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Abstract

We discuss the numerical computation of self-similar blow-up solutions of the clas-
sical nonlinear Schrodinger equation in three space dimensions. These solutions
become unbounded in finite time at a single point at which there is a growing and
increasingly narrow peak. The problem of the computation of this self-similar solu-
tion profile reduces to a nonlinear, ordinary differential equation on an unbounded
domain. We show that a transformation of the independent variable to the inter-
val [0,1] yields a well-posed boundary value problem with an essential singularity.
This can be stably solved by polynomial collocation. Moreover, a MATLAB solver
developed by two of the authors can be applied to solve the problem efficiently
and provides a reliable estimate of the global error of the collocation solution. This
is possible because the boundary conditions for the transformed problem serve to
eliminate undesired, rapidly oscillating solution modes and essentially reduce the
problem of the computation of the physical solution of the problem to a boundary
value problem with a singularity of the first kind.
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1 Self-Similar Solutions of the Nonlinear Schrodinger Equation

The classical nonlinear Schrédinger equation occurs in various important ap-
plications in nonlinear optics [8] or plasma physics [12]. The original, partial
differential equation in dimension d takes the form

i%—i—Au—Hu\Qu:O, t>0, (1)
u(z,0) = uo(z), z € R (2)

In the well-studied case d = 1, the equation is integrable and a solution exists
globally. For d > 2, (1) has solutions that become unbounded in a finite time
T. In this case, the solution becomes infinite at a single point = (without re-
striction of generality we assume that z is the origin) at which a growing and
increasingly narrow peak arises. In plasma physics, the singularity is usually
called a collapse, and in nonlinear optics, the singularity corresponds to the
phenomenon of self-focussing. In physical applications, we are mostly inter-
ested in the case d = 3. In this case, it is conjectured that the solutions blow
up in a self-similar way [5]. Moreover, ordinary differential equations are de-
rived in [5] which determine the shape of the solution near the blow-up time.
To derive boundary conditions for these ODEs, use of the fact is made that
(1) is a unitary Hamiltonian PDE and during the evolution of the solution
u(z,t), both the mass M and Hamiltonian H are invariant, that is

M _dH _
dat  dt

where

M:/\u(m,t)\de, (3)
H=[ (|V$u(x,t)|2 - %|u(x,t)|4> d. ()

In this paper, we will restrict ourselves to the computation of radially sym-
metric solutions.

The nonlinear Schrédinger equation (1) is invariant under the following non-
trivial transformation groups (for all A > 0):

(1) t—>)a?, z — Vz, u—)%u,
(2) u— eru.

This does not mean, however, that all the solutions of (1) are invariant under



the same transformations. We are interested in the computation of solutions
which have this property. These self-similar solutions are usually of great phys-
ical importance, because they may be stable attractors for solutions computed
from perturbed initial data. Naturally, we are only interested in solutions that
give meaningful definitions of the invariants (3) and (4). Self-similarity can
only be expected to hold near blow-up, so for ¢ close to 7" and x near the
origin (that is, r ~ 0 for r = |z|) we make the ansatz

1 .
u(ac,t) - _ - e—1/2alog(T—t) Z(T), (5)
2a(T —t)
where
T
TiI= ——
2a(T —1t)

Here, a is a real parameter which expresses the coupling between the phase and
the amplitude of u. a is determined simultaneously with the shape function z.
Substitution of the ansatz (5) into (1) now yields the following ODE for z:

Z'(1) + %z'(f) — 2(1) +ia(r2(r)) + |2(r)2(r) =0, 7> 0. (6)

The boundary conditions for (6) which yield a well-posed problem for the
computation of z and a with a physically meaningful solution are derived as
follows: First, due to symmetry we require

2 (0) = 0. (7)

Moreover, since the phase of z is arbitrary according to the ansatz (5),
3(2(0)) = 0. (8)
Furthermore, we are interested in solutions u of (1) which decay for z — oo
[5], [6],
z(00) = 0. 9)
This implies that |z| is small for large 7. Consequently, it is possible to discuss

the asymptotics of a physically meaningful solution and associated boundary
conditions by neglecting the nonlinear part and studying the linear problem

2"(1) + %ZI(T) —2(7) +ia(rz(7)) =0, 7>0. (10)



The fundamental solution modes of this problem are asymptotic to

1 .

(1) = ~ e i/alog(r), (11)
1 —iat2/2+i/alog(T

©a(7) :ﬁe /2+i/alog(T) (12)

for 7 — oo [6].

Subsequently, we refer to solutions of (1) corresponding to ¢; as slowly varying,
while those solutions associated with ¢, are denoted as rapidly varying.

Naturally, we are only interested in solutions of (10) such that for the associ-
ated solution of (1) H from (4) is finite. This condition translates to

H(z) = 70(\5(7)\2 — Sle@)) 2 dr =0, (13)

We can choose a constant ¢ € C such that the fundamental mode cy; satisfies
this relation, while H is unbounded for the self-similar solution u of (1) asso-
ciated with 9. Consequently, the boundary conditions must be posed such as
to eliminate contributions from s from the general solution of (10). It turns
out that (13) is equivalent to the algebraic relation

T2'(T) + (1 + é) 2(7)

=0, (14)

lim
T—0Q

see [5]. This relation is indeed satisfied by 1, while this condition is violated
by Y2.

Finally, we note that (14) can be rewritten, taking into account (9). Conditions
(9) and (14) result in

lim 72'(7) = 0. (15)

T—00

It is important to point out that this last relation is again satisfied by ¢, but
not by ¢, for which the expression remains bounded, but does not have a
limit for 7 — oo. The resulting boundary value problem for the computation
of the self-similar blow-up solution profile is (6), (7), (8) and (15). To solve
the nonlinear eigenvalue problem, this system can be augmented by the trivial
equation

d'(r) = 0. (16)



In [5] and [6], this second order problem is solved on a truncated interval [0, 7|
with 7 > 1.

2 Singular Problems

Here, we adopt a new approach for the efficient numerical solution of (6) and
(16). Using the Euler transformation z — (z,72') = (21, 22) for (6), we derive
the equivalent first-order equation

M(r)

Z'(1) = z2(1) + f(r,2(7)), 7>0, (17)

where

0 1 0
M(T)Z ,f(T,z):

72(1 —ia) =1 —iat? —7121|21]?

This is an ODE with a singularity of the first kind at 7 = 0 and a singularity of
the second kind (essential singularity) at 7 = oco. For this reason, we split the
interval (0, o] into the subintervals (0, 1] and [1, 00), and require the solution
to be continuous at 7 = 1. The problem on [1, 00) is then transformed to (0, 1]
by the substitution 7 — 1/7. This yields the four-dimensional BVP

M) T, 21,2
d = T L |0+ 1721, 22) , T€[0,1], (18)
0 T; 9(7—7 23, 24)
where
0 —72 0
A(T) = ) g(T7 23, Z4) =
ia —1ia+ 72 L5 23] 23]

In the new variables, the boundary conditions translate to

22(0) = O, %21(0) = 0, 21(1) = 23(1), 22(1) = 24(1), 24(0) =0. (19)

We now review the well-posedness of the transformed problem. In particu-
lar, the eigenvalues of the matrices M (0) and A(0) determine what sets of
boundary conditions are admissible in order to obtain a continuous (isolated)
solution of (18), see for example [9], [10]. Again, it is sufficient to discuss the



linear version of (18) where the nonlinear part is neglected. The admissible
boundary conditions for the resulting system

M)
A= | (20)
7-3

are the same as for (18).

The eigenvalues of M(0) are A\; = 0 and Ay = —1. According to [9], the
admissible boundary condition for a well-posed problem with a singularity
of the first kind associated with the eigenvalue Ay is 25(0) = 0. The second
condition (associated with eigenvalue \;) can be chosen at either 7 = 0 or
7 = 1. The transition conditions z;(1) = z3(1) or z3(1) = 24(1) are therefore
admissible for a well-posed problem.

The eigenvalues of A(0) are A3 = 0 and A4, = ia. The treatment in [10] does
not cover these cases. Consequently, we will check the well-posedness of the
boundary conditions similarly as for (10).

First, we note that the fundamental modes of the constant coefficient system

J(r) = AT(S)z(T) (21)
03(1) =1, @4(r) = e 9/ (22)

4, the mode associated with A4 = ia, is rapidly oscillating and does not have
a limit for 7 — 0. It is therefore desirable to eliminate this mode from the
solution. Indeed, if we transform the mode 5 from (12) analogously as above,
the transplant @o(7) = 1/7¢phL(1/7) satisfies

()52(7') = (—ia + 7'2 (1 _ 2)) e—i/alog(T) e—ia/(27-2) .
a

Thus, ¢4 displays the same behavior for 7 — 0 as the transformed mode
9. Namely, the solution features a rapid oscillation which is not damped as
7 — 0. Consequently, it is possible to eliminate the undesirable solution mode
by requiring z4,(0) = 0. This demonstrates that this boundary condition is
necessary for a well-posed boundary value problem.

3, the fundamental solution of (21) corresponding to the eigenvalue A3 = 0,
is the constant solution, which is not very useful for our purpose. To analyse
the situation further, we consider the eigenvalues of A(7). It turns out that



1 .
As(7) = (1 + 5) 2+ (_a2 + —al3> ™+ 0(7%),
1 i

— + _a3> ™+ 0(79).

If we incorporate the O(72%) term from the expansion of \3(7) into the system

2(7), (23)

the discussion is reduced to the scalar equation

G =~ (1+2) s(0). 29

T

This relation represents the leading term of (23) if we assume that E(r) :=
(E7Y)'(7)E(7) is smooth, where E(7) is the transformation matrix such that
A(T) = E(1)J(1)E~ (1) with J(7) = diag(A3(7), A4(7)). Indeed, a computa-
tion using MAPLE demonstrates that

a’d +iad — 3a* — dia+1 4
-

- 5
E171(7') ~32 a4 + O(T )
2 — 2ia
=— 7+ O(7°),
- 2 —4dia + iad + 2
E ~——=2 o(r?
1a(7) ~ == S o)
2 4-2ia
T a? ’
. 2d + iad — 3a? — 4i 1
EQ,I(T)N_QG + 1a a4a 1a + 73+O(75)
2 — 2ia
i— 4+ 0(r%),
. 2 —4dia + iad + 2
EQ,Q(T)N_+2 D) 7'+O(7'3)
T a
2 4 -2ia
=4 —-
T a

Equally as (24), the terms E’LQ and E2,2 feature a singularity of the first
kind. However, since the solution mode associated with ¢, is eliminated by
the boundary conditions, the terms that are relevant for our discussion are
smooth.

The general solution of the first order ODE (24) is

o3(t) =cr el/alog(r) (25)



This solution satisfies ¢3(0) = 0 and consequently the boundary condition
at 7 = 0 is satisfied. The constant can be fixed by prescribing a condition

@3(1) = C.

To conclude this discussion, we note that the fundamental solution 3 corre-
sponds to the slowly varying fundamental mode ¢; from (11). The transplant

o1(7) = 1/71¢%(1/7) satisfies

o1(1) = —7 (1 + i) el/alos(r)
a

Thus, we have proven that the singular boundary value problem (18) and (19)
is well-posed, the boundary conditions serve to eliminate unphysical solution
modes analogously as for (10), and the computation of the solution is essen-
tially reduced to a system of first order equations with a singularity of the
first kind.

3 Numerical Solution

Two solution methods are proposed in [5] and [6]. Both work on a truncated
interval [0, 7], where the right endpoint 7 > 1 of the integration interval
is chosen sufficiently large “adaptively” until convergence of the numerical
method is observed. In the first case, a certain minimization procedure is
employed. The second algorithm uses collocation for the second order problem
on the truncated interval. The code used for this task is COLSYS, see [1].
Suitable initial guesses for a and the profile of z(¢) have to be provided to
solve the nonlinear problems.

Using the code sbvp designed by two of the authors [2], which is intended
especially for the solution of singular boundary value problems, we can solve
the problem (18), augmented by (16) and the boundary conditions (19).

Since the (transplant of the) mode ¢y(7) from (12) is eliminated from the gen-
eral solution, the slowly varying mode decaying for 7 — 0 has to be approx-
imated. Subsequently, we will demonstrate collocation to work satisfactorily,
since the solution mode we are interested in is characterized by (24). For the
same reason, an error estimate based on defect correction using the backward
Euler method as an auxiliary scheme works for this particular problem, even
though this estimate is not suitable for boundary value problems with an es-
sential singularity in general [3]. For a singularity of the first kind, collocation
methods and the a posteriori error estimate implemented in sbvp have been
analyzed in [4] and [11].



Even though sbvp equally works for complex problems, we separate the real
and imaginary parts of z and solve a system of nine real first order differential
equations with the same number of boundary conditions. Otherwise, it is not
clear how to realize the relation (8).

In practice, we are faced with some difficulties to compute the collocation
solution of (18). A suitable initial approximation for the solution of the as-
sociated nonlinear algebraic equations has to be carefully chosen. We obtain
this approximation in the following way: setting a = 0.9 we solve the initial
value problem (17) on the interval [tg,tena] = [107%,100] using the starting
values z1(ty) = 2, 22(tp) = 0. The numerical solution is determined using
the MATLAB initial value problem solver ode15s and evaluated at N points
which correspond to a uniform mesh A, = {i/N :i=1,..., N} of the trans-
formed problem (18) on [1/N, 1], where the initial points 21 (0) = 2, 2,(0) =0
are added to the points determined from the shooting procedure above. The
approximation determined from the shooting procedure for (17) is given in
Figure 1 together with the initial profile transformed back to the mesh Ay, for
(18). We note that for the starting profile, the rapidly varying solution modes
still appear to be present. The computations reported in Figures 1 and 2 use
a mesh where N = 3000.

2

Fig. 1. Initial profile for (17) (left) and resulting initial profile for (18) (right).

Now, using a moderate tolerance TolX = 5-10~3 for the increment in the New-
ton iteration, the numerical solution of (18) can be determined successfully.
To this end, we used our collocation solver sbvpcol from the package sbvp,
see [2], and computed the collocation solution on a fixed mesh. Firstly, we use
collocation at one Gaussian point, a method of second order (box scheme).
The result is shown in Figure 2, where we give the nine solution components
(including a) of (18) and the real and imaginary part of z, transformed back
to the interval [0, 100]. Note that this solution is also oscillating near 7 = 0,
albeit not as strongly as the starting profile. Obviously, the rapidly varying
mode ¢, from (22) has been eliminated by the boundary conditions and we
observe the asymptotic behavior corresponding to ¢3 from (25)

For this low order method, it is even possible to observe experimentally the
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Fig. 2. Solution of (18) (left) and R(z) and ¥(z) transformed to [0, 100] (right).

classic convergence order of the global error. In Table 1, we give the empirical
convergence order of the numerical solutions computed from the solutions for
three consecutive step-sizes h in the discretization, see Table 1.

Table 1
Convergence order for box scheme.
h err P
4.0000e—03

2.0000e—03 || 3.3750e—02
1.0000e—03 || 8.0415e—03 | 2.07

More interestingly, we also apply the code sbvp, equipped with our error
estimate and an adaptive mesh selection routine ([2]) based on the same low
order method. We use an initial grid with N = 100 and the initial profile
computed as before. The tolerance for the Newton method is chosen as Tol X =
1072, and for the mesh selection we use error tolerances AbsTol = RelTol =
5-1073. Mesh adaptation does take place in this setting, the tolerances are
satisfied on a grid with NV = 256 and a ratio of 9.71 between the largest
and smallest steps in the final mesh. The solution computed thus is close to
those computed previously and is displayed in Figure 3. The oscillations from
Figure 2 cannot be observed here because the solution is resolved on a coarser
mesh.

Also in Figure 3, we show a plot of the “exact error” of this numerical ap-
proximation (with respect to a reference solution computed using a uniform
mesh with N = 1000) and compare this with the error estimate computed by
sbvp. The qualitative behavior of the error seems to be captured quite well.
The error is underestimated by about a factor of four, however, see Figure 3.

Unfortunately, we did not get quite as favorable results for higher-order col-

location methods, see [7]. This may be caused either by the unsmoothness of
the solution or by numerical instability.
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Fig. 3. Solution (left), error and error estimate (right) for (18) computed using sbvp.

Conclusions

We have demonstrated a new approach for the computation of the numerical
solution of a boundary value problem for an ordinary differential equation
which describes self-similar solutions of the classical nonlinear Schrodinger
equation. It was shown that a transformation of the original second order
problem on an unbounded domain to the interval [0,1] yields a well-posed
singular boundary value problem. Moreover, the solution of this problem is
essentially the solution of a BVP with a singularity of the first kind. Hence,
the problem can be solved by a (low order) collocation method which shows its
classical convergence behavior. Furthermore, an error estimate based on defect
correction and using the backward Euler method as an auxiliary scheme, works
dependably and enables adaptive mesh refinement in the solution process.
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