression

δ = ε/ν1/2, (2.2)

where ε � 1 is closely related to r and ν depends on the values of bj. We define ε
presently, and here note that ν, defined in (1.7) can vary in order of magnitude from O(1)
to O(ε). Then δ can vary in scale between ε and

√
ε and the expansion (2.1) is valid over
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a significant range of values of r. We now describe the differences between this approach
and that of previous asymptotic approximations and associated amplitude equations.

The usual derivation via perturbation theory of the amplitude equation for extended
cellular patterns or rolls in the Swift-Hohenberg equation is described for example in
[20]. In summary, near the critical value r = 0, a small parameter ε̃ � 1 is chosen so that

ε̃2 = −r > 0 , (2.3)

for the subcritical case, and a slow spatial variable X̃ = ε̃x is also defined. Then a standard
multiple scales asymptotic expansion for u is given in the generic form [20]

u(x) ∼ ε̃U1(x, X̃) + ε̃2U2(x, X̃) + ε̃3U3(x, X̃) + . . . , (2.4)

which is equivalent to taking ν = 1 in (2.2). More precisely, the stationary solution u
is a slowly varying modulation of a more rapidly varying spatial oscillation taking the
following form for the stationary case

u(x) ∼ ε̃Ã1(X̃)eikx + c.c. + ε̃2
[

Ã0(X̃) + Ã2(X̃)e2ikx + c.c.
]

+ O
(

ε̃3
)

... . (2.5)

In the usual derivation, k is taken to be the critical wave number k = qc corresponding to
the most rapidly growing mode of the solution of the linearised equation at r = 0. Then
an equation for the amplitude Ã1(X̃) as a function of the slow variable X̃ is derived using
the method of multiple scales and perturbation analysis [20]. For the scaling given in (2.5)
we get a stationary equation for Ã1(X̃) of the following Ginzburg-Landau form,

(6k2 − 2q2
c )Ã1X̃X̃ = Ã1 − 2ν̃|Ã1|2Ã1, , (2.6)

where ν̃ is a constant related to the parameters of the original equation which approaches
ν (1.7) as r → 0. Solving (2.6), we get an expression for ε̃Ã1(X̃) which describes a small
amplitude homoclinic solution for A [21],

ε̃Ã1(X̃) =
ε̃

ν̃1/2
sech

(

X̃
√

6k2 − 2q2
c

)

with X̃ = ε̃x. (2.7)

We see clearly that as ν̃ → 0, the asymptotic validity of this solution is lost, so that the
scaling used in (2.5) is incorrect. Indeed the breakdown is associated with the creation of
the spatially localized oscillations, which have a different form. This motivates the choice of
δ that we use in the more generally valid asymptotic expansion we construct presently. In
terms of the amplitude equation, this breakdown corresponds to the case when an equation
of the form (2.6) is not sufficient to describe the envelope of the localised solutions, and
an alternative for the balance of leading order terms in the amplitude equation must be
found. To do this we must include additional higher order terms in the amplitude equation
to resolve the degeneracy related to ν̃ → 0. That is, we look for a stationary equation
with quintic nonlinearity, such as,

c1ÃXX = c2Ã − 2c3Ã
3 + c4Ã

5 + ic5ÃX |Ã|2 . (2.8)

One way to obtain an equation of this form from a multi-scale expansion, is to use a
different amplitude scaling in which we take δ = ε̃1/2 so that ν = ε̃1/2 in (2.2). This leads
to an expression for u of the following form

u ∼ ε̃1/2U1(x, X̃) + ε̃U2(x, X̃) + ε̃3/2U3(x, X̃) + . . . , X̃ = ε̃x, (2.9)

6



where ε̃ is the same as in (2.4). An expansion of the solution in this form for the symmetric
Swift-Hohenberg equation is described in [15]. Substituting as before, and expanding in
powers of ε̃ yields a series of equations of the form:

O(ε̃1/2) :

(

∂2

∂x2
+ q2

c

)2

U1 = 0

O(ε̃j/2) :

(

∂2

∂x2
+ q2

c

)2

Uj = Hj . (2.10)

for the stationary solution. Then U1 = Ã1(X̃)eikx + c.c. with k = qc as before, and Hj

involves derivatives of Ã(X̃) and Um for m < j. This yields an equation of the form (2.8)
for Ã1, with c5 = 0 for the case of the symmetric underlying equation. Whilst this analysis
works well close to r = 0 it loses resolution for localized cellular oscillations as |r| increases.
In Section 3, following (3.3) we show how the equations in (2.10) resulting from the
ansatz (2.9) restrict the validity of the higher order terms and coefficients in the amplitude
equation to a neighborhood close to r = 0. The resulting loss of resolution for increasing
|r| is most significant when the underlying equation is not symmetric, corresponding to a
lack of conservation of the angular momentum in the envelope equation. We see this loss
of resolution in the comparison with numerical experiments presented in Section 4.

To overcome these problems, we now present an analysis for which we define a different
expansion for u of the general form (2.1). Here the ideas from (2.4) and (2.9) are combined
to yield a more general amplitude scaling. More precisely, we again consider a slowly
modulated oscillating solution of the form

u(x) ∼ δA1(X)eikx + c.c. + δ2
[

A0(X) + A2(X)e2ikx + c.c.
]

+ O
(

δ3
)

.... (2.11)

We take
δ = ε/ν1/2

with ν given in (1.7) and X = εx, replacing the definition of ε̃ with

ε2 = (q2
c − k2)2 − r ≡ µ1(k) . (2.12)

This definition of ε includes an additional dependency on qc and k which allows us to
consider O(1) values of |r|. This definition follows from a consideration of the amplitude
equation, balancing the linear and the nonlinear terms. The spatial scaling parameter ε
is defined in terms of the symbol of the linear operator L

Leimkx = (q2
c − m2k2)2 − r ≡ µm(k). (2.13)

The function µm appears again in the analysis of the next section, and k is determined
as part of the analysis. When k is close to qc this definition of ε in (2.12) is close to that
of ε̃. However, as shown above, the scalings in (2.5) lead to an amplitude equation (2.6)
which is not appropriate for describing localized rolls, so we must use a different scaling
for the amplitude.

With this choice of parameters in the expansion, we expand in powers of δ and find a
series of equations of the form

O(δ) :

(

∂2

∂x2
+ q2

c

)2

U1 − rU1 = 0
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O(δj) :

(

∂2

∂x2
+ q2

c

)2

Uj − rUj = Hj , (2.14)

as shown in detail in Section 3. The definition of ν (1.7) is obtained through this expansion
as the coefficient of the cubic nonlinearities. By balancing the linear, cubic, and quintic
nonlinearities for the amplitude A, this expansion avoids the breakdown of (2.6), and we
get

(6k2 − 2q2
c )

ε2

δ4
A1XX =

ε2

δ4
A1 − 2

ν

δ2
|A1|2A1 + c|A1|4A1 + i

ε

δ2
dA1X |A1|2, (2.15)

where c and d are derived parameters which depend on bj and r, as given in the
Appendix. The amplitude equation (2.15) has non-zero fixed points corresponding to
periodic solutions of the Swift-Hohenberg equation. The balance of all terms in (2.15)
corresponds to small values of ν = O(ε), so that δ = O(ε1/2). The expansion (2.11)
combined with the definition of ε (2.12) yields a derivation which is not closely tied to
r = 0, but rather is based on a balance of linear and nonlinear terms for a larger range of
parameter values, including r = O(1). The form of (2.14) in which r appears, contrasted
with (2.10), gives evidence of this difference, and we give further details in Section 3. As
r → 0 the scaling of the amplitude in (2.11) is similar to (2.9), and not to (2.5). As |r|
increases away from 0, the balance of terms in (2.15) is due to the form of the parameters
δ and ε.

When looking for steady solutions A(X) = ρ(X)eiϕ(X) from (2.15) we find a heteroclinic
connection between the origin and one of the fixed points of the amplitude equation which
describes the spatially localized oscillations of the Swift-Hohenberg equation which arise
as heteroclinic connections between the zero solution and a periodic solution. In terms of
ρ this connection takes the form

δρ(X) =

√

3

g

ε1/2

√
1 + eθX

with θ =

√

2

3k2 − q2
c

, (2.16)

with g in terms of c and d (3.16). The condition for such a connection is given by

ε2 =
3ν2

4g
, (2.17)

as indicated in (2.2). This is a key result of the paper, as it gives the link between
r and bj for the system to have an arbitrarily large number of localized rolls. (In
fact we see such an arbitrarily large number over an interval of values, the width of
which decreases exponentially as r → 0 [18].) Since the heteroclinic connection for the
amplitude equation corresponds to localization of the oscillations, the condition (2.17)
gives the critical condition for localized cellular patterns. The same condition holds in
the asymmetric case, and in that case we also get a phase correction through determining
ϕ. In Section 4 we calculate the corresponding periodic solution of the Swift-Hohenberg
equation which is the limit of the heteroclinic connection.

Since (2.11) and (2.9) both lead to amplitude equations of the same form, (2.15) and (2.8),
respectively, a condition for heteroclinic connections similar to (2.17) can also be obtained
from (2.8). The condition corresponding to the expansion (2.9) was given in [15] for the
symmetric case (b2 = b4 = 0), and it can be also be obtained by taking the limit as r → 0
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in the coefficients ν and g in (2.17). However, for r not very close to zero, the results
from the two expansions are different. A comparison of the derivation of the equations
(2.15) and (2.8) explains why this is so. The expansion (2.9), equivalent to the approach
used in [15], scales the amplitude with |r|1/4 for |r| � 1. Then the parameter r does
not appear in the linear operator on the left hand side of (2.10), and as a consequence,
r does not appear in the coefficients of the nonlinear terms in the amplitude equation
(2.8). In contrast, using (2.11) yields a linear operator as given in (2.14) in which r does
appear, since δ rather than r is assumed to be small. Then r is included in the expressions
for uj and consequently also in the coefficients ν and g. The scaling of the amplitude
with δ rather than r, and the subsequent balancing of linear and nonlinear terms using
the expressions for ε and ν, provides an expansion based on a combination of parameters
rather than a single parameter. Then the expansion (2.11) yields results valid for a larger
range of r, while expansions based on (2.9) correspond to values of r quite close to zero,
particularly for the general asymmetric case of b2 6= 0.

By introducing the parameter δ as the size of the amplitude, we allow a solution which
describes the behavior over a larger range of parameters. The amplitude is related not just
to ε, but also to ν. The significance of the parameter ν is that it is small for parameters
in which there is a localized oscillatory pattern, that is, a heteroclinic connection in the
amplitude equation. The amplitude is not tied strictly to ε, but it can also vary with
ν, so that different types of solutions can be approximated using (2.11). Note that one
can use the expansion (2.11) to obtain solutions of the form (2.7) for parameter ranges
corresponding to ν = O(1), since the leading order equation (2.6) is recovered from (2.8) in
this range. Thus the expansion (2.11) can be used to describe small homoclinic solutions
for ν = O(1) and localized cellular patterns described by heteroclinic connections from
the origin to the periodic solution for ν � 1.

In the context of the amplitude equation, we note some significant differences between
the symmetric and asymmetric cases. In [15] an approximation for the envelope equation
was constructed, using an analysis about r = 0. In the symmetric case this construction
is relatively straightforward, since higher harmonics do not play a significant role in the
construction of the solution. Using the symmetry, it is possible to infer the form of the
equation for the amplitude A of the primary mode of the oscillatory behavior u ∼ Aeikx

for k = qc. However, as we show in Section 3, in the asymmetric case it is essential
to do a careful balance between nonlinear and linear terms, since secondary modes play
a significant role in the construction of the amplitude equation. Furthermore, through
this analysis we show that in the symmetric case there is technically a correction to the
asymptotic behavior obtained in [15], but in practice this correction is very small, so that
the analysis of [15] gives a good result. This is shown in detail in Section 3. In [18] it was
shown that this correction has a larger effect on the condition for the heteroclinic for a
strut with symmetric nonlinearity. There the results are in terms of a different bifurcation
parameter, the load P, which is the coefficient of the second derivative term.

2.2 Wave number selection and L and H

We also consider the important conditions that both the Lagrangian L (1.8) and
Hamiltonian H (1.9) vanish for a periodic solution, equivalent to the condition (2.17).
In [15] these conditions were found for the symmetric case b2 = b4 = 0. They are
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necessary conditions for the heteroclinic connections underlying the localized patterns,
or in the terminology of [15], the pinning of a grain boundary between coexisting periodic
and uniform steady states. In Section 4 we consider periodic solutions for which H = 0
and L = 0. We compute these solutions numerically, and see the correspondence of the
condition L = H = 0 with the wave number selection k ≈ qc. Through computations
and in the analysis of the amplitude equation in Section 3, we see that the conditions
H = 0 and L = 0 play a prominent role in the construction of the localized solutions,
These conditions hold for both the asymmetric and symmetric cases. The form of L and
H for (1.1) is the similar to that for the strut on a Winkler foundation (1.4). In [18] it
was shown that the criteria L = H = 0 are equivalent to the equation for the Maxwell
load P = PM , the critical load for which localized buckling is observed.

Differences in the phase correction are also found when contrasting the asymmetric and
symmetric cases. In [15] the phase correction in the wave number selection for the
symmetric nonlinearity was given by

k = qc + O(r2) . (2.18)

Since this correction is very small for r near 0, an analysis which is based solely on the
primary mode eiqcx gives a good approximation. We confirm this using our analysis for
the symmetric case. However, in the asymmetric case, the phase correction to k = qc

in the localized behavior is O(ν) = O(ε), as also shown in the numerical calculations in
Section 4. In Section 3.1 we give an explicit value for this phase correction (3.27), using the
envelope equation and looking for heteroclinic connections from zero to periodic solutions.
This difference in the phase correction is related to the following loss of symmetry of the
envelope equation in the asymmetric case. In [15] it was observed for the symmetric case
that solutions of the amplitude equation written as A = ρeiϕ are solutions for ϕ =constant.
That is, from the envelope equation for A, it can be shown that the angular momentum
ρ2ϕ′ vanishes, where ′ denotes a spatial derivative. In contrast, in the asymmetric case,
the envelope equation no longer has vanishing angular momentum; rather ρ2ϕ′ + Cρ4 = 0
for C = constant, as shown in Section 3.1.

A number of other studies have explored the existence and dynamics of localized patterns
by other methods. These types of solutions were obtained numerically in [12] for the
SH equation and for other models in [1, 2] by looking for connections between steady
states (u=constant) and stable roll solutions in bistable parameter regimes. In [17], the
theory of dynamical systems was used to study the existence and stability properties
of static localized structures, describing these patterns as fronts between homogeneous
and periodic patterns. Their focus was on parameter regimes without bistability, such
as in the subcritical regime where extended rolls are unstable, and computations were
included to illustrate their description. In [11, 16, 22] these localized patterns were
numerically explored further in subcritical regimes for the SH equation. In the next
section we construct these solutions analytically for a general nonlinearity, and in Section
5 we extend this analysis to also give parameter regimes in which localized solutions exist
due to connections between non-zero steady states and periodic oscillations about these
steady states. These appear in parameter regimes in which these non-zero steady states
are not stable.
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3 The Amplitude Equation for localized solutions

In this section we outline the derivation of the amplitude equation, which leads to the
condition for localized solutions. A similar calculation is given in [18], and we provide the
details particular to this application here. We focus on stationary solutions in the general
non-symmetric case when b2 6= 0. Essentially the same approach is used in the symmetric
case b2 = b4 = 0, and is discussed in less detail in Section 3.2. Time-dependent behavior
is considered in Section 3.3.

Starting with the generalized Swift-Hohenberg equation (1.1) we look for an equation
for the slowly varying amplitude of the primary mode with frequency k. For stationary
solutions, we then expand the function u(x,X) in terms of the small parameter δ, as in
(2.11). Then we replace u′(x) by the compound expression u′(x) = ux+εuX . Even though
the two spatial scales are not independent, we treat them as independent in a multiple
scales expansions. For clarity we mainly consider the case

ν = O(ε) ⇒ δ = O(ε1/2), (3.1)

anticipating that we are looking for the heteroclinic solution corresponding to localized
solutions. From the derivatives we then get terms which have coefficients εj , which then
are O(δ2j) from (3.1). Once these scalings and expansions are chosen, the derivation of
the amplitude equation is a straightforward envelope equation calculation.

We now substitute the expansion (2.11) into (1.1), and obtain a sequence of equations for
uj(x,X), j = 1 − 5, by equating the coefficients of like powers of δ. These equations are
of standard form

O(δ) : Lu1 =





(

q2
c +

∂2

∂x2

)2

− r



u1 = 0 (3.2)

O(δj) : Luj = Hj(u1, u2, . . . , uj−1), j > 1 . (3.3)

Here Hj is function of the um, m < j, which have already been determined at lower
order in δ. It includes derivatives with respect to both x and X, as well as terms without
derivatives. Specifically, the sequence (3.3) is

O(δ2) : Lu2 = b2u
2
1

O(δ3) : Lu3 = −4
ε

δ2
(u1)Xxxx + 2b2u1u2 − 4

ε

δ2
q2
c (u1)Xx + 2b2u1u2 + b3u

3
1

O(δ4) : Lu4 = b2u
2
2 − 4

ε

δ2
(u2)Xxxx − 4

ε

δ2
q2
c (u2)Xx + 2b2u1u3 + 3b3u

2
1u2 + b4u

4
1

O(δ5) : Lu5 = −2
ε2

δ4
q2
c (u1)XX − 6

ε2

δ4
(u1)XXxx − 4

ε

δ2
q2
c (u3)Xx − 4

ε

δ2
(u3)Xxxx + 2b2u2u3

+4b4u
3
1u2 + b5u

5
1 + 2b2u1u4 + 3b3(u

2
1u3 + u1u

2
2) (3.4)

As discussed in Section 2, the linear operator L in the sequence (3.2)-(3.3) includes r, and
thus differs from (2.10) which was obtained using the expansion (2.9). Using an expansion
for |r| � 1 of (3.3) yields (2.10).

With the ansatz
u1 = A1(X)eikx + c.c.,
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the leading order equation at O(δ) is

((k2 − q2
c )

2 − r)A1(X) ≡ µ1(k)A1(X) = 0 . (3.5)

Here µ1(k) = ε2 = O(δ4) (2.12), so that this term gives a contribution at higher order
(O(δ5)). Thus the O(δ) equation is simply the identity 0 = 0. At this stage the wave
number k is not determined, and follows from the solvability conditions at higher order.

Next we solve the O(δ2) equation, which yields

u2 = A0(X) + B2(X)e2ikx + c.c.,

where

B2(X) = b2
A2

1(X)

µ2(k)
and A0(X) = 2b2

|A1(X)|2
µ0(k)

. (3.6)

Next we consider the O(δ3) terms. To prevent resonance and consequent growth in
u3 we must avoid secular terms by ensuring that the right hand side H3(u1, u2) is
orthogonal to the homogeneous solution e±ikx of the linear problem Lu = 0. Although
Leikx = µ1(k)eikx 6= 0, it yields a right hand side which is O(δ4) from (3.5), and therefore
at this order we may treat it as being the homogeneous solution. The secular terms can
then only be zero to this order if

− ε

δ2
(−4ik3A′

1(X) + 4iq2
ckA′

1(X)) + 2b2(B2A
∗

1 + A0A1) + 3b3|A1|2A1 = 0. (3.7)

Now from (3.6) and (1.7), the terms which do not involve derivatives of A1(X) are given
by

[

2b2
2

(

µ−1
2 + 2µ−1

0

)

+ 3b3

]

|A1|2A1 = 3
[

b2
2h(qc) + b3

]

|A1|2A1 = 2ν|A1|2A1. (3.8)

Then 2ν > 0 is the coefficient of the cubic term in the envelope equation, as discussed in
Section 2. There we showed that the magnitude of this coefficient is crucial in determining
the behavior of the envelope, which motivates the choice of ν that we have taken in this
paper. As mentioned above, we consider the case when ν = O(ε), so this expression is
O(δ2) and does not play a role at O(δ3).

Thus, balancing terms of the same order, the solvability condition reduces to

4ikA′

1(X)[−k2 + q2
c ] = 0 . (3.9)

Therefore either A′(X) = 0, which corresponds to a periodic solution of (1.1), or if the
solution is slowly varying (a homoclinic or heteroclinic solution) we must have

k2 = q2
c (3.10)

to this order of asymptotics. Later we demonstrate that we obtain a correction to the
frequency which is consistent with the condition that the Lagrangian energy of the periodic
solution is zero (see Section 4). Because of the special structure of the linear operator in
the SH equation, the wave number obtained in this construction is the same to leading
order as that obtained using an expansion about the bifurcation point as in (2.9). In the
analysis of [18], where the model has a similar structure but has a different bifurcation
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parameter, it was shown that wave number of the localized oscillations is not necessarily
the same as that obtained using an expansion about the bifurcation point.

If the scaling in (3.1) does not hold, that is, if

ν = b2
2

(

µ−1
2 + 2µ−1

0

)

+ 3b3/2 = O(1)

with respect to ε, the results then obtained correspond to the region of parameter space in
which the orbits of interest are homoclinic and not heteroclinic connections. In this case,
the expansion (2.11) leads to the same result as the standard expansion (2.5), so that the
quintic terms can be treated as higher order terms in the amplitude equation, as discussed
in the previous section (2.6)-(2.7).

Proceeding with the expansion, given (3.10) the solvability condition for u3 is satisfied for
functions A1(X) for which A′

1(X) is non-zero. Solving the resulting equation for u3 then
gives

u3 = C3(X)e3ikx + c.c. with µ3 C3 = A3
1(X)

(

2b2
2

µ2(k)
+ b3

)

. (3.11)

The solvability condition is automatically satisfied for the O(δ4) equation for u4, and we
have simply that

u4 = R4 + B4e
2ikx + D4e

4ikx + c.c.

where R4, B4 and D4 are all functions of A1. Expressions for the coefficients R4 and B4,
which are simply corrections to the terms A0 and B2, are given in the Appendix. We do
not give an expression for the term D4 here since it plays no further role in the derivation
of the amplitude equation (3.12) for A1.

At O(δ5) we obtain a solvability condition for u5, avoiding secular terms, very much as in
the calculation at O(δ3). This leads immediately to an envelope equation for A1. After a
bit of algebra, this takes the form

(6k2 − 2q2
c )

ε2

δ4
A′′

1 =
ε2

δ4
A1 − 2

ν

δ2
A1|A1|2 + i

ε

δ2
d|A1|2A′

1(X) + c|A1|4A1 . (3.12)

The coefficients c and d are also given in the Appendix. If the nonlinearity is symmetric
in f(u) (b2 = b4 = 0), then d = 0. As discussed in Section 2, the form of the amplitude
equation (3.12) is the same as (2.8) which can be obtained using expansion (2.9). However,
the coefficients of these two equations differ if r 6= 0. Through the scaling of the amplitude
with δ in (2.11) and the resulting form of the system of equations (3.3), the coefficients ν,
ε, c and d all involve the parameter r. The equation (3.12) obtained from (2.11) rather
than (2.9) consequently holds for a larger range of parameter values corresponding to a
balance of the linear and non-linear terms valid for constructing the localized oscillations.

3.1 Analysis of the amplitude equation

In this section we consider the phase of the solution and the related angular momentum.
Looking for solutions of the amplitude equation of the form

A1(X) = ρ(X)eiϕ(X),
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with ρ(X) real, and taking the imaginary part yields

(6k2 − 2q2
c )(ρ

2ϕX)X − d
δ2

ε
ρ3ρX = 0 . (3.13)

Integrating (3.13), we have the invariant quantity for the amplitude equation, the
perturbed angular momentum

(6k2 − 2q2
c )ρ

2ϕX − d
δ2

ε
ρ4/4 = M . (3.14)

This is an invariant in addition to the Hamiltonian H. In the asymmetric case d 6= 0 the
angular momentum given by ρ2ϕX is no longer invariant in contrast to the symmetric case
d = 0 [15]. As we are considering connections to the zero solution, we take M = 0. Then
the equation for ρ is

(6k2 − 2q2
c )

ε2

δ4
ρXX =

ε2

δ4
ρ − 2

ν

δ2
ρ3 + gρ5, (3.15)

where

g = c − 3d2

16(6k2 − 2q2
c )

. (3.16)

Now we make use of the conservation laws (3.13)-(3.15) and the first integral of (3.15) to
derive conditions for heteroclinic connections and the associated wave number selection
for localized rolls [15].

In general, (3.15) has a fixed point at ρ = 0 and a homoclinic solution connecting ρ = 0
to itself. This orbit satisfies the identity obtained by integrating ρX times (3.15) which is
given by

6k2 − 2q2
c

2

ε2

δ4
ρ2

X =
ε2

2δ4
ρ2 − ν

2δ2
ρ4 +

g

6
ρ6. (3.17)

Setting ρX = 0 in this expression we have that the maximum amplitude ρH of the
homoclinic solution is given by

ρ2
H =

3ν

2gδ2



1 −
√

1 − 4gε2

3ν2



 (3.18)

provided that ε2 < 3ν2/4g.

The amplitude equation also has two non-zero fixed points (ρXX = 0) at points ρ±0 > 0
satisfying the quartic equation

(

ρ±0

)2
=

ν

gδ2



1 ±
√

1 − gε2

ν2



 . (3.19)

Observe that these fixed points correspond to those periodic solutions of the underlying
system with frequency k2 = q2

c to leading order. It is not difficult to show that

ρ−0 < ρH ≤ ρ+
0

with equality on the right hand side occurring precisely when

ε2 = 3ν2/4g. (3.20)
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At this point there is a heteroclinic connection from ρ = 0 to the fixed point ρ+
0 and for

which

ρ2
0 = ρ2

H =
3ν

2gδ2
. (3.21)

Using (2.12) and (1.7), the condition (3.20) can be written in terms of qc and the original
coefficients bj of f(u) (1.2),

µ1g =
3

4
ν2 =

3

4

[

3

2
b3 + b2

2

(

µ−1
2 + 2µ−1

0

)

]2

. (3.22)

This is the condition for the existence of a heteroclinic connection of frequency k2 = q2
c to

leading order. This heteroclinic solution has the form,

δρ(X) =
ε1/2

γ
√

1 + eθX
with γ =

√

g

3
and θ =

√

2

3k2 − q2
c

. (3.23)

The equation (3.14) provides a phase correction to the periodic solution, which is a higher
order correction to the condition k2 = q2

c (3.10) consistent with the zero Lagrangian
condition L = 0. From equation (3.14) we see that on an orbit with ρ → 0 the equation for
ϕ becomes singular unless the perturbed angular momentum vanishes. This is consistent
with a heteroclinic connection to the zero solution, for which the perturbed angular
momentum also vanishes. Integrating (3.14) with M = 0 in a neighbourhood of the
fixed point on the heteroclinic orbit we have

ϕ =
δ2

ε

dρ2
0

4(6k2 − 2q2
c )

X + ϕ0 , (3.24)

where ϕ0 is a constant, which we set equal to zero without loss of generality. Observe then
that ϕ = 0 if b2 = d = 0 in the symmetric case. Substituting k = qc, X = εx, (A.3), and
(3.21) we have

ϕ = δ2 dρ2
0

4(6k2 − 2q2
c )

x = qc
−9b2

2ν

gµ2
2

x . (3.25)

Thus, including this phase correction in the periodic solution u(x) we get the correction
for the wave number selection, so that

u(x,X) ∼ δρ(X)eikx + c.c. (3.26)

k = qc

(

1 − 9b2
2ν

µ2
2g

)

. (3.27)

Note that the phase correction ϕ is defined in terms of k, so that an approximation to the
phase correction is obtained by setting k = qc in the definition of ϕ. Then we see that the
phase correction is O(ν) in the asymmetric case. In the symmetric case, the coefficient
b2 = 0, so this correction vanishes. Then the phase correction is higher order; as shown in
[15], the correction is O(r2) for r � 1.

As shown in [18], the result (3.27) is equivalent to setting L = 0 to this order of
asymptotics. In the next section we compare the asymptotic results with the numerical
calculation of the periodic solution with H = L = 0.
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3.2 The symmetric nonlinearity: b2 = b4 = 0

The derivation of the amplitude equation follows the same procedure for the symmetric
case. In that case, it is convenient to use a preliminary rescaling, û = |b5|1/4u, so that the
equation is, after dropping ’̂s,

ut = −
(

q2
c +

∂2

∂x2

)2

u + ru +
b3

√

|b5|
u3 + u5 . (3.28)

Then the derivation proceeds as above. The expansion for u is given by

u(x,X) = δA1(X)eikx + δ3A3(X)e3ikx + c.c. + . . . , (3.29)

noting that A0 and A2 vanish since they are proportional to b2 and b4. Here ε is defined as
before (2.12) and ν = b3/

√

|b5|. Then the condition for a heteroclinic connection is given
also by (3.20), which reduces in this case to

ε2|b5| = b2
3

(

27

160
+

3µ1

10µ3

)

. (3.30)

In [15] this result was derived by using a different expansion, similar to that given in
(2.9). In that case only the first term on the right hand side of (3.30) is obtained in the
condition for the grain boundary corresponding to the localized oscillation. In practice,
the second term on the right hand side of (3.30) is small, even though it is not related
to any asymptotically small parameters, since 10µ3 > 600. Then in the graph for the
symmetric case in Section 4.1 we see little difference between the results obtained from
the expansion (2.9) and those obtained from the expansion of this paper. This is discussed
further following Figure 4.3.

As noted above, the correction in (3.27) to the leading order wave number k = qc vanishes
in the symmetric case, since it is proportional to b2.

3.3 Stability of the localized rolls

As shown numerically in [11] and [12], the localized roll structure can be pinned or it
may grow or shrink, depending on the choice of parameter values. One can view these
variations as time and space dependent perturbations of the stationary envelope solution
given in Section 3.1. To consider the effect of such perturbations we consider the time
dependent amplitude equation, which can be derived as in the earlier part of this section
by allowing the amplitude to vary on a slow time scale, A = A(X,T ) with T = ε2t. We
consider the linear stability of the localized solutions in the context of the time-dependent
amplitude equation,

∂A

∂T
= (6k2 − 2q2

c )
∂2A

∂X2
− A + 2|A|2A − c

δ4

ε2
|A|4A. (3.31)

This is the envelope equation for the symmetric case, which we consider first. We have
also used the relationship between δ, ν and ε to simplify the coefficients.

Then, substituting

A(X) = [A1(X) + ρ̂(X,T )]eiκ(X,T ), (3.32)
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into (3.31), where A1(X) satisfies (3.15), separating into real and imaginary parts, and
keeping only the linear terms for ρ̂ � 1 and κ � 1 yields

ρ̂T = Dρ̂XX + ε2ρ̂ − 2(3A1
2(X))ρ̂ + 5c

δ4

ε2
A1

4ρ̂ (3.33)

A1κT = D
(

2κXA1
′(X) + κXXA1(X)

)

(3.34)

D = 6k2 − 2q2
c . (3.35)

Assuming that ρ̂ = A1
′(X)v(X)eλ1T and κ = K(X)eλ2T and using the equation for A1,

we find that

λ2A1
2(X)K = D(A1

2K ′(X))′ (3.36)

λ1(A1
′(X))2v = D((A1

′(X))2 v′(X))′ . (3.37)

With appropriate conditions on v(X) (for example, v vanishing for large |X|), and noting
that the heteroclinic solution A1 > 0 and is monotonic for finite X, we conclude that
λ1 and λ2 are non-positive. Then we conclude that the localized solutions are stable to
small perturbations, or that they are stable in a region of parameter space near the curve
(3.20) which gives the condition for a heteroclinic connection. For the asymmetric case
b2 6= 0, the same procedure can be used to study the linear stability of the modulus of the
amplitude, replacing A1 and c with ρ and g (3.16), respectively.

4 Numerical calculations.

4.1 Computation of the periodic solutions

In this section we compute the symmetric periodic solutions in x of the equation (1.1)
which satisfy the periodic boundary conditions

u(0) = u(P ), u′(0) = u′(P ) ,

where P = 2π/k is an unknown.

There are many such periodic solutions. The ones of most interest to our calculations are
those which are the limits of heteroclinic connections of solutions of (1.1) to the origin.
Following the analysis of Section 3 these arise when the coefficients bi are such that the
periodic solution can simultaneously satisfy the conditions H = L = 0. To determine
these periodic solutions we specify certain additional conditions. Firstly we fix the phase

of the solution so that
u′(0) = u′(P ) = 0.

Secondly we look only at solutions symmetric about x = 0 so that u(x) = u(−x) and
hence

u′′′(0) = u′′′(P ) = 0.

It is certainly true that as the equation itself admits the symmetry u → u, x → −x
there is a class of symmetric periodic solutions which bifurcate from zero at the critical
value of r = 0 and which retain this symmetry. Thus it is not being overly restrictive to
confine our attention to this class. For a general choice of coefficient values bj we need
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one additional condition to specify a periodic orbit. Two are of interest, the condition for
a zero Lagrangian L = 0 solution (1.8), and secondly the condition for a zero Hamiltonian

H = 0 defined by (1.9). These are chosen because a solution satisfying L = 0 corresponds
to our earlier analysis and the condition H = 0 is necessary for a periodic solution to have
a heteroclinic connection to the origin.

In principle, for a range of values of the coefficients bj and r, then either of the two
conditions L = 0 or H = 0 leads to a well defined periodic solution u(x) together with an
associated period P and frequency k. A path of such solutions as r varies may then be
computed numerically. A simple procedure which works well for solutions satisfying L = 0
is firstly to guess values of u(0), P and H. Using (1.9) we may then determine u ′′(0). We
have the further initial conditions u′(0) = u′′′(0) = 0. We then integrate the system (1.1)
with these initial conditions, together with the equation

dL

dx
= −(u′′)2

2
+ 2q2

c

(u′)2

2
− (q4

c − r)
u2

2
+ F (u) ,

as an initial value problem over the interval [0, P ] using a variable order BDF method
with error tolerance of 10−8. Using the Powell-hybrid nonlinear solver SNSQE (see
http://gams.nist.gov/serve.cgi/Module/NMS/SNSQE/2828), the values of u(0), P and
H are then adjusted until the three conditions

u(0) − u(P ) = 0, u′(P ) = 0 and L(P ) = 0 (4.1)

are satisfied for the given value of r.

The procedure for finding solutions satisfying condition H = 0 is very similar but slightly
simpler as in this case only u(0) and P need to be determined. These procedures worked
well given reasonable initial guesses. Having determined the solution at one value of r
a branch of such solutions is then computed by using Keller’s pseudo arc-length method
[23].

When the solution satisfies H = 0 a careful use of bifurcation theory shows that there is a
path of periodic solutions which bifurcates for r < 0 from the zero solution at the critical
value of r = 0 [24]. This curve has a fold bifurcation at a point r1 < 0 and exists for
r > r1.

In contrast the curve satisfying L = 0 does not bifurcate from the zero solution; however
it does have a fold bifurcation precisely at the value r = rL corresponding to localized
oscillatory solutions, where it also satisfies the condition H = 0 [18].

For a given value of r the procedure outlined above for finding the periodic solutions with
H = 0 can be augmented to find the value of one of the coefficients bj (together with P
and u(0)) so that the condition L = 0 is also satisfied. This value of bj is precisely the one
at which we have a heteroclinic connection and its value can then be followed as r varies.

In Figure 4.1a we fix qc = 1, b2 = 1 and b3 = −0.5 and present two numerically computed
curves of k and H for periodic solutions (as a function of r) satisfying L = 0 for the case
of the non-symmetric nonlinearity

f(u) = u2 − 1

2
u3.

Observe that the limit points in Figure 4.1a occur precisely when H = 0 and that at the
left most limit point we also have k ≈ qc. The asymptotic approximation k = qc = 1 for

18



the wave number for the localized pattern is shown by the dash-dotted line in Figure 4.1a.
Note that this approximation is best precisely when H = 0.

In Figure 4.1b we extend this calculation. Keeping b2 = 1 for each value of r we allow b3

to vary so that H = L = 0. We then plot the value of the wavenumber k as a function of
r. Observe that this is close to the value of qc(1 − 9b2

2ν/µ2
2g) from (3.27) for r close to 0,

and deviates slowly from this value as |r| increases.

−0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
−0.5

0

0.5

1

1.5

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0
0.5

0.6

0.7

0.8

0.9

1

1.1

H

k

(a)

k

r

r
(b)

Figure 4.1: In the top graph (a) we show the numerical computations of H and k for the periodic
solution with L = 0 and the asymmetric nonlinearity with b2 = 1 and b3 = −0.5. The dash-dotted
line is the asymptotic approximation for the wave number (3.27). In the bottom graph (b) we
compute a periodic solution with H = L = 0 and compare the wave number obtained analytically
in (3.27) (solid line) with the wave number computed for the periodic solution with H = L = 0
(dash-dotted line).

4.2 Comparison of the numerical and asymptotic solutions

In this section we consider the parametric conditions for the heteroclinic connection. In
particular we compare the asymptotic calculations of Section 3 (3.20) with the numerical
computation of the special spatially periodic solution described above, which satisfies
both H = 0 and L = 0. As shown in Section 3, the conditions for observing these periodic
solutions correspond to the conditions for finding localized oscillations in (1.1).

In Figures 4.2-4.3 we show the numerically computed curves of (appropriate combinations
of) coefficient values bj as functions of r for which a periodic solution with H = L = 0 is
found. We also compare these results with those obtained from the expansion (2.9), which
is valid for |r| near 0.

Figure 4.2 shows the results for the asymmetric case b2 6= 0. Taking ũ = b2u in (1.1)
the equation for ũ has coefficients of the quadratic and cubic terms given by 1 and b3/b

2
2,

respectively. We conclude that b3/b
2
2 is the appropriate parameter to use to represent
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families of localized solutions, and this term is plotted as a function of r. In Figure 4.2,
we see that the results from the asymptotic expansion of this paper, (3.20) (solid line)
agree well with the numerical computation of the periodic solution with L = 0 and H = 0
(diamonds). Note that the r axis ranges from 0 to −2. That is, the asymptotic results of
Section 3 agree with the numerics for values of r and O(1) distance from the bifurcation
value of r = 0. In contrast, asymptotic results obtained from the expansion (2.9) are
plotted as a dash-dotted line. As this expansion is based on the assumption that |r| � 1,
these results fail for values of r away from zero. This difference in the range of applicability
of the various expansions was also noted in [18] for the strut; there the difference of the
results from (2.9) and (2.11) are also substantial for the asymmetric case, b2 6= 0.
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Figure 4.2: Graphs of the condition for the heteroclinic connection corresponding to localized
solutions in the case of asymmetric nonlinearity, which can be expressed as a relationship between
the bifurcation parameter r and the nonlinear coefficients bj , in particular b3/b2

2. The diamonds
correspond to the solution obtained from the numerical calculation of periodic solutions satisfying
L = 0 and H = 0, while the solid line gives the asymptotic results given by (3.20). The dash-dotted
line gives the results obtained from using an expansion (2.9), valid for |r| near 0.

In Figure 4.2 the results are shown for the particular case of qc = 1. Through another
rescaling we can get the results for the general case of qc 6= 1 by setting x → x/qc,
u → b2/q

4
cu, the axes are transformed via,

r → r

q4
c

,
b3

b2
2

→ q4
c

b3

b2
2

. (4.2)

In Figure 4.3 we show the results for the symmetric case b2 = b4 = 0. The graph is
given in terms of r vs. the ratio b3/

√

|b5|, which reflects the rescaling u = |b5|−1/4û, as
in Section 3.2. Following this rescaling, the coefficients in the cubic and quintic terms in
the equation for û are just b3/

√

|b5| and 1, respectively. In Figure 4.3 we again compare
the results from (3.20) and (3.30) (solid line) with the numerical results (diamonds) and
the results from the expansion (2.9). In this case all three curves are very close. For the
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Figure 4.3: Graphs for the parameter values corresponding to the condition for localized solutions
in the symmetric case. The diamonds correspond to the numerical solution while the solid gives
the asymptotic results given by (3.20), (3.30). The dash-dotted line again gives the results from
(2.9). In this case the solid and dash-dotted line are indistinguishable, since C3 (3.11) is very small
in practice.

case of the symmetric nonlinearity, the two expansions (2.11) and (2.9) lead to amplitude
equations with different coefficients, but the actual values of the differences are small in
practice; the difference arises through the terms involving C3 in (3.11), which is small in
practice ( magnitude 10−2).

In [18] a more significant difference was observed for localized buckling with the symmetric
nonlinearity. In that setting the condition for the heteroclinic connection obtained from
the approach of this paper were compared with the results from an expansion similar
to (2.9), which was valid for parameter values near the bifurcation point. There the
bifurcation parameter is the load P, the coefficient of the second derivative in the equation.
Then the small differences in the Swift-Hohenberg setting can be amplified in the strut
model, due to the relationship between critical parameters in the models; for example, the
bifurcation parameters for the two models are related through the nonlinear relationship
P = 2q2

c/
√

q4
c − r.

5 Localized oscillations about non-zero steady states

For the asymmetric nonlinearity (b2 6= 0), we can also look for localized patterns described
by connections or fronts between nonzero steady states and oscillatory patterns. In [12]
localized structures of this type were computed numerically, primarily in the bistability
regimes where both non-zero steady states and extended periodic solutions are stable.
There the bifurcation structure of the steady and periodic solutions is given in detail, so
we refer the reader to that discussion.
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We use the analysis of Section 3 to give conditions for localized oscillations about u = us

where us is a non-zero steady state solution to (1.1); that is, we look for connections
between us and oscillations about us. For simplicity of notation we demonstrate this for
the case b2 6= 0, b3 6= 0 and b4 = b5 = 0. Then us satisfies

(r − q4
c )us + b2u

2
s + b3u

3
s ⇒ us =

1

2b3

[

b2 ±
(

b2
2 − 4b3(r − q4

c )
)1/2

]

. (5.1)

Oscillations about this steady state are then denoted w = u − us, which satisfies the
equation

wt = Rw − (
∂2

∂x2
+ q2

c )
2w + B2w

2 + B3w
3 (5.2)

R = r + 2b2us + 3b3u
2
s, B2 = b2 + 3b3us, B3 = b3 . (5.3)

We can repeat the analysis of Section 3 to look for localized oscillations for w,
corresponding to connections between zero and the periodic solution. Replacing r and bj

with R and Bj, respectively, in the coefficients in (1.1), we construct the envelope for the
oscillations, thus providing the condition (3.20) for localized oscillations in terms of R and
Bj . Then this condition can be mapped from R and Bj back to the original parameters of
the model, to yield conditions in terms of the original parameters for localized oscillations
about non-zero steady states.

From the definition of us we see that these steady state solutions occur only if (r−q4
c ) <

b2
2

4b3
.

Then it is convenient to write r and us as

r = q4
c + α

b2
2

4b3
, us = − b2

2b3

[

1 ±
√

1 − α
]

. (5.4)

where α < 1 for b3 < 0. Substituting (5.4) into (5.3) yields

R = r +
b2
2

b3

[

3

4
(1 ±

√
1 − α)2 − (1 ±

√
1 − α)

]

≡ r +
b2
2

b3
g1(α) ,

B3

B2
2

=
4b3

b2
2

1

(1 ± 3
√

1 − α)2
≡ 4b3

b2
2g2(α)

. (5.5)

The variables R and B3/B
2
2 are convenient since they are analogous to those used in

Figure 4.2 to graph the condition (3.20) for localized oscillations. That is, the condition
for localized oscillations in the solution w is shown in Figure 4.2 if we replace the axes
labels with R and B3/B

2
2 . Then, through (5.5) and (5.4) we can map this curve back in

terms of the original parameters, r and b3/b
2
2. We denote the values on the curve in Figure

(4.2) as (rL(1),BL(1)), with 1 denoting that qc = 1 for these values. Then, for qc = 1, the
condition for w for a heterclinic connection between zero and periodic oscillations with
k ∼ 1 is found by setting R = rL(1) and B3/B

2
2 = BL(1). We also recall (4.2) which gives

the transformation for a general qc, to get

rL(qc) = q4
crL(1), BL(qc) =

BL(1)

q4
c

. (5.6)

Then, using (5.4) and (5.5), and setting BL(1)/q4
c = B3

B2

2

and q4
crL(1) = R, we have

b3

b2
2

=
BL(1)

4q4
c

g2(α), BL(1)(rL(1) − 1) =
α + 4g1(α)

g2(α)
. (5.7)
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Using BL(1) and rL(1) as determined in Section 3, together with (5.7) and (5.4), we find
the condition for a heteroclinic connection between us and periodic oscillations about us,
that is the condition for localized oscillations about a non-zero steady state. This condition
is shown in terms of the parameters r and bj in Figure 5.1, with the values of r obtained
by varying α in the expressions above.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
−4.5

−4

−3.5

−3

−2.5
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−1.5
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b
3
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2
2 

Figure 5.1: Graph for the parameter values corresponding to localized solutions with connection
to non-zero steady state for the asymmetric case. Here we show the graph for the choice of the +
sign in the definition of us in (5.4).

23



6 Discussion

In this paper we have presented a multiple scales analysis for constructing stationary
localized cellular patterns for the generalized Swift-Hohenberg equation. The method
provides an envelope equation for the amplitude of these patterns, from which we derive
parametric conditions for connections or fronts between homogeneous and oscillatory
solutions. The results presented here show the relation of the heteroclinic connection
to the critical periodic orbit for which L = H = 0. We find that there is good agreement
with numerical calculations of this special periodic solution, even far from the critical
bifurcation values. The analysis also gives a correction to the wave number selection in
the case of an asymmetric nonlinearity.

Calculation of the heteroclinic connection gives the mean parameter value at which we
expect to see localized cellular patterns which can have an arbitrarily large number of rolls,
as shown computationally in the symmetric case in [11] and discussed from a dynamical
systems theory point of view in [17]. In fact, for each of the curves presented in Figs. 4.3
and 5.1 we expect to see an interval of parameter values, the width of which decreases
exponentially as r → 0, over which an arbitrary number of rolls is observed in the
localized pattern. For parameter values outside of this interval, the localized solutions
are no longer stationary, resulting in propagation of the fronts that connect the constant
and cellular solutions [11] [17] [12]. In [11] an outline is given for a possible equation
for this front propagation. The derivation of such an equation could also provide an
analytical approximation for the interval in which the localized solutions are stable. The
amplitude equation (3.12) obtained for the localized solution provides a starting point for
this derivation.

A Appendix: Coefficients in the amplitude equation

In Section 3 we showed that

u4 = R4(X) + B4(X)e2ikx + D4(X)e4ikx + c.c.

The coefficients R4(X) and B4(X) are given by

µ2(k)B2 = b2(2A0B2 + 2A∗

1C3) − 4ib2kA′

2(X)
(−8k2 + 2q2

c )

µ2
+ 3b3(2|A1|2B2 + A2

1A0) + 4b4A
2
1|A1|2

µ0(k)B0 = b2(2|B2|2 + A2
0) + 3b3(2|A1|2A0 + A2

1B
∗

2 + (A∗

1)
2B2) + 6b4|A1|4 . (A.1)

The coefficients c and d are given by

c = − 12b4
2

µ2
2µ3

− 12b2
2b3

µ2µ3
− 6

µ2
2

(

2b4
2

µ0
+ 3b3b

2
2

)

−4b4

(

6b2

µ2
+

9b2

µ0

)

− 10b5 −
36b3b

2
2

µ2µ0
− 3b2

3

µ3
− 4

(

2
b4
2

µ3
0

+
9b3b

2
2

µ2
0

)

(A.2)

d =
32b2

2k(q2
c − 4k2)

µ2
2

. (A.3)

We note that in the definition of c the terms of the form 1/µ3(k) and 1/µ2(k)2 are very
small in comparison with the others.
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