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Abstract

We discuss a new approach for the numerical computation of self-similar blow-up
solutions of certain nonlinear partial differential equations. These solutions become
unbounded in finite time at a single point at which there is a growing and increas-
ingly narrow peak. Our main focus is on a quasilinear parabolic problem in one
space dimension, but our approach can also be applied to other problems featuring
blow-up solutions. For the model we consider here, the problem of the computa-
tion of the self-similar solution profile reduces to a nonlinear, second-order ordinary
differential equation on an unbounded domain, which is given in implicit form. We
demonstrate that a transformation of the independent variable to the interval [0, 1]
yields a singular problem which facilitates a stable numerical solution. To this end,
we implemented a collocation code which is designed especially for implicit sec-
ond order problems. This approach is compared with the numerical solution by
standard methods from the literature and by well-established numerical solvers for
ODEs. It turns out that the new solution method compares favorably with previous
approaches in its stability and efficiency. Finally, we comment on the applicability
of our method to other classes of nonlinear PDEs with blow-up solutions.
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1 Self-Similar Blow-Up in Quasilinear Parabolic Equations

In this paper we discuss the numerical computation of blow-up solutions of
the quasi-linear partial differential equation

∂u

∂t
=

∂

∂x

(

uσ ∂u

∂x

)

+ uβ, (1)

which is a model for the temperature profile of a fusion reactor plasma with
one source term [15]. We prescribe the boundary conditions

u(−L, t) = u(L, t) = 0, t > 0, u(x, 0) = u0(x), x ∈ [−L,L],

and the parameters satisfy σ > 0, β ≥ σ + 1. To study blow-up behavior,
the initial function u0(x) is assumed to be sufficiently large. The numerical
approximation of solutions to (1) is also discussed in [3]. Note that the equation
(1) degenerates at the boundary if σ > 0. This does not affect the calculation
of blow-up however, as the singularity forms well away from the boundary.

Remark 1 Using similar ideas, we could also treat the equation
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which occurs in turbulent diffusion or the flow of a non-Newtonian fluid. Note

that for σ = 0, (2) is the Frank-Kamenetskii equation [9]. In [4], qualitative

results for (2) are derived. The equation does not lend itself to numerical com-

putations readily, however. Instead, a regularization
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where ε = 10−6, could be used. This will be the subject of further investigation.

Note that if necessary, equation (1) can also be regularized in a similar fashion

by replacing uσ with (u2 + ε2)σ/2.

The differential equation (1) is invariant under the Lie group of transforma-
tions

t → λt, x → λmx, u → λ−1/(β−1)u,

where m = 1/2 − σ/(2β − 2) > 0.
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The self-similar solutions which are invariant under these transformations take
the form

u(x, t) =
z(τ)

(T − t)1/(β−1)
with τ =

|x − x∗|

(T − t)m
. (3)

Here, x∗ ∈ (−L,L) denotes the point where blow-up occurs.

Substitution of this ansatz into the differential equation (1) yields the ordinary
differential equation

(zσ(τ)z′(τ))′ − mτz′(τ) −
1

β − 1
z(τ) + zβ(τ) = 0, τ > 0. (4)

Symmetry yields the boundary condition

z′(0) = 0. (5)

Moreover, a matching condition corresponding to the boundary conditions for
the original PDE is prescribed for the self-similar solutions:

lim
τ→∞

z(τ)τ 1/(m(β−1)) = C, (6)

where C is a suitable constant. From the assumptions on the parameters m
and β used in our discussion here, it follows that

lim
τ→∞

z(τ) = 0. (7)

Moreover, to observe blow-up we require z(τ) > 0.

2 Transformation to a Finite Domain

The solution approach we propose for (4) is transformation to a singular
boundary value problem on the interval [0, 1], where the numerical solution
method is subsequently applied directly to the resulting second order problem
in implicit form.

To transform (4) to a finite domain, we split the interval (0,∞) = (0, 1] ∪
[1,∞), and use the transformation τ → 1/τ on the unbounded interval. This
yields a boundary value problem with an essential singularity for (z1(s), z2(s)) :=
(z(s), z(1/s)), s ∈ (0, 1], where the new variable s is the same as τ for z1 and
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s = 1/τ for z2. Together with the appropriate matching conditions at τ = 1,
the resulting problem is

z′′

1 (s)z1(s)
σ + z1(s)

σ−1σ(z′

1(s))
2 − msz′

1(s) −
1

β − 1
z1(s) + zβ

1 (s) = 0, (8)
(

2sz′

2(s) + s2z′′

2 (s)
)

z2(s)
σ + s2z2(s)

σ−1σ(z′

2(s))
2 +

+ m
z′

2(s)

s
−

1

β − 1

z2(s)

s2
+

zβ
2 (s)

s2
= 0, (9)

z′

1(0) = 0, z2(0) = 0, z1(1) = z2(1), z′

1(1) = −z′

2(1). (10)

We found this to be the most suitable formulation for the numerical treatment,
see §4 and [10].

3 Numerical Solution

To solve the transformed problem (8)–(10) numerically, we implemented a
solver based on polynomial collocation for second order ordinary differential
equations [2]. In contrast to standard collocation implementations (cf. [1]), this
solver was designed especially to be applicable to problems posed in implicit

form. We will demonstrate in §4 that this may be an advantage for the numer-
ical treatment of (8)–(10). Our code was implemented in Matlab 6.5 (R13)
on a PC, and the computations reported in this paper were performed in IEEE
double precision arithmetic with relative machine accuracy ≈ 1.11 · 10−16.

The numerical solution of (8)–(10) turned out to be rather difficult, since the
solution of the nonlinear system of algebraic equations for the coefficients of
the collocation solution requires a reasonable starting guess. First, we note
that, ignoring boundary conditions, a constant solution of (4) exists which is
given by

zconst ≡ e
ln(β−1)

1−β .

This motivates to try constant initial profiles for z1(t) and z2(t) in the solution
of the nonlinear collocation equations. However, we found that this approach is
not successful for our problem. Rather, a good initial approximation is given
as z1 ≡ α, z2(t) = αt, where α ≈ z1(0) = z(0). A useful heuristic for the
choice of α is obtained from the following reasoning (cf. [10]): We observe that
α = z(0) must satisfy

z′′(0)ασ −
1

β − 1
α + αβ = 0

due to (5). Since we found that z′′(0) usually is small and negative, this means
that a choice of α slightly larger than zconst gives a useful starting approxima-
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tion. This corresponds with the values for z(0) given in [3] for various choices
of σ, β, but can also be successfully applied in other situations. Note that the
choice of α is indeed critical, a value too close to zconst leads to a failure of the
solution routine, and the collocation equations cannot be solved successfully
if α is chosen too large either. If we choose for example σ = 0.1, β = 2, the
value for z1(0) computed using our code is z1(0) = 1.02656202260728 (the
value given in [3] is z1(0) = 1.0265620225916). The corresponding solution
can be computed starting with α = 1.04. However, for the slightly perturbed
values α = 1.015 or α = 1.06 our solution procedure was not successful [10]. In
Table 1 we give a list of values for α which were successful for various values
of β, where throughout we chose σ = 0.1. For comparison, we also give the
values of zconst used to estimate α and the values z1(0) successfully computed
by our code.

β zconst α z1(0)

1.7 1.664518071 1.76 1.73978649986601

1.8 1.321714079 1.34 1.37085731540303

1.9 1.124195018 1.145 1.15924643609817

2.0 1 1.04 1.02656202260728

2.5 0.7631428284 0.765 0.77381693907163

3.0 0.7071067810 0.709 0.71323890650409

Table 1
Values of zconst, α and z1(0) for various choices of β, σ = 0.1.

With the suitable starting guess, we found that our collocation code works
dependably, but is subject to an order reduction. In Table 2, we give the
empirical convergence orders for the solution of (8)–(10) by collocation based
on four equidistant collocation points. The convergence order was computed
from the approximations for three consecutive step sizes, cf. for example [7].
Table 2 gives, for every equidistant step size h, the value diff = ‖ξi+1−ξi‖ of the
maximal absolute difference between successive numerical approximations and
the estimated convergence order, separately for the two components z1, z2.
We find that, while z1 shows the classical convergence order four, the second
component is affected by an order reduction down to about two. The reason
for this behavior is not quite clear, but may be caused by a lack of smoothness
of the solution of (4) near infinity.

In Figure 1, we give a plot of the two components of the solution of (8)–(10)
computed for h = 2−6, and Figure 2 shows this solution transformed back to
the interval [0, 70].

Finally, in Figure 3 the evolution of the peak of the solution u of the original
PDE (1) computed according to the ansatz (3) is shown. Here for the purpose
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h diff z1 ord z1 diff z2 ord z2

2−1 1.834426e−01 2.51 1.995535e−01 0.38

2−2 3.202632e−02 2.79 1.528185e−01 1.43

2−3 4.600655e−03 8.54 5.650699e−02 7.62

2−4 1.229689e−05 4.61 2.856124e−04 2.00

2−5 5.032704e−07 3.98 7.140073e−05 2.36

2−6 3.167926e−08 3.99 1.387161e−05 2.15

2−7 1.991901e−09 3.99 3.121607e−06 2.05

2−8 1.246463e−10 3.99 7.528824e−07 1.99

2−9 7.801537e−12 3.91 1.889616e−07 1.96

2−10 5.160317e−13 — 4.849716e−08 —

Table 2
Convergence orders for (8)–(10), four equidistant collocation points.
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Fig. 1. Solution of (8)–(10).

of the graphical representation we have set x∗ = 0, T = 20.

4 Comparisons

Here, we compare our method for the computation of the numerical solution
of (4) with different approaches either reported in the literature or adapted
from obvious ideas. In [3], a shooting approach is used to approximate the
self-similar solution profile: Instead of using the asymptotic boundary condi-
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Fig. 2. Solution of (8)–(10) transformed back to [0, 70].
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Fig. 3. Blow-up solution of (1).

tion (7), an initial value problem starting at z(0) = α, z ′(0) = 0 is solved.
This method is numerically highly unstable. If the value of α is not chosen
with high precision, the solution satisfying the asymptotic boundary con-
dition (7) is not approximated by the shooting method. But even if α is
chosen carefully, the errors introduced during the numerical calculation im-
ply that eventually the correct solution is no longer followed. Rather, un-
desired solution modes lead to unusable results or even failure of the nu-
merical method. Two examples demonstrating this unfavorable behavior are
given in Figure 4. Both curves were computed by the shooting approach using
z1(0) = z(0) = 1.02656202260728, z2(0) = z′(0) = 0. The lower, black curve
was computed by Maple using a Runge-Kutta-Fehlberg pair of orders four
and five, see for example [12]. Up to t ≈ 8, the desired, decaying solution
is approximated quite well, cf. Figure 4. However, beyond this point the nu-
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Fig. 4. Shooting approach by Maple and DDASSL.

merical solution starts to grow exponentially. Numerical inaccuracy causes it
to drift away from the bounded solution and instability results. The second
curve in Figure 4 shows a different behavior which we encountered when the
implicit solver DDASSL [11] was used: After showing the desired solution be-
havior up to t ≈ 1, the numerical solution approximates the trivial solution
z ≡ 1 = zconst. Both results demonstrate that the use of shooting to solve
an equivalent initial value problem instead of the boundary value problem
with the correct asymptotic boundary condition leads to an unstable solution
behavior. This is also obvious from the results in [3], where the shooting ap-
proach using DDASSL to solve the initial value problem yields the correct
solution up to t ≈ 12, whence exponential growth sets in.

The shooting approach seems to be the only reasonable choice for the numer-
ical approximation of the original problem (4). The obvious alternative is to
replace the problem (4) on the infinite interval by the same problem posed on a
truncated interval [0, T ], T � 1, with the condition (7) replaced by z(T ) = 0.
Unfortunately, this technique does not seem to work in a stable way either:
Figure 5 shows the numerical approximation computed by our boundary value
problem solver, where T = 64 and the mesh consists of only five subintervals.
We can see that the collocation solution shows rapid oscillations, whence a nu-
merical solution at a finer mesh is impossible altogether. The same behavior
was observed when using the standard solvers bvp4c [13], or COLNEW [1], for
the solution of the boundary value problem on a truncated interval. Only in
the cases where z(T ) is chosen as the value of the “exact” solution (computed
numerically as in §3) this approach is successful, but not practicable of course.
Numerical experiments supporting our claims are given in [10].

Finally, we treated our transformed problem (8)–(10) by standard collocation
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Fig. 5. Solution on truncated interval using z(T ) = 0.

solvers. First, we applied the Matlab code bvp4c available with Matlab

6.5. To this end, the problem has to be transformed to first order and ex-
plicit form. bvp4c uses collocation with an evaluation at the left, singular
endpoint. To avoid this evaluation at t = 0 we chose an interval [ε, 1] with
ε = 0.0078125, instead of [0, 1], and shifted the boundary conditions to this
interval, z′

1(ε) = z2(ε) = 0. Still, the numerical solution turned out to be
highly unstable. Even for starting profiles very close to the exact solution the
numerical solution was oscillating wildly for small t, see the results given in
Figure 6. We stress that throughout, bvp4c could not reach the default toler-
ances (absolute tolerance 10−6, relative tolerance 10−3), the displayed result is
the last approximation returned by the code. Note that choosing the boundary
conditions z′

1(ε) and z2(ε) as the values of the numerical solution determined
in §3 also fails. Still, the failure of bvp4c should not be overestimated, since
this code is not intended for the solution of problems of the present type.
We have included these computations in order to provide the best possible
overview of standard solution approaches, however.

Remark: Using a special reformulation of our problem based on the known
asymptotics (6) of the solution at infinity, it is possible however to use the
features of bvp4c for parameter dependent problems to approximate the so-
lution of (4)–(6): In [14], the interval is truncated at both ends, and thus
the computations are carried out for t ∈ [ε, b], where ε = 10−3, b = 70
(different choices of the parameter ε may yield a higher accuracy of the nu-
merical results). Then, a transformation to a first order system is achieved via
y1(τ) = z(τ), y2(τ) = zσ(τ)z′(τ). The boundary conditions at t = ε and t = b
are now posed depending on two unknown parameters, where the asymptotics
(6) serve to derive a set of four boundary conditions for the unknowns in this
new problem. The features of bvp4c for the solution of problems with unknown
parameters can now be utilized to compute the numerical approximation of
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Fig. 6. Solution of (8)–(10) using bvp4c.

the solution of the problem.

We also solved the singular problem (8)–(10) by the Fortran 77 code COL-
NEW [1]. To this end, the equations are reformulated as explicit equations
for z′′

1 and z′′

2 . The approximation obtained with the starting guess discussed
in Section 3, z1 ≡ α, z2(t) = αt, and collocation at three Gaussian points
satisfies the absolute and relative tolerances equal to 10−10 on a mesh con-
taining 161 subintervals. Remarkably, in spite of the fact that in this form a
singular term 1/zσ is present in the right-hand side, COLNEW can handle the
bad scaling of the algebraic equations sufficiently well and consequently, this
solution approach can provide virtually identical results as our solver [10].

5 Conclusions and Outlook

In this paper we have described a new approach for the solution of the im-
plicit, second order ordinary differential equations on semi-infinite intervals
associated with the computation of self-similar solution profiles of quasilinear
parabolic PDEs. To compute the solution numerically, the problem is trans-
formed to a finite domain and the resulting boundary value problem with an
essential singularity is solved by collocation. To this end, a Matlab solver
was implemented which can treat directly second order problems posed in
implicit form. If the starting approximations are chosen with some care, the
collocation methods work dependably and robustly. Our approach is com-
pared with other standard solution methods which mostly turn out to show
an unfavorable behavior as compared to our technique.

The same idea of transformation to a finite interval and solution of the re-
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sulting singular boundary value problem can be applied in a variety of prob-
lems where self-similar solution profiles of nonlinear PDEs are computed via
ODE problems. In [6] and [7], we have for instance considered the nonlinear
Schrödinger equation. In this case, however, it is unfavorable to use the second
order form [10]. Rather, a transformation to a first order problem and a sub-
sequent transformation to a finite interval makes it possible to translate the
asymptotic boundary conditions at t = ∞ correctly into boundary conditions
for the associated singular problem. Its solution can be successfully computed
by collocation [6], [7]. Other problems like semi-linear, higher order parabolic
equations [5] or the complex Ginzburg-Landau equation [8] are also accessible
to our solution method, see [7].
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